JPH03167287A - Method for sensitized luminescence of aequorin by water-soluble high-molecular compound - Google Patents

Method for sensitized luminescence of aequorin by water-soluble high-molecular compound

Info

Publication number
JPH03167287A
JPH03167287A JP30729389A JP30729389A JPH03167287A JP H03167287 A JPH03167287 A JP H03167287A JP 30729389 A JP30729389 A JP 30729389A JP 30729389 A JP30729389 A JP 30729389A JP H03167287 A JPH03167287 A JP H03167287A
Authority
JP
Japan
Prior art keywords
aequorin
water
molecular compound
luminescence
polymer compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30729389A
Other languages
Japanese (ja)
Inventor
Shuhei Yoshino
修平 善野
Satoshi Inoue
敏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP30729389A priority Critical patent/JPH03167287A/en
Publication of JPH03167287A publication Critical patent/JPH03167287A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to sensitize the luminescence of aequorin and keep aequorin in a stable state by using a water-soluble high-molecular compound in combination with a bioluminescent system of aequorin. CONSTITUTION:A method for emitting light by using aequorin and its derivative, wherein a water-soluble high-molecular compound is used in combination therewith. As the water-soluble high-molecular compound, a synthetic high-molecular compound, a natural high-molecular compound, and modified high-molecular compound are used. Examples of the synthetic high-molecular compound include polyethylene glycol and polyvinyl alcohol. Example of the natural high-molecular compound include polysaccharide and protein. An example of the modified high-molecular compound is a polysaccharide derivative. Example of the aequorin derivative include a variant aequorin, a semisynthetic aequorin, and a semisynthetic variant aequorin.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、水溶性高分子化合物を共存させることを特徴
とするエクオリンの増感発光法に関する. [従来の技術とその問題点] 発光蛋白エクオリンは、発光オワンクラゲより単離され
たカルシウム結合蛋白質で、自然界においては蛋白部分
のアポエクオリンと、基質部分のセレンテラジンが、分
子状酸素を介して複合体を形成している.この複合体に
カルシウムが結合することにより発光する.この発光を
利用してカルシウム濃度を測定できる. 本発明者は組換えDNAの手法を用いて、発光オワンク
ラゲより7ポエクオリンのcDN^をクローニングし、
その一次構造を明らかにした(特開昭61−135.5
811),次いで、とのcDN^を利用して大腸菌を宿
主とし、その菌体内及び菌体外でのアポエクオリンの生
産に成功し(特開昭112−171,US、特間昭63
−102,895) 、その精製法を確立した(特開平
1 −132,397) .さらに、機能遺伝子と結合
したエクオリン遺伝子を作製し、その融合蛋白質の生産
に戒功し(特開昭64−39,990,特願昭63−3
08.424)、その精製法を確立した (特願平1 
−69,862).そして、これらのエクオリン及びそ
の融合蛋白を用いた金属検出法及び免疫測定法を開発し
た(特開昭82−281 .942、特願平1 −74
,742).本発明は、水溶性高分子化合物によるエク
オリンの増感発光法に関する報告である. ところで、エクオリンの有用性は当業者に周知であり、
エクオリンの発光を利用して、各種物質を検出すること
ができる,すなわち、免疫測定法やDN^ブロープ、バ
イオセンサーなどのあらゆる測定検出系に応用できるも
のであり、上述した機能から診断薬等の検査薬として有
用であることが予測される. 本発明者は上述の技術的事情にかんがみ、研究の結果、
水溶性高分子化合物によるエクオリンの増感発光法を開
発することができた.以上の説明から明らかなように、
本発明の目的はエクオリンをより超高感度な測定法に応
用するための発光増感技術を堤供することである.
The present invention relates to a method for sensitized luminescence of aequorin, which is characterized by the coexistence of a water-soluble polymer compound. [Prior art and its problems] The photoprotein aequorin is a calcium-binding protein isolated from the luminescent Aequorina jellyfish.In nature, the protein part apoaequorin and the substrate part coelenterazine form a complex via molecular oxygen. is formed. Luminescence occurs when calcium binds to this complex. Calcium concentration can be measured using this luminescence. The present inventor used recombinant DNA techniques to clone the cDNA of 7-poaequorin from luminescent Aequorina jellyfish,
The primary structure was clarified (JP-A-61-135.5
811), and then succeeded in producing apoaequorin inside and outside the bacterial cell using Escherichia coli as a host using the cDN^ of
-102,895), and established a purification method for it (JP-A-1-132,397). Furthermore, he created an aequorin gene combined with a functional gene and made efforts to produce its fusion protein (Japanese Patent Application Laid-Open No. 64-39,990, Patent Application No. 63-3).
08.424) and established its purification method (Patent Application No. 1999).
-69,862). Then, we developed a metal detection method and an immunoassay method using these aequorins and their fusion proteins (Japanese Patent Application Laid-Open No. 82-281.942, Japanese Patent Application No. 1-74
, 742). The present invention is a report on a sensitized luminescence method for aequorin using a water-soluble polymer compound. By the way, the usefulness of Aequorin is well known to those skilled in the art.
Aequorin's luminescence can be used to detect various substances, that is, it can be applied to all kinds of measurement and detection systems such as immunoassays, DNA probes, and biosensors. It is expected to be useful as a test drug. In view of the above-mentioned technical circumstances, as a result of research, the present inventor has
We were able to develop a sensitized luminescence method for aequorin using a water-soluble polymer compound. As is clear from the above explanation,
The purpose of the present invention is to provide a luminescence sensitization technique for applying aequorin to a more ultrasensitive measurement method.

【問題点を解決するための手段】[Means to solve the problem]

本発明は,下記(1)〜(4)の構成を有する.(1)
エクオリン及びその誘導体を用いる発光法において水溶
性高分子化合物を共存させることを特徴とする増感発光
法. (2)水溶性高分子化合物として合成高分子化合物、天
然高分子物質若しくは修飾高分子化合物を用いる前記第
1項に記載の増感発光法.《3)合成高分子化合物とし
てポリエチレングリコール若しくはポリビニルアルコー
ル、天然高分子物質として多糖類若しくは蛋白質、修飾
高分子化合物として多糖類誘導体を用いる前記第1項に
記載の増感発光法. (4)エクオリン誘導体が変異エクオリン、半合成エク
オリン若しくは半合成変異エクオリンである前記第1項
に記載の増感発光法. 本発明の構成と効果につき以下に詳述する.本発明は水
溶性高分子化合物の触媒効果と増感効果によるエクオリ
ンの増感発光法であり、たとえば後述の実施例に示す方
法で行うことができる. 本発明の方法に関連する、ジオキセタン類とは、′s1
図に示すような四員環ペルオキシド構造を有する化合物
で、セレンテラジンとは、第2図に示すような構造を有
する化合物で、エクオリンとは、第3図に示すような構
造を有する複合体で、エクオリン誘導体とは、アポエク
オリン部分が変異アポエクオリンに置換した変異エクオ
リン、セレンテラジン部分がセレンテラジン誘導体に置
換した半合成エクオリンやその両方ともが置換した半合
成変異エクオリンである.また、水溶性高分子化合物と
しては、後述第1表に示す化合物等があげられる. 本発明を添付図面及び表にて説明すると,第1図は、ジ
オキセタン類の構造を示したもので、1がジオキセタン
の基本骨格の構造を示し、2〜5がジオキセタン類発光
体の一例である.第2Cは、セレンテラジンの構造を示
す.第3図は、:クオリンの複合体を模式的に示したも
のである,第4.5図は、ポリエチレングリコール( 
PEG共存下におけるエクオリン再生の時間経過を追鶴
した結果である.′M6図は、再生エクオリンの興安定
性の時間経過を追跡した結果である.第70は、エクオ
リンの発光、再生のメカニズムを力す. 後述第1表は、水溶性高分子化合物、後述第二表は蛍光
物質の分類や代表例を示したものでjる.第3表は、水
溶性高分子化合物共存下にお6:るエクオリンの増感発
光の時間経過を追跡した泰果である. ☆ ’M1表 (種々の水溶性高分子化合物) 》 帛 a η 5 ト S 第2表 (種々の蛍光物′x) 注. N8D: ’J−ニトロベンゾフラザン誘導体,SBD
: 7−スルホニルベンゾフラザン誘導体エクオリン若
しくはエクオリン誘導体を水溶性高分子化合物と共存さ
せる方法は、次のとおりである. エクオリンとしては、アポエクオリンをセレンテラジン
と所定の条件で混合し反応させた再生エクオリン若しく
は天然エクオリンを使用する.セレンテラジンを反応さ
せる場合の好ましい反応条件は、4℃, Is〜20時
間である.得られたエクオリン及びエクオリン誘導体は
、第1表に例示されるような水溶性高分子化合物と所定
の条件で混合して、本発明に使用する発光剤とする.該
発光剤とCa”との混合による発光量の測定は公知方法
に従う. 上述のようにして得られた本発明の増感発光法を用いる
ことにより、より微量な物質を超高感度に欅出及び測定
することが可能となると考えられk. まk1第7図に示すように、エクオリンの発光は、ジオ
キセタン中間体の開裂に起因することから、セレンテラ
ジン及びジオキセタン類の化学発光においても水溶性高
分子化合物による増感効果が期待できると考えられる.
さらに、これらの発光の増感効果は蛍光物質の共存によ
り、より増大すると予測される. [発明の効果] 本発明のエクオリンの増感発光に関する方法の有用性は
、当業者に自明である.また、適当な蛍光物質を共存せ
しめることにより、エクオリンの発光の増感が可能にな
る.このような物質は、当業者に周知である, 上記の開示により、当業者は、特許請求された本発明を
実施できる.しかし、この技術の理解を増すために、本
発明に重要なエクオリンの増感発光に使われる手順を実
施例によって明らかにする. [実施例] 実施例1[ポリエチレングリコール(PEG)の共存下
におけるエクオリン再生の時間経過]特開昭61−24
9,098に記載の生産法により生産し、特願昭62−
291 440に記載の精製法により精製し、ざらにシ
リカ系のコスモシル10C4 (10x150mm)カ
ラムにて、0.1%トリフルオロ酢酸、水一アセトニト
リル系にて20〜80%のアセトニトリル勾配をかけ分
離したアボエクオリン絹製標品を以下の実験に使用した
.アボエクオリン(10nl/μA)水溶液SOμjl
 , 200aM Trls HCI(pH7.6)1
00■M EDTAバッファ−50μA1セレンテラジ
ン(200■g/mA)メタノール溶液5μ℃、2−メ
ルカブトエタノール5μ41, PE04000(20
%)水溶液適当量、最後に水で500μ℃とした. 混合後、氷水、25℃、37℃にてインキエベートした
.適当な時間ごとにlOμA分取し、キュベツ}−  
(IOX 75自■)に移し、ルくフォトメーター(T
D4000,ラボサイエンス社)にセットした後、30
mM CaC1t. 30mM Trls HCI(p
H7.6)水溶液を100μ℃添加し、その発光量を測
定した.その結果を第4.5図に示す. 氷水中の場合では、PEGを含まない系ではlO時間後
に再生が完了し、その後、26.5時間後まで、エクオ
リン活性の低下は認められなかった(第4図は22時間
までしか示していない).無添加系に比べ、PEG添加
系(0.4〜10%)では10時間後以降にもエクオリ
ン活性の上昇が認められ、再生が完了しえていないよう
じ思われた.また、その傾向はPEG濃度が増すほど顕
著にあらわれ、PEG共存がエクオリン再生に障害とな
っていると考えられた. しかし、非常に興味深いことに、0.4%及び1%PE
G添加系では、無添加系のエクオリン活性値を全ての時
間(ここでは30分から22時間まで)において、上回
っており、無添加系と比較して、22時間後では0.4
%添加系で1.6倍、1%添加系で 1.7倍のエクオ
リン活性を達成した.以上のことから、PEGの共存は
、エクオリンの再生を若干妨げるが、エクオリンの発光
そのものを増すことが明らかとなった.このことは、無
添加系でエクオリンを再生し、再生完了後、PEGを添
加し、発光反応を行なわせることにより、短時間で、発
光増加の最大の効果が得られることを意味する. 25℃の場合では、3〜4時間をピークとして、エクオ
リン活性の低下が全ての系において確認された.これは
基質セレンテラジンの熱分解に起因すると考えられる.
しかし、氷水の場合と同様に、0.4%及び1%PEG
添加系において、無添加系と比較して、エクオリン活性
の増加が認められた. 以上のことから、エクオリンの再生は氷水より25℃の
方が速いが、同時に平行して、基質セレンテラジンの分
解が速く進むため,全てのアポエクオリンが再生される
にまで至っていないことがわかり、基質セレンテラジン
をより過剰に共存させることにより、室温にても十分な
エクオリンの再生が可能であることを躇示する.このこ
とは、エクオリンを検査薬などに応用する際に重要なこ
ととなる. 37℃の場合では、エクオリン活性は、セレンテラジン
の分解反応が極めて速いため、2時間後には全ての系に
おいて、Oとなった.このことは、エクオリンの再生温
度は、あまり上げることができないことを意味し、応用
面から考えると室温が妥当な線と考えられた. 実施例2[再生エクオリンの温度安定性]実施例1で再
生したPEG無添加系の再生エクオリン(0℃にて22
.5時間再生した)を氷水、25℃、37℃にインキュ
ベートしk.適当な時間にエクオリン活性を実施例1と
同様にして測定した.その結果を第6図に示す.25℃
で幻理した時、3.5時間で60%にエクオリン活性が
低下した.さらに37℃処理においては、1時間後で全
く活性がなかった.このことは、再生エクオリンが温度
上昇で分解されたことを意味する.逆に言えば、再生エ
クオリンは、低温下(0〜4℃程)安定である.事実、
再生が完了してから26.5時間、氷水中では安定であ
った. 実施例3[水溶性高分子共存下におけるエクオリン増感
発光の時間経過] アポエクオリン(10ng/μぶ)水溶液50μ℃、2
00sM 丁r1s HCI(1)H7.6)  10
0+sM EDT^パッファ一50μl1セレンテラジ
ン(200mg/■℃》メタノール液5μぶ、2−メル
カブトエタノール5μぶ、最後に水で500μ角とした
.混合後、4℃にて26時間インキエベートした.50
μ1ずつ別のチューブに分取し、それぞれのチューブに
デキストリン.デキストラン,牛血清アルブミン(8S
A), PEG8QQQ,PEG4000の各種潰度の
水溶液50ti1を添加し、混合した後、氷水中でイン
キエベートした.適当な時間ごとにlOμlサンプリン
グし、キエベット(lOX7s量園》に移し、ルミフォ
トメーター (丁D4000)にセットした後、30s
M CaCl., 30mM TrlsHCI (+)
H7.6)水溶液を100μl添加し、発光量(エクオ
リン活性)を測定した.その結果を第3表に示した. デキストラン以外の水溶性高分子化合物の共存において
、 1.2〜1.9倍の増感効果が得られ、15時間後
でもエクオリンが安定に保たれていることがわかった.
また、無添加の系では、エクオリンの分解が徐々に進行
し、15時間後では28%にまでエクオリン活性の低下
が生じた.このことは、氷水中で、再生開始より41時
間で約3割にエクオリン活性が低下したことを意味し、
無添加系では再生時間が20数時間からエクオリン活性
の低下が生じることがわかる.しかし、デキストラン以
外の水溶性高分子化合物の共存系では41時間後でも、
エクオリンは分解を起こさず、安定に保たれていること
がわかる. 以上のように、水溶性高分子化合物をエクオリンの生物
発光系に共存させることにより、エクオリン発光の増強
と、エクオリンの安定な維持が可能になる.
The present invention has the following configurations (1) to (4). (1)
A sensitized luminescence method using aequorin and its derivatives, which is characterized by coexisting with a water-soluble polymer compound. (2) The sensitized luminescence method according to item 1 above, which uses a synthetic polymer compound, a natural polymer substance, or a modified polymer compound as the water-soluble polymer compound. <3) The sensitized luminescence method according to item 1 above, in which polyethylene glycol or polyvinyl alcohol is used as the synthetic polymer compound, a polysaccharide or protein is used as the natural polymer substance, and a polysaccharide derivative is used as the modified polymer compound. (4) The sensitized luminescence method according to item 1 above, wherein the aequorin derivative is a mutant aequorin, a semisynthetic aequorin, or a semisynthetic mutant aequorin. The structure and effects of the present invention will be explained in detail below. The present invention is a sensitized luminescent method for aequorin using the catalytic effect and sensitizing effect of a water-soluble polymer compound, and can be carried out, for example, by the method shown in the Examples below. The dioxetanes that are relevant to the method of the present invention are 's1
Coelenterazine is a compound having a four-membered peroxide structure as shown in Figure 2, and aequorin is a complex having a structure as shown in Figure 3. Aequorin derivatives include mutant aequorin in which the apoaequorin part is replaced with a mutant apoaequorin, semisynthetic aequorin in which the coelenterazine part is replaced by a coelenterazine derivative, and semisynthetic mutant aequorin in which both are replaced. Examples of water-soluble polymer compounds include compounds shown in Table 1 below. The present invention will be explained with reference to the accompanying drawings and tables. Figure 1 shows the structure of dioxetanes, where 1 shows the structure of the basic skeleton of dioxetane, and 2 to 5 are examples of dioxetane luminescent materials. .. 2C shows the structure of coelenterazine. Figure 3: Schematically shows a complex of quorin. Figure 4.5 shows a complex of polyethylene glycol (
This is the result of tracking the time course of aequorin regeneration in the coexistence of PEG. Figure 'M6 shows the results of tracing the time course of the stability of regenerated aequorin. The 70th one strengthens the mechanism of aequorin's luminescence and regeneration. Table 1 below shows water-soluble polymer compounds, and Table 2 below shows classifications and representative examples of fluorescent substances. Table 3 shows the results of tracking the time course of sensitized luminescence of aequorin in the coexistence of a water-soluble polymer compound. ☆ 'M1 Table (Various water-soluble polymer compounds) 》 帛a η 5 TOS Table 2 (Various fluorescent substances'x) Note. N8D: 'J-nitrobenzofurazan derivative, SBD
: 7-Sulfonylbenzofurazan derivative Aequorin or an aequorin derivative coexists with a water-soluble polymer compound as follows. As aequorin, regenerated aequorin or natural aequorin, which is obtained by mixing and reacting apoaequorin with coelenterazine under predetermined conditions, is used. Preferred reaction conditions for reacting coelenterazine are 4°C and Is~20 hours. The obtained aequorin and aequorin derivatives are mixed with a water-soluble polymer compound as exemplified in Table 1 under predetermined conditions to obtain a luminescent agent for use in the present invention. The amount of light emitted by mixing the luminescent agent and Ca'' is measured in accordance with a known method. By using the sensitized luminescence method of the present invention obtained as described above, a trace amount of a substance can be extracted with ultrahigh sensitivity. As shown in Figure 7, the luminescence of aequorin is caused by the cleavage of a dioxetane intermediate, so the chemiluminescence of coelenterazine and dioxetanes is also highly water-soluble. It is thought that the sensitizing effect of molecular compounds can be expected.
Furthermore, the sensitizing effect of these luminescence is expected to be further enhanced by the coexistence of fluorescent substances. [Effects of the Invention] The usefulness of the method for sensitized luminescence of aequorin of the present invention will be obvious to those skilled in the art. Furthermore, by coexisting with an appropriate fluorescent substance, it becomes possible to sensitize the luminescence of aequorin. Such materials are well known to those skilled in the art. The above disclosure enables one skilled in the art to practice the claimed invention. However, in order to increase the understanding of this technology, the procedure used for the sensitized luminescence of aequorin, which is important to the present invention, will be clarified by an example. [Example] Example 1 [Time course of aequorin regeneration in the presence of polyethylene glycol (PEG)] JP-A-61-24
Produced by the production method described in No. 9,098, patent application No. 1983-
It was purified by the purification method described in 291 and 440, and separated using a silica-based Cosmosil 10C4 (10 x 150 mm) column by applying a 20 to 80% acetonitrile gradient in a 0.1% trifluoroacetic acid, water-acetonitrile system. Aboaequorin silk preparations were used in the following experiments. Aboequorin (10nl/μA) aqueous solution SOμjl
, 200aM Trls HCI (pH 7.6) 1
00 M EDTA buffer - 50 μA1 coelenterazine (200 g/mA) methanol solution 5μ℃, 2-mercabutoethanol 5μ41, PE04000 (20
%) aqueous solution in an appropriate amount, and finally the temperature was adjusted to 500μ℃ with water. After mixing, the mixture was incubated in ice water at 25°C and 37°C. Collect 10 μA at appropriate intervals and divide into cubes}-
(IOX 75), and transfer it to a photometer (T
D4000, Labo Science Co., Ltd.)
mM CaClt. 30mM Trls HCI (p
H7.6) An aqueous solution was added at 100μ℃, and the amount of luminescence was measured. The results are shown in Figure 4.5. In the case of ice water, regeneration was completed after 10 hours in the system without PEG, and no decrease in aequorin activity was observed until 26.5 hours later (Figure 4 only shows up to 22 hours). ). Compared to the additive-free system, in the PEG-added system (0.4-10%), an increase in aequorin activity was observed even after 10 hours, suggesting that regeneration was not yet complete. Furthermore, this tendency became more pronounced as the PEG concentration increased, suggesting that the coexistence of PEG was an obstacle to aequorin regeneration. However, very interestingly, 0.4% and 1% PE
The G-added system exceeds the aequorin activity value of the non-additive system at all times (here from 30 minutes to 22 hours), and compared to the non-additive system, the aequorin activity value after 22 hours is 0.4
Aequorin activity was 1.6 times higher in the % addition system and 1.7 times higher in the 1% addition system. From the above, it has become clear that the coexistence of PEG slightly hinders the regeneration of aequorin, but increases the luminescence of aequorin itself. This means that the maximum effect of increasing luminescence can be obtained in a short period of time by regenerating aequorin in an additive-free system and then adding PEG after the regeneration is complete to cause a luminescent reaction. In the case of 25°C, a decrease in aequorin activity was confirmed in all systems with a peak time of 3 to 4 hours. This is thought to be due to thermal decomposition of the substrate coelenterazine.
However, as in the case of ice water, 0.4% and 1% PEG
An increase in aequorin activity was observed in the additive system compared to the non-additive system. From the above, it is clear that aequorin regeneration is faster at 25°C than in ice water, but at the same time, the decomposition of the substrate coelenterazine proceeds rapidly, so not all apoaequorin is regenerated. We show that sufficient aequorin regeneration is possible even at room temperature by coexisting with coelenterazine in excess. This is important when applying aequorin as a test drug. At 37°C, aequorin activity became O in all systems after 2 hours because the decomposition reaction of coelenterazine was extremely rapid. This means that the regeneration temperature of aequorin cannot be raised too much, and room temperature was considered a reasonable line from an application standpoint. Example 2 [Temperature stability of regenerated aequorin] PEG-free regenerated aequorin regenerated in Example 1 (22
.. (regenerated for 5 hours) was incubated in ice water at 25°C, 37°C and k. At appropriate times, aequorin activity was measured in the same manner as in Example 1. The results are shown in Figure 6. 25℃
When I experienced this, aequorin activity decreased to 60% in 3.5 hours. Furthermore, when treated at 37°C, there was no activity at all after 1 hour. This means that the regenerated aequorin was decomposed by the temperature increase. Conversely, regenerated aequorin is stable at low temperatures (about 0 to 4°C). fact,
It remained stable in ice water for 26.5 hours after completion of regeneration. Example 3 [Time course of aequorin-sensitized luminescence in the coexistence of water-soluble polymer] Apoequorin (10 ng/μ) aqueous solution 50μ°C, 2
00sM Dingr1s HCI(1)H7.6) 10
0+sM EDT^ Puffer - 50μl 1 Coelenterazine (200mg/■°C) 5μ of methanol solution, 5μ of 2-mercabutoethanol, and finally water to make a 500μ square. After mixing, incubate at 4℃ for 26 hours.50
Aliquot 1 μl into separate tubes, and add dextrin to each tube. Dextran, bovine serum albumin (8S
A) 50 ti1 of aqueous solutions of PEG8QQQ and PEG4000 of various degrees of crushing were added, mixed, and then incubated in ice water. Sample 10μl at appropriate intervals, transfer it to Kievet (1OX7s quantity garden), set it on a Lumiphotometer (D4000), and incubate for 30s.
M CaCl. , 30mM TrlsHCI (+)
H7.6) 100 μl of the aqueous solution was added, and the amount of luminescence (equorin activity) was measured. The results are shown in Table 3. It was found that in the coexistence of water-soluble polymer compounds other than dextran, a 1.2 to 1.9-fold sensitizing effect was obtained, and aequorin remained stable even after 15 hours.
In addition, in the system without additives, aequorin decomposition progressed gradually, and aequorin activity decreased to 28% after 15 hours. This means that in ice water, aequorin activity decreased by about 30% within 41 hours from the start of regeneration.
It can be seen that in the additive-free system, aequorin activity decreases after a regeneration time of 20 hours. However, in a coexisting system with water-soluble polymer compounds other than dextran, even after 41 hours,
It can be seen that aequorin does not undergo decomposition and remains stable. As described above, by coexisting a water-soluble polymer compound with the bioluminescent system of aequorin, it becomes possible to enhance aequorin luminescence and maintain the stability of aequorin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜7図は、本発明の説明図である.第1図は、ジオ
キセタンの化学構造を示す.第2図は、セレンテラジン
の化学構造を示す.第3図はエクオリンの構造を模式的
に示したものである. 第4図および第5図はPEG共存下におけるエクオリン
再生の時間経過を追跡した結果である.第6図は、再生
エクオリンの熱安定性の時間経過を追跡した結果を示す
. 第7図はエクオリンの発光、再生のメカニズムを示す. 以上
1 to 7 are explanatory diagrams of the present invention. Figure 1 shows the chemical structure of dioxetane. Figure 2 shows the chemical structure of coelenterazine. Figure 3 schematically shows the structure of aequorin. Figures 4 and 5 show the results of tracking the time course of aequorin regeneration in the coexistence of PEG. Figure 6 shows the results of tracing the thermal stability of regenerated aequorin over time. Figure 7 shows the mechanism of aequorin's luminescence and regeneration. that's all

Claims (4)

【特許請求の範囲】[Claims] (1) エクオリン及びその誘導体を用いる発光法にお
いて水溶性高分子化合物を共存させることを特徴とする
増感発光法。
(1) A sensitized luminescence method characterized by coexisting a water-soluble polymer compound in a luminescence method using aequorin and its derivatives.
(2) 水溶性高分子化合物として合成高分子化合物、
天然高分子物質若しくは修飾高分子化合物を用いる特許
請求の範囲第1項に記載の増感発光法。
(2) A synthetic polymer compound as a water-soluble polymer compound,
The sensitized luminescence method according to claim 1, which uses a natural polymer substance or a modified polymer compound.
(3) 合成高分子化合物としてポリエチレングリコー
ル若しくはポリビニルアルコール、天然高分子物質とし
て多糖類若しくは蛋白質、修飾高分子化合物として多糖
類誘導体を用いる特許請求の範囲第1項に記載の増感発
光法。
(3) The sensitized luminescence method according to claim 1, in which polyethylene glycol or polyvinyl alcohol is used as the synthetic polymer compound, polysaccharide or protein is used as the natural polymer substance, and polysaccharide derivative is used as the modified polymer compound.
(4) エクオリン誘導体が変異エクオリン、半合成エ
クオリン若しくは半合成変異エクオリンである特許請求
の範囲第1項に記載の増感発光法。
(4) The sensitized luminescence method according to claim 1, wherein the aequorin derivative is a mutant aequorin, a semisynthetic aequorin, or a semisynthetic mutant aequorin.
JP30729389A 1989-11-27 1989-11-27 Method for sensitized luminescence of aequorin by water-soluble high-molecular compound Pending JPH03167287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30729389A JPH03167287A (en) 1989-11-27 1989-11-27 Method for sensitized luminescence of aequorin by water-soluble high-molecular compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30729389A JPH03167287A (en) 1989-11-27 1989-11-27 Method for sensitized luminescence of aequorin by water-soluble high-molecular compound

Publications (1)

Publication Number Publication Date
JPH03167287A true JPH03167287A (en) 1991-07-19

Family

ID=17967392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30729389A Pending JPH03167287A (en) 1989-11-27 1989-11-27 Method for sensitized luminescence of aequorin by water-soluble high-molecular compound

Country Status (1)

Country Link
JP (1) JPH03167287A (en)

Similar Documents

Publication Publication Date Title
Cleland et al. Refolding and aggregation of bovine carbonic anhydrase B: quasi-elastic light scattering analysis
Nisonoff et al. Heterogeneity and average combining constants of antibodies from individual rabbits
Omenn et al. Modification of the single tryptophan residue of staphylococcal nuclease by a new mild oxidizing agent
Conrad et al. Intramolecular transfer of excitation from trytophan to 1-dimethylaminonaphthalene-5-sulfonamide in a series of model compounds
Schmer et al. The isolation and characterization of bovine factor VIII (antihemophilic factor)
JPS63215962A (en) Electrochemical process and device thereof
US20200256858A1 (en) Modifiable Chemical Inducers of Proximity and Methods of Using the Same
Furie et al. The interaction of the lanthanide ions with staphylococcal nuclease
JP4770462B2 (en) Fluorescent protein
JPH09504505A (en) Pterin derivative and its production and use
Crisanti et al. Characterization of the slow steps in the folding of the. alpha. subunit of tryptophan synthase
SU946389A3 (en) Method of producing trombine like enzymes
Rich et al. The photophysical probe, 7‐azatryptophan, in synthetic peptides
Speer et al. Activated human Hageman factor (XII)
Zander et al. [5] Disulfide bond catalysts in Escherichia coli
Arai et al. Fluorometric assay of tubulin-colchicine complex
JPS61501418A (en) bispecific antibody determinant
JPH03167287A (en) Method for sensitized luminescence of aequorin by water-soluble high-molecular compound
ATE44621T1 (en) PROTEIN CONJUGATES OF PENICILLO ACID, THEIR PRODUCTION AND USE.
Mell et al. Purification of dihydrofolate reductase via amethopterin-aminoethyl starch
Ingham et al. The rates of dissociation and recombination of the subunits of human luteinizing hormone
Rotman et al. Intracellular viscosity changes during activation of blood platelets: studies by fluorescence polarization
JPH03167288A (en) Method for sensitized luminescence of aequorin by surface active agent
JPH03255959A (en) Polymer
Glover et al. Aromatic esters which inhibit plasmin or thrombin by formation of relatively stable acyl enzymes