JPH03167236A - Flame-retardant polystyrene resin foam and its production - Google Patents

Flame-retardant polystyrene resin foam and its production

Info

Publication number
JPH03167236A
JPH03167236A JP30839789A JP30839789A JPH03167236A JP H03167236 A JPH03167236 A JP H03167236A JP 30839789 A JP30839789 A JP 30839789A JP 30839789 A JP30839789 A JP 30839789A JP H03167236 A JPH03167236 A JP H03167236A
Authority
JP
Japan
Prior art keywords
flame
resin
polystyrene resin
foam
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30839789A
Other languages
Japanese (ja)
Other versions
JP2924020B2 (en
Inventor
Takeshi Suzuki
鈴木 武嗣
Michiko Hirasawa
平沢 通子
Mikio Suzuki
幹夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Nihon Kasei Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Nihon Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd, Nihon Kasei Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP1308397A priority Critical patent/JP2924020B2/en
Publication of JPH03167236A publication Critical patent/JPH03167236A/en
Application granted granted Critical
Publication of JP2924020B2 publication Critical patent/JP2924020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the title foam excelling in flame retardancy, showing self- extinguishing properties even when ignited and not dripping even in contact with a flame by incorporating a specified thermally expansible graphite in the foam. CONSTITUTION:A thermally expansible graphite prepared by coating graphite with a film-forming resin (e.g. acrylonitrile/butadiene copolymer) is incorporated in such an amount that the content of the graphite is 5-50wt.% and the content of the film-forming resin is 0.2-25wt.%.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は難燃性の改善されたポリスチレン系樹脂発泡体
に関するもので、本発明のポリスチレン系樹脂発泡体は
断熱材、建材、緩衝材等に利用するのに適している。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a polystyrene resin foam with improved flame retardancy, and the polystyrene resin foam of the present invention can be used as a heat insulating material, a building material, a cushioning material, etc. suitable for use.

〔従来の技術〕[Conventional technology]

ポリスチレン系樹脂発泡体は、従来よりその優れた特性
、加工性を活かして建材等各種の分野に利用されており
、その製造方法としては、ポリスチレン系樹脂と揮発性
発泡剤を押出し機で高温、高圧下で混合し、得られた混
合体を比較的低温、低圧帯域で押出し機の先端に取りつ
けた口金から押出して発泡させて発泡体を製造する方法
、あるいは、モノマーを懸濁重合させる際に揮発性発泡
剤を重合初期、又はある程度の重合転化率に達したとき
に添加して発泡性樹脂粒子を得た後、発泡処理を施して
発泡体とする方法が知られている.しかし、このように
して製造される発泡体には種々の問題点が指摘されてお
り、とりわけ近年の火災による災害予防の観点から、特
に燃焼に対する抵抗性の点で改善が要望されてきた.こ
の問題点を解決するため、発泡体に三酸化アンチモン、
水酸化アルミニウム、ほう酸塩等の無機系難燃剤や、芳
香族系炭化水素化合物または非芳香族系炭化水素化合物
のハロゲン誘導体等の有機系難燃剤を添加することも良
く知られている.また、かかる目的を達戒する別の手段
として、米国特許第3.574.644号には熱膨張性
黒鉛を添加することにより難燃性を高める方法が提案さ
れている. 〔発明が解決しようとする課題〕 上述のような従来の方法では、ポリスチレン系樹脂発泡
体に対する難燃化の効果はまだ十分とはいえず、所望の
難燃性を得るためには難燃剤の添加量が極めて多くなり
、その結果発泡体の物性を低下させたり、経済的な観点
からも少なからず問題が認められている.また、無機系
難燃剤はボリマーと不相溶のため発泡性を低下せしめた
り、難燃剤を均一に分散させるために製造工程が複雑に
なったり、或は有機系難燃剤が低分子化合物である場合
、発泡体戒形中にこれらが飛散、逸散して作業環境を悪
化せしめる等、製造上の問題も指摘されている. また、熱膨張性黒鉛は炎に接したときに急激に膨張する
性質を利用して難燃剤として用いることが知られている
が、従来の熱膨張性黒鉛は黒鉛の眉間に存在する硫酸及
び遊離硫酸を含有しているので、これらが酸性を呈し、
そのため、これを添加したポリスチレン系樹脂を発泡さ
せる際、金属製の製造装置を腐食させたり、得られた発
泡体を裁断加工する際、カッターの刃を腐食させること
がある.一方、熱膨張性黒鉛が酸性を呈するのでこれを
添加するラテックス、エマルジョン等の安定性を改善す
るため米国特許第3.574.644号に記載の方法で
は、熱膨張性黒鉛をアンモニアと接触させてから用いて
いるが、本発明者らの実験結果によると、アンモニアに
よる中和の場合、中和により生成するとみられる硫酸ア
ンモニウムが発泡性ポリスチレン系樹脂ビーズをスチー
ム等で加熱、発泡させ融着させる際の熱によって分解し
、その結果、中性を維持することが出来ず、問題を解決
できないことが判った. 本発明は、前記問題点を克服した、難燃性に優れたポリ
スチレン系樹脂発泡体並びにその製造方法を提供しよう
とするものである。
Polystyrene resin foam has traditionally been used in various fields such as building materials due to its excellent properties and workability.The manufacturing method involves extruding polystyrene resin and a volatile foaming agent at high temperatures. A method of producing a foam by mixing under high pressure and extruding the resulting mixture through a nozzle attached to the tip of an extruder in a relatively low-temperature, low-pressure zone, and foaming it, or when carrying out suspension polymerization of monomers. A method is known in which a volatile blowing agent is added at the initial stage of polymerization or when a certain degree of polymerization conversion has been reached to obtain expandable resin particles, and then a foaming treatment is performed to form a foam. However, various problems have been pointed out with the foams produced in this way, and in particular, from the viewpoint of preventing disasters caused by fires in recent years, there has been a demand for improvement, particularly in terms of resistance to combustion. To solve this problem, we added antimony trioxide to the foam.
It is also well known to add inorganic flame retardants such as aluminum hydroxide and borates, and organic flame retardants such as halogen derivatives of aromatic hydrocarbon compounds or non-aromatic hydrocarbon compounds. Further, as another means of achieving this objective, US Pat. No. 3,574,644 proposes a method of increasing flame retardance by adding thermally expandable graphite. [Problems to be Solved by the Invention] The conventional methods described above cannot be said to have a sufficient flame retardant effect on polystyrene resin foams, and in order to obtain the desired flame retardancy, it is necessary to add flame retardants. The amount added becomes extremely large, and as a result, the physical properties of the foam deteriorate, and some problems have been recognized from an economic standpoint. In addition, inorganic flame retardants are incompatible with polymers, which reduces foaming properties, the manufacturing process becomes complicated in order to uniformly disperse flame retardants, or organic flame retardants are low-molecular compounds. In some cases, manufacturing problems have also been pointed out, such as the foam particles scattering or escaping during the process, worsening the working environment. In addition, thermally expandable graphite is known to be used as a flame retardant by taking advantage of its property of rapidly expanding when it comes in contact with flame. Because they contain sulfuric acid, they are acidic,
Therefore, when foaming polystyrene-based resin to which it is added, it may corrode metal manufacturing equipment, and when cutting the resulting foam, it may corrode the cutter blade. On the other hand, since thermally expandable graphite exhibits acidity, in order to improve the stability of latex, emulsion, etc. to which it is added, the method described in U.S. Pat. However, according to the experimental results of the present inventors, in the case of neutralization with ammonia, the ammonium sulfate that appears to be generated by neutralization causes the expandable polystyrene resin beads to be heated with steam etc., foamed, and fused. It was found that the problem could not be solved because it decomposed due to the heat generated and, as a result, it could not maintain neutrality. The present invention aims to overcome the above problems and provide a polystyrene resin foam with excellent flame retardancy and a method for producing the same.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは難燃性の優れたポリスチレン系樹脂発泡体
について種々検討を重ねた結果、特定の熱膨張性黒鉛を
添加、配合することによって、前記のような問題点のな
い、優れた難燃性を有するポリスチレン系樹脂発泡体が
得られることを見出し、本発明を完成するに至った. 即ち、本発明は、皮膜形威性樹脂で被覆された熱膨張性
黒鉛を、黒鉛の含有量が5〜50重量%、皮膜形成性樹
脂の含有量が0.2〜25重量%となるように含有して
いる難燃性ポリスチレン系樹脂発泡体及びその製造法を
要旨とするものである.以下、本発明を詳細に説明する
. 本発明で用いるポリスチレン系樹脂発泡体の原料となる
ポリスチレン系樹脂としては、スチレン、α−メチルス
チレン、ジメチルスチレン、エチルスチレン、クロロス
チレン、プロモスチレン、ビニルトルエン等のモノマー
の重合体、及びこれらのモノマー同志の共重合体あるい
はこれらのモノマーと更にブタジエン、アクリロニトリ
ル、メチルメタクリレート、イソプレン、塩化ビニル、
インプチレン等のビニルモノマーとの共重合体ヲ挙げる
ことが出来る.また、これらのポリスチレン系樹脂に他
の樹脂、例えばポリオレフィン等を混合して使用するこ
ともできる。
The present inventors have conducted various studies on polystyrene resin foam with excellent flame retardancy, and found that by adding and blending a specific thermally expandable graphite, an excellent flame retardant foam without the above-mentioned problems can be obtained. It was discovered that a polystyrene resin foam having flammability can be obtained, and the present invention was completed. That is, in the present invention, thermally expandable graphite coated with a film-forming resin is prepared such that the graphite content is 5 to 50% by weight and the film-forming resin content is 0.2 to 25% by weight. This article focuses on the flame-retardant polystyrene resin foam containing the material and its manufacturing method. The present invention will be explained in detail below. Examples of the polystyrene resin used as a raw material for the polystyrene resin foam used in the present invention include polymers of monomers such as styrene, α-methylstyrene, dimethylstyrene, ethylstyrene, chlorostyrene, promostyrene, and vinyltoluene, and polymers of these monomers. Copolymers of monomers or these monomers with butadiene, acrylonitrile, methyl methacrylate, isoprene, vinyl chloride,
Examples include copolymers with vinyl monomers such as imptylene. Further, these polystyrene resins may be mixed with other resins such as polyolefins.

また、発泡剤は通常ポリスチレン系樹脂の軟化温度より
も低い沸点を有する易揮発性有機化合物、例えば、脂肪
族炭化水素類、脂肪族ハロゲン化炭化水素類、脂肪族ケ
トン類、脂肪族エステル類が用いられ、ポリスチレン.
系樹脂100重量部に対して1〜30重量部の割合で、
より好ましくは3〜8重量部の割合で含浸されるのが通
例である.本発明で使用される熱膨張性黒鉛の原料黒鉛
には特に制限はなく、天然黒鉛、熱分解黒鉛、キツシュ
黒鉛など通常の熱膨張性黒鉛の製造に用いられているも
のが使用できる。本発明で使用される熱膨張性黒鉛は、
原料黒鉛を酸処理、例えば98%濃硫酸と60%過酸化
水素水の混合物に45℃以下の温度で10〜30分接触
させ、次いで酸処理後の黒鉛を水洗し、濾別し、乾燥し
た後、皮膜形成性の樹脂で被覆する。
In addition, the blowing agent is usually an easily volatile organic compound having a boiling point lower than the softening temperature of the polystyrene resin, such as aliphatic hydrocarbons, aliphatic halogenated hydrocarbons, aliphatic ketones, and aliphatic esters. Polystyrene.
At a ratio of 1 to 30 parts by weight per 100 parts by weight of the system resin,
More preferably, it is customary to impregnate at a ratio of 3 to 8 parts by weight. The raw material graphite for the thermally expandable graphite used in the present invention is not particularly limited, and those used in the production of normal thermally expandable graphite, such as natural graphite, pyrolytic graphite, and kitsch graphite, can be used. The thermally expandable graphite used in the present invention is
The raw graphite is treated with an acid, for example, brought into contact with a mixture of 98% concentrated sulfuric acid and 60% hydrogen peroxide at a temperature of 45°C or less for 10 to 30 minutes, and then the graphite after the acid treatment is washed with water, filtered, and dried. After that, it is coated with a film-forming resin.

本発明の熱膨張性黒鉛は、難燃効果の発現という観点か
ら、1000℃で10秒間急激に加熱したときの膨張度
が50〜250 −/gであることが望ましい.本発明
でいう「膨張度」とは、1000℃に保持された電気炉
内に、10分以上保持して加熱された150ccの石英
ビーカを炉外に取り出し、直ちに熱膨張性黒鉛0.5g
を投入し、同じ<1000℃に保持された炉中に素早く
入れ、そのまま10秒間保持した後、炉外に取り出し、
自然冷却した後の膨張黒鉛の容積/重量比(単位:ml
/g)である。
The thermally expandable graphite of the present invention desirably has a degree of expansion of 50 to 250 −/g when rapidly heated at 1000° C. for 10 seconds from the viewpoint of exhibiting a flame retardant effect. The "degree of expansion" in the present invention means that a 150cc quartz beaker that has been heated in an electric furnace maintained at 1000°C for 10 minutes or more is taken out of the furnace, and immediately 0.5g of thermally expandable graphite is used.
quickly placed in the same furnace maintained at <1000°C, held there for 10 seconds, and then taken out of the furnace.
Volume/weight ratio of expanded graphite after natural cooling (unit: ml
/g).

熱膨張性黒鉛の膨張度は、一般に該熱膨張性黒鉛の粒度
に左右され、粒度がおよそ80メッシュより細かくなる
と、膨張度が小さくなる傾向があり、150メッシュよ
り細かい場合は、膨張度が極端に低下し、その結果、難
燃化効果が著しく低する。一方、粒度が20〜30メッ
シュ程度になると、ポリスチレン系樹脂に添加する場合
、均一な添加が困難となるので好ましくない。従って本
発明で使用される熱膨張性黒鉛の粒度は、30〜120
メッシュのものが望ましく、更に40〜100メッシュ
程度に分級されたものが最も好ましい. 熱膨張性黒鉛の粒度は、通常、これを製造する際の原料
黒鉛の粒度に依存しているので粒度の調整を原料で行っ
てもよく、また、膨張後の黒鉛を粉砕し分級して行って
もよい。
The degree of expansion of thermally expandable graphite generally depends on the particle size of the thermally expandable graphite, and when the particle size is finer than about 80 mesh, the degree of expansion tends to be small, and when it is finer than 150 mesh, the degree of expansion is extremely low. As a result, the flame retardant effect is significantly reduced. On the other hand, if the particle size is about 20 to 30 mesh, it is not preferable because uniform addition becomes difficult when added to polystyrene resin. Therefore, the particle size of the thermally expandable graphite used in the present invention is from 30 to 120
A mesh material is preferable, and a material classified into about 40 to 100 mesh is most preferable. The particle size of thermally expandable graphite usually depends on the particle size of the raw material graphite used to manufacture it, so the particle size may be adjusted using the raw material. Alternatively, the expanded graphite may be crushed and classified. You can.

本発明で使用される熱膨張性黒鉛は、上記のように原料
黒鉛を酸処理後、アンモニア、アルカリ金属化合物、ア
ルカリ金属土類化合物から選択される1種以上の塩基性
化合物で遊離硫酸が中和されていることが好ましい.好
ましい中和剤としては、苛性ソーダ、苛性カリ、水酸カ
ルシウム、水酸化マグネシウムを挙げることができる.
中和処理によりアルカリ金属又はアルカリ土頬金属は硫
酸塩として含有されていることが望ましいが、一部は過
剰の水酸化物、あるいは炭酸塩などの形で存在していて
もよい。中和処理は原料黒鉛を酸処理し、水洗後或は水
洗工程で、苛性ソーダ水溶液、水酸化カルシウム水溶液
等と混合、接触させて行う.中和の程度としては処理後
の熱膨張性黒鉛のlm量%水分散液のpnが4.5〜9
程度であることが好ましい。pHは測定すべき熱膨張性
黒鉛1gを99gの脱イオン水に投入し、lO分間撹拌
した後、pH電極により測定される。なお、この測定に
際して使用される脱イオン水はそれ自体のpHが5.5
〜7.0の範囲のものを用いる。
The thermally expandable graphite used in the present invention is produced by treating the raw material graphite with an acid as described above, and then treating the free sulfuric acid with one or more basic compounds selected from ammonia, alkali metal compounds, and alkali metal earth compounds. It is preferable that the Preferred neutralizing agents include caustic soda, caustic potash, calcium hydroxide, and magnesium hydroxide.
It is desirable that the alkali metal or alkaline earth metal is contained in the form of sulfate through the neutralization treatment, but a portion may also be present in the form of excess hydroxide or carbonate. Neutralization treatment is carried out by treating the raw graphite with an acid, and then mixing it with an aqueous solution of caustic soda, an aqueous calcium hydroxide solution, etc., and bringing it into contact with it after or during the water washing process. As for the degree of neutralization, the pn of the lm% aqueous dispersion of thermally expandable graphite after treatment is 4.5 to 9.
It is preferable that the degree of The pH is measured by adding 1 g of thermally expandable graphite to be measured into 99 g of deionized water, stirring for 10 minutes, and then using a pH electrode. Note that the deionized water used for this measurement has a pH of 5.5.
-7.0 is used.

熱膨張性黒鉛を被覆する皮膜形成性樹脂の一例としでは
、アクリロニトリループタジエン共重合体、スチレン−
ブタジエン共重合体、エチレン−酢酸ビニル共重合体、
ポリ酢酸ビニル樹脂、ポリ塩化ビニル樹脂、ポリアクリ
レート樹脂及びこれらの混合物が挙げられる.これらの
樹脂は改質のためモノマーの一部が化学的に変性されて
いたり、第二、第三成分が共重合されていたり、可塑剤
などの添加物が添加されていても良い。これらの中では
、アクリロニトリル含量が15〜50重量%のアクリロ
ニトリループタジエン共重合体、スチレン含量が20〜
30重量%のスチレン−ブタジエン共重合体、酢酸ビニ
ル含量が20〜80重量%のエチレン−酢酸ビニル共重
合体が好ましい。
Examples of film-forming resins that coat thermally expandable graphite include acrylonitriloptadiene copolymer, styrene-
butadiene copolymer, ethylene-vinyl acetate copolymer,
Examples include polyvinyl acetate resin, polyvinyl chloride resin, polyacrylate resin, and mixtures thereof. For modification, some of the monomers of these resins may be chemically modified, second and third components may be copolymerized, or additives such as plasticizers may be added. Among these, acrylonitrile looptadiene copolymer with an acrylonitrile content of 15 to 50% by weight, and a styrene content of 20 to 50% by weight.
A styrene-butadiene copolymer having a content of 30% by weight and an ethylene-vinyl acetate copolymer having a vinyl acetate content of 20 to 80% by weight are preferred.

これらの高分子物質はアニオン系又はノニオン系界面活
性剤により乳化される水性の乳化分散体として使用され
、固形分濃度が1〜50%のものが好適である。また、
この乳化分散体は中性〜アルカリ性、特にpH7〜11
が好適である。これらの高分子物質は、通常、表面改質
用のコーティング剤、バインダー、接着剤として使用さ
れるラテンクス又はエマルジョンとして製造される工業
製品の樹脂或分を構戒するものであり、このような工業
製品を所望の濃度、pHに調整して使用することもでき
る。
These polymeric substances are used as an aqueous emulsified dispersion emulsified with an anionic or nonionic surfactant, and those having a solid content concentration of 1 to 50% are suitable. Also,
This emulsified dispersion is neutral to alkaline, especially pH 7 to 11.
is suitable. These polymeric materials are commonly used as coatings for surface modification, as binders, and as adhesives in industrial products manufactured as latinx or emulsions; The product can also be adjusted to a desired concentration and pH before use.

被膜形威性樹脂の他の例としては、合成水溶性高分子物
質又は天然水溶性高分子物質例えば、ポリビニルアルコ
ール、ポリビニルピロリドン、ポリアクリル酸Na塩、
カルボキシメチルセルロースNa塩、カルボキシメチル
デンプンNa塩、アルギン酸Na塩、ヒドロキシエチル
セルロース、ヒドロキシブロビルセルロース、メチルセ
ルロース、エチルセルロースの他、牛乳カゼイン蛋白、
にかわ、ゼラチン、マンナン、アラビアゴム、グアーゴ
ム、キチン等の天産物の水溶性誘導体等が挙げられ、こ
れらの単独又は混合物として使用される.これらの水溶
性高分子物質は、溶解度に応じて通常0.1〜10%程
度の水溶液として使用されるが、中性〜アルカリ性、特
にpH7〜1lが好適である. 皮膜形成性の樹脂の被覆量は、被覆された熱膨張黒鉛の
l〜25重量%、好ましくは4〜20重量%である.t
c形装置等の腐食防止の点から、熱膨張性黒鉛は、表面
がほぼ完全に被覆されていることが必要であり、皮膜形
成性樹脂の量が1重量%未満では、熱膨張性黒鉛のほぼ
完全な被膜が達威されないか、発泡或形の過程で被膜が
破壊されることがある。一方、被覆量が25重量%をこ
えると、被覆された黒鉛同志のプロソキングが生じ、発
泡体中への均一な分散が困難となることがある。
Other examples of film-forming resins include synthetic water-soluble polymeric substances or natural water-soluble polymeric substances, such as polyvinyl alcohol, polyvinylpyrrolidone, polyacrylic acid Na salt,
In addition to carboxymethyl cellulose Na salt, carboxymethyl starch Na salt, alginate Na salt, hydroxyethyl cellulose, hydroxybrobyl cellulose, methyl cellulose, ethyl cellulose, milk casein protein,
Examples include water-soluble derivatives of natural products such as glue, gelatin, mannan, gum arabic, guar gum, and chitin, which may be used alone or in mixtures. These water-soluble polymer substances are usually used as an aqueous solution of about 0.1 to 10% depending on the solubility, but neutral to alkaline, particularly pH 7 to 1 l is preferable. The coating amount of the film-forming resin is 1 to 25% by weight, preferably 4 to 20% by weight of the coated thermally expandable graphite. t
In order to prevent corrosion of C-type equipment, it is necessary that the surface of thermally expandable graphite is almost completely covered, and if the amount of film-forming resin is less than 1% by weight, the thermally expandable graphite A nearly complete coating may not be achieved or the coating may be destroyed during the foaming or shaping process. On the other hand, if the coating amount exceeds 25% by weight, prosocing of the coated graphite may occur, making it difficult to uniformly disperse the graphite into the foam.

熱膨張性黒鉛の被覆方法としては、上述の皮膜形成性樹
脂を乳化分散体あるいは水溶液として、熱膨張性黒鉛に
スプレーなどの方法によって添加し、ついで乾燥させる
方法あるいは両者をブレンダー等で撹拌しながら混合し
たのち乾燥する方法が挙げられる.皮膜形成性樹脂の被
覆量が小さい場合には、熱膨張性黒鉛を皮膜形成性樹脂
の乳化分散体、又は水溶液中に投入した後分離回収し、
乾燥を行っても良い. 皮膜形成性樹脂を乳化分散体として用いる場合は固形分
濃度5〜25%程度に調整し、水溶液として用いる場合
は0.1〜2%程度に調整して使用するのが取扱い上有
利である。
The thermally expandable graphite can be coated by adding the above-mentioned film-forming resin as an emulsified dispersion or aqueous solution to the thermally expandable graphite by a method such as spraying, and then drying it, or by stirring both together with a blender or the like. One method is to mix and then dry. If the coating amount of the film-forming resin is small, the thermally expandable graphite is added to an emulsified dispersion or an aqueous solution of the film-forming resin, and then separated and recovered.
You can also dry it. When the film-forming resin is used as an emulsified dispersion, it is advantageous for handling to adjust the solid content concentration to about 5-25%, and when it is used as an aqueous solution, it is adjusted to about 0.1-2%.

スプレーにより被覆する場合は、添加、乾燥を繰り返し
て熱膨張性黒鉛を多層コーティングすることにより皮膜
形成性樹脂の被覆量を調整してもよい. 乾燥は、105℃における乾燥減量が0.5〜2%程度
となるように乾燥することが好適である.乾燥が進むに
つれ熱膨張性黒鉛が樹脂分によって結合され、見かけの
粒度が大きくなることがあるので、この場合は通常使用
される乾式粉砕機により、所望の粒度まで粉砕する。一
方被覆前の熱膨張性黒鉛の粒度が細かい場合は、このこ
とを利用して見かけの粒度を大きくしていもよい。
When coating by spraying, the amount of film-forming resin coated may be adjusted by repeating addition and drying to form a multilayer coating of thermally expandable graphite. Drying is preferably carried out so that the loss on drying at 105° C. is approximately 0.5 to 2%. As drying progresses, the thermally expandable graphite is bound by the resin content, and the apparent particle size may increase, so in this case, it is ground to the desired particle size using a commonly used dry grinder. On the other hand, if the particle size of the thermally expandable graphite before coating is fine, this may be utilized to increase the apparent particle size.

本発明の難燃性ポリスチレン系樹脂発泡体は、上述のよ
うに皮膜形成性樹脂で被覆された熱膨張性黒′鉛を、ポ
リスチレン系樹脂発泡体中に熱膨張性黒鉛が5〜50重
量%となるように含有している.5重量%未満では難燃
化が不十分であり、また、50重量%をこえるとポリス
チレン系樹脂発泡体としての特性を低下させるので好ま
しくない.このようなポリスチレン系樹脂発泡体を製造
するには、ポリスチレン系樹脂に発泡剤と上記の皮膜形
成性樹脂で被覆された熱膨張性黒鉛(以下、被覆熱膨張
性黒鉛と略記する)を添加、混合して発泡させるが、発
泡剤及び熱膨張性黒鉛の添加方法並びに樹脂の発泡方法
としては、いわゆるビーズ発泡法あるいは押出し発泡法
と称される方法が挙げられる. ビーズ発泡法によれば、例えば予め発泡剤をポリスチレ
ン系樹脂ビーズに含浸させ、これを所望の大きさに予備
発泡したのち、高分子化合物エマルジッン等の展着液を
スプレー等で噴霧し、これに被覆熱膨張性黒鉛を固着し
、25〜60℃程度の温度で乾燥したのち威形用金型内
に充填し、110〜130℃程度のスチーム等で加熱発
泡させて発泡体を製造する.あるいは発泡剤を含浸させ
る前にポリスチレン系樹脂ビーズに展着液を塗布し、被
覆熱膨張性黒鉛を固着したのち、これに発泡剤を含浸さ
せて発泡させてもよい。
The flame-retardant polystyrene resin foam of the present invention contains thermally expandable graphite coated with a film-forming resin as described above. It contains so that If it is less than 5% by weight, the flame retardance will be insufficient, and if it exceeds 50% by weight, the properties of the polystyrene resin foam will deteriorate, which is not preferable. To produce such a polystyrene resin foam, a foaming agent and thermally expandable graphite coated with the above-mentioned film-forming resin (hereinafter abbreviated as coated thermally expandable graphite) are added to the polystyrene resin. The materials are mixed and foamed, and methods for adding the foaming agent and thermally expandable graphite and for foaming the resin include the so-called bead foaming method or extrusion foaming method. According to the bead foaming method, for example, polystyrene resin beads are impregnated with a foaming agent in advance, and after the beads are pre-foamed to a desired size, a spreading liquid such as a polymer compound emulsion is sprayed onto the beads. The coated thermally expandable graphite is fixed and dried at a temperature of about 25 to 60°C, then filled into a mold for shaping, and heated and foamed with steam or the like at about 110 to 130°C to produce a foam. Alternatively, before impregnating the foaming agent, a spreading liquid may be applied to the polystyrene resin beads to fix the coated thermally expandable graphite, and then the beads may be impregnated with the foaming agent and foamed.

展着液は、該液中の固形分が、固着される熱膨張性黒鉛
の5〜20重量%となる割合で使用するのが好ましい。
The spreading liquid is preferably used in such a proportion that the solid content in the liquid is 5 to 20% by weight of the thermally expandable graphite to be fixed.

なお、展着液として、熱膨張性黒鉛を被覆した皮膜形成
性樹脂と同種の樹脂を含有する高分子化合物エマルジョ
ンを使用することもできるが、この場合は、発泡体中の
皮膜形成性樹脂の含有量が0.2〜25重量%の範囲に
あることが好ましい。
Note that a polymer compound emulsion containing the same type of resin as the film-forming resin that coats the thermally expandable graphite can be used as the spreading liquid; however, in this case, the film-forming resin in the foam is It is preferable that the content is in the range of 0.2 to 25% by weight.

押出し発泡法による場合は、例えば押出し機にポリスチ
レン系樹脂と発泡剤と被覆熱膨張性黒鉛を供給し、高温
、高圧下で混練したのち、得られる混合物を比較的低温
、低圧下で押出し機の先端ノズルから押出し発泡させて
発泡体を製造する.なお、場合によっては発泡剤を予め
樹脂に含浸させても、あるいは押出し機の適当な箇所に
設けられた注入口より溶融した樹脂に発泡剤を圧入して
もよい. また、被覆熱膨張性黒鉛に加えて、トリス(2一クロロ
エチル)フォスフェート、トリス(2.3−ジブロモブ
ロビル)フォスフェート等のような従来公知の有機系難
燃剤の他、金属酸化物、三酸化アンチモン等の無機系難
燃剤を添加してもよい。
In the case of extrusion foaming, for example, a polystyrene resin, a blowing agent, and coated thermally expandable graphite are supplied to an extruder, and after kneading them at high temperature and high pressure, the resulting mixture is passed through an extruder at a relatively low temperature and under low pressure. The foam is manufactured by extrusion from the tip nozzle. Note that, depending on the case, the foaming agent may be impregnated into the resin in advance, or the foaming agent may be press-injected into the molten resin through an injection port provided at an appropriate location in the extruder. In addition to the coated thermally expandable graphite, in addition to conventionally known organic flame retardants such as tris(2-chloroethyl) phosphate and tris(2,3-dibromobrobyl) phosphate, metal oxides, An inorganic flame retardant such as antimony trioxide may also be added.

〔発明の効果および作用〕[Effects and operations of the invention]

本発明のポリスチレン系樹脂発泡体は、難燃性が高く、
着火しても自己消火性がある。また、火焔に接したとき
樹脂の融解によって引き起こされる滴下物(以下、ドリ
ップという)が無いという利点があるばかりでなく、ポ
リスチレン系樹脂の燃焼時に見られる「すす」の発生が
低減するという利点がある。
The polystyrene resin foam of the present invention has high flame retardancy,
Even if ignited, it has self-extinguishing properties. In addition, it not only has the advantage that there is no dripping (hereinafter referred to as "drip") caused by melting of the resin when it comes into contact with flames, but also has the advantage of reducing the generation of "soot" that is seen when polystyrene resin is burned. be.

これらの効果がいかにして発現するかについてはまだ解
明されていないが、添加された熱膨張性黒鉛が火焔に接
したとき熱膨張して生或する、嵩だかで比表面積の大き
な膨張黒鉛が有効に働いているものと考えられる. また、本発明のポリスチレン系樹脂発泡体は、裁断加工
の際にカッターの刃を腐食させることが無い.これは皮
膜形成性樹脂によって熱膨張性黒鉛が被覆されるため、
腐食性の付着硫酸あるいはその塩類の放出が抑えられる
ためと推定される.以下本発明を実施例および比較例に
より更に詳細に説明するが、本発明はその要旨を超えな
い限り、以下の実施例に限定されるものではない.なお
、実施例および比較例において「部」は「!量部」を「
%」は「重量%」を示す. 実施例1〜4、比較例1〜3 〈被覆熱膨張性黒鉛の調製〉 固定炭素分90%、灰分8%であるカナダ産出の天然鱗
片状黒鉛(粒度;36メッシュ〜80メッシュ)を酸処
理し、遊離硫酸分を苛性ソーダ、水酸化カルシウム又は
アンモニアで中和し、第1表に示す熱膨張性黒鉛(以下
、EGと略記する)を得た. 容量約2リットルの家庭用ステンレス製ボウルに、前記
EC50部を入れ、内容物をヘラでよくかき混ぜながら
第2表に示す皮膜形威性樹脂を含む処理液を第2表に示
す所定量添加した.処理液の添加、混合が完了した後、
内容物をステンレス製バットに移し、I05℃に保持さ
れた乾燥器中で2〜4時間乾燥した.乾燥中は20分に
1回の割合でバットの内容物をかき混ぜた。乾燥品は家
庭用くキサーで数秒間解砕した後、36メソシュと80
メンシュの間で分級して、第2表に示す皮膜戒形性樹脂
で被覆された熱膨張性黒鉛(以下、CGと略記する〉を
得た。
Although it has not yet been elucidated how these effects are produced, it is believed that when the added thermally expandable graphite comes into contact with flame, it expands thermally, resulting in bulky expanded graphite with a large specific surface area. It seems to be working effectively. Furthermore, the polystyrene resin foam of the present invention does not corrode the cutter blade during cutting. This is because the thermally expandable graphite is coated with a film-forming resin.
This is presumed to be because the release of corrosive adhering sulfuric acid or its salts is suppressed. The present invention will be explained in more detail below using Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. In addition, in Examples and Comparative Examples, "parts" is "!Amount parts".
%” indicates “% by weight”. Examples 1 to 4, Comparative Examples 1 to 3 <Preparation of coated thermally expandable graphite> Natural flaky graphite produced in Canada (particle size: 36 mesh to 80 mesh) with fixed carbon content of 90% and ash content of 8% was treated with acid. Then, the free sulfuric acid content was neutralized with caustic soda, calcium hydroxide, or ammonia to obtain thermally expandable graphite (hereinafter abbreviated as EG) shown in Table 1. 50 parts of the above EC was placed in a household stainless steel bowl with a capacity of approximately 2 liters, and while stirring the contents thoroughly with a spatula, a predetermined amount of the treatment solution containing the film-forming strong resin shown in Table 2 was added as shown in Table 2. .. After adding and mixing the processing liquid,
The contents were transferred to a stainless steel vat and dried for 2 to 4 hours in a dryer maintained at 105°C. During drying, the contents of the vat were stirred once every 20 minutes. After crushing the dried product for a few seconds with a household crusher, it is divided into 36 meshes and 80
The mixture was classified between mensch to obtain thermally expandable graphite (hereinafter abbreviated as CG) coated with a film-forming resin shown in Table 2.

第   1   表 発泡剤としてC,〜C,の炭化水素類を約5重量%含有
する、市販のポリスチレン発泡性ビーズ(鐘淵化学工業
特製「カネパールGMJ 、平均粒子径1.2an)約
13部を、底部に32メッシュの金網を有する直径20
cm高さ205sの円筒容器に入れ、約100℃のスチ
ームで2分間加熱し、予備発泡倍率として25倍の発泡
を行ない、ついでこの予備発泡ビーズを25℃で1昼夜
放置して乾燥、熟戒を行った. 次に、前記の乾燥、熟威された予備発泡ビーズ11部に
対して、展着液として、市販のラテックス《日本ゼオン
■製、SBRラテックスrNippol  LX−11
0J)を固形分濃度10重量%、pHが9となるように
濃度及びpHを調整したものを使用して、第2表に示す
CGを第3表に示すM(部)で固着させた. 固着は予備発泡ビーズに展着液をエアースプレーで噴霧
し、撹拌下、これにCGをヘラで少量ずつ加えてかき混
ぜながら均一に添加した後、1昼夜25℃で放置した. 次いで、CGが固着された予備発泡ビーズ11部を14
5s+sxg4開X40mmの発泡金型に充填し、この
金型を圧力釜に入れ、約120℃で2分間加熱し発泡さ
せた. 加熱終了後、圧力釜を開放し、約50℃迄冷却したのち
金型を取り出し、発泡体を型からはずし、室温まで冷却
した. なお、比較例1はCGを添加しなかった例、比較例2及
び3はECを用いた例である.上記のようにして得られ
た発泡体を約24時間、25℃の恒温室で放置したのち
、発泡体の表皮部分を切り落としてから裁断して試験片
を作威し、燃焼試験および腐食性試験を行った. く燃焼試験〉 1 3 0mmX 1 0a+mX 5−園の形状の試
料片を切り出し、JISK−7201に準拠して酸素指
数を測定した.また、別途120s+sX30開X30
gamの形状の試験片を切り出し、角の部分を炎に接触
させ、樹脂の液垂れの有無及び発煙の様子を目視観察し
た.試験結果を第3表に纏めて示す.く腐食性試験〉 前記の方法で製造した発泡体を市販のカッターナイフ(
日本転写紙■製NTカッターL500型)を使用し、ナ
イフの刃と発泡体との接触距離が合計で1950mmに
相当するように長辺方向に15回切断操作を行い、ナイ
フの刃を発泡体からはずした後、そのままの状態で1昼
夜室温で放置した時の表面の状態を観察した. また一方、発泡体の一部に市販の軟鉄製のl寸釘の表面
をメタノールで洗浄、乾燥してから発泡体1個当り5本
づつ差し込んで室温で3日間放置し、その後抜き取って
表面の状態を観察した。結果を第3表に纏めて示す.な
お、評価基準は次のとおりである. 金属表面が試験前とほぼ同等のもの 金属表面に僅かに変化(Jii食、汚れ〉の見られるも
の                 ±金属表面の約
1/2に腐食、錆の認められるもの         
         十金属表面の全面に腐食、錆の認め
られるもの ++実施例5 三菱モンサント化成特製ポリスチレン樹脂「ダイヤレッ
クスHH−102−307RJ  (軟化点101℃、
MFR3g/1 0min)32部と、CG8部をブラ
ベンダープラスチコーダーのチャンバーに入れ、設定温
度190℃で2分間混練し、混練混合物を取り出したの
ち、190℃で10分間熱プレスして1. 0 wam
の厚みでシート化した.このシートを1 2 0++v
+X 6 0mmX 1a+mに裁断した後、6 0 
0mlのn−へキサンと接触させ、68℃で2時間加熱
し、発泡剤の含浸を行い、次いで25℃で風乾し、発泡
剤含浸シートを得た.このシートを裁断し、およそ3■
mX2s+sX1suaの形状の発泡性ビーズを得た.
次いで、実施例lと同様に発泡金型によりポリスチレン
樹脂発泡体を得た。この発泡体を約24時間、25℃の
恒温室で放置したのち、発泡体の表皮部分は切り落とし
から裁断して試験片を作成し、実施例1と同様にして燃
焼試験および腐食性試験を行った.測定結果を第3表に
纏めて示す. 第3表に示されるように、本発明の方法によって製造さ
れたポリスチレン系樹脂発泡体は、発泡体を切断する際
のカッターの刃に対する腐食の慣れが無い.また、酸素
指数の値から難燃性が優れているばかりでなく、液垂れ
もなく、更に炎に接したとき通常のポリスチレン系樹脂
の燃焼時に発生する「すす」の発生がきわめて少ないこ
とが判る.
Table 1: Approximately 13 parts of commercially available polystyrene expandable beads (Kanebuchi Chemical Industry Co., Ltd. special product "Kanepal GMJ, average particle size 1.2 an)" containing about 5% by weight of C, ~C, hydrocarbons as a blowing agent were added. , diameter 20 with 32 mesh wire mesh on the bottom
Place the beads in a cylindrical container with a height of 205cm and heat them with steam at about 100°C for 2 minutes to achieve a pre-expansion ratio of 25 times.Then, the pre-expanded beads are left at 25°C for one day and night to dry. I did. Next, 11 parts of the dried and aged pre-expanded beads were mixed with a commercially available latex (manufactured by Nippon Zeon, SBR Latex rNippol LX-11) as a spreading liquid.
0J) whose concentration and pH were adjusted to a solid content of 10% by weight and a pH of 9, the CG shown in Table 2 was fixed in the amount of M (parts) shown in Table 3. For fixation, the spreading solution was sprayed onto the pre-foamed beads using air spray, and while stirring, CG was added little by little with a spatula, uniformly added while stirring, and then left at 25°C for one day and night. Next, 11 parts of pre-foamed beads to which CG was fixed were mixed into 14 parts.
The mixture was filled into a 5s+sxg4 open x 40mm foaming mold, and the mold was placed in a pressure cooker and heated at about 120°C for 2 minutes to cause foaming. After heating, the pressure cooker was opened, the mold was cooled to about 50°C, the mold was taken out, the foam was removed from the mold, and the foam was cooled to room temperature. Note that Comparative Example 1 is an example in which CG was not added, and Comparative Examples 2 and 3 are examples in which EC was used. After the foam obtained as described above was left in a constant temperature room at 25°C for about 24 hours, the skin of the foam was cut off and then cut into test pieces, which were subjected to combustion tests and corrosion tests. I did. Combustion test> A sample piece in the shape of a 130 mm x 10 a+m x 5-garden was cut out, and the oxygen index was measured in accordance with JISK-7201. Also, separately 120s + sX30 open X30
A test piece in the shape of a gam was cut out, the corner part was brought into contact with a flame, and the presence or absence of resin dripping and the appearance of smoke were visually observed. The test results are summarized in Table 3. Corrosion test> The foam produced by the above method was tested using a commercially available cutter knife (
Using an NT cutter L500 model manufactured by Nippon Transfer Paper, perform cutting operations 15 times in the long side direction so that the total contact distance between the knife blade and the foam corresponds to 1950 mm, and then cut the knife blade into the foam. After removing it from the container, it was left as it was at room temperature for one day and night, and the surface condition was observed. On the other hand, the surface of commercially available soft iron L-sized nails was washed with methanol, dried, and then inserted into a part of the foam, 5 nails per foam, left at room temperature for 3 days, and then removed to remove the surface. I observed the condition. The results are summarized in Table 3. The evaluation criteria are as follows. Items whose metal surface is almost the same as before the test Items where there is slight change (corrosion, dirt) on the metal surface ± Items where corrosion or rust is observed on approximately 1/2 of the metal surface
10. Corrosion and rust observed on the entire metal surface ++Example 5 Mitsubishi Monsanto Kasei special polystyrene resin "Dialex HH-102-307RJ (softening point 101℃,
32 parts of MFR3g/10min) and 8 parts of CG were placed in the chamber of a Brabender plasticorder, kneaded for 2 minutes at a set temperature of 190°C, and after the kneaded mixture was taken out, it was hot pressed at 190°C for 10 minutes. 0 wam
It was made into a sheet with a thickness of . This sheet 1 2 0++v
After cutting to +X 60mmX 1a+m, 60
The sheet was brought into contact with 0 ml of n-hexane and heated at 68°C for 2 hours to impregnate the foaming agent, and then air-dried at 25°C to obtain a foaming agent-impregnated sheet. Cut this sheet to approximately 3cm
Expandable beads with a shape of mX2s+sX1sua were obtained.
Next, a polystyrene resin foam was obtained using a foaming mold in the same manner as in Example 1. After this foam was left in a constant temperature room at 25°C for about 24 hours, the skin of the foam was cut off and cut into test pieces, and a combustion test and a corrosion test were conducted in the same manner as in Example 1. Ta. The measurement results are summarized in Table 3. As shown in Table 3, the polystyrene resin foam produced by the method of the present invention is free from corrosion of the cutter blade when cutting the foam. Furthermore, based on the oxygen index value, it is clear that not only does it have excellent flame retardancy, but there is no dripping, and it also produces very little soot, which is generated when ordinary polystyrene resins are burned when exposed to flame. ..

Claims (3)

【特許請求の範囲】[Claims] (1)皮膜形成性樹脂で被覆された熱膨張性黒鉛を、黒
鉛の含有量が5〜50重量%、皮膜形成性樹脂の含有量
が0.2〜25重量%となるように含有していることを
特徴とする難燃性ポリスチレン系樹脂発泡体。
(1) Heat-expandable graphite coated with a film-forming resin is contained such that the graphite content is 5 to 50% by weight and the film-forming resin content is 0.2 to 25% by weight. Flame-retardant polystyrene resin foam.
(2)ポリスチレン系樹脂に皮膜形成性樹脂で被覆され
、該樹脂の被覆量が1〜25重量%である熱膨張性黒鉛
と発泡剤とをポリスチレン系樹脂発泡体中に熱膨張性黒
鉛が5〜50重量%含有されるように添加、混合して発
泡させることを特徴とする難燃性ポリスチレン系樹脂発
泡体の製造法。
(2) Polystyrene resin is coated with a film-forming resin, and thermally expandable graphite with a coating amount of 1 to 25% by weight of the resin and a foaming agent are added to the polystyrene resin foam. A method for producing a flame-retardant polystyrene resin foam, which comprises adding, mixing and foaming so that the content is 50% by weight.
(3)皮膜形成性樹脂が、アクリロニトリル−ブタジエ
ン共重合体、スチレン−ブタジエン共重合体、エチレン
−酢酸ビニル共重合体、ポリ酢酸ビニル樹脂、ポリ塩化
ビニル樹脂及びポリアクリレート樹脂よりなる群から選
ばれた少なくとも一種又は水溶性高分子物質であること
を特徴とする特許請求の範囲第1項記載の難燃性ポリス
チレン系樹脂発泡体又は特許請求の範囲第2項記載の難
燃性ポリスチレン系樹脂発泡体の製造法。
(3) The film-forming resin is selected from the group consisting of acrylonitrile-butadiene copolymer, styrene-butadiene copolymer, ethylene-vinyl acetate copolymer, polyvinyl acetate resin, polyvinyl chloride resin, and polyacrylate resin. The flame-retardant polystyrene resin foam according to claim 1 or the flame-retardant polystyrene resin foam according to claim 2, characterized in that the flame-retardant polystyrene resin foam is at least one type of water-soluble polymer substance or a water-soluble polymer substance. How the body is manufactured.
JP1308397A 1989-11-28 1989-11-28 Flame-retardant polystyrene resin foam and method for producing the same Expired - Lifetime JP2924020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1308397A JP2924020B2 (en) 1989-11-28 1989-11-28 Flame-retardant polystyrene resin foam and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1308397A JP2924020B2 (en) 1989-11-28 1989-11-28 Flame-retardant polystyrene resin foam and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03167236A true JPH03167236A (en) 1991-07-19
JP2924020B2 JP2924020B2 (en) 1999-07-26

Family

ID=17980574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1308397A Expired - Lifetime JP2924020B2 (en) 1989-11-28 1989-11-28 Flame-retardant polystyrene resin foam and method for producing the same

Country Status (1)

Country Link
JP (1) JP2924020B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034342A3 (en) * 1998-12-09 2000-10-19 Basf Ag Method for producing expandable polystyrene particles
WO2005100467A1 (en) * 2004-04-12 2005-10-27 Nisshinbo Industries, Inc. Resin composition
JP2006015677A (en) * 2004-07-05 2006-01-19 Achilles Corp Fire-retardant woody board
JP2006257150A (en) * 2005-03-15 2006-09-28 Sekisui Plastics Co Ltd Carbon-containing and styrene-modified polyethylene-based resin particle and expandable resin particle, method for producing such particles, preliminarily expanded particle and expanded molded form
JP2007009054A (en) * 2005-06-30 2007-01-18 Suminoe Textile Co Ltd Flame retardant and method for producing the same
JP2013525537A (en) * 2010-04-21 2013-06-20 シンブラ・テクノロジー・ベスローテン・フエンノートシヤツプ Particulate foamable polymer and preparation method and use thereof
JP2013181070A (en) * 2012-02-29 2013-09-12 Sekisui Plastics Co Ltd Styrene-based resin particle, method for producing the same, foamable particle, foamed particle and foam molded body

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100770028B1 (en) * 2006-12-28 2007-10-25 주식회사 에스에이치케미칼 High-expandable polystyrene having an excellent noise reduction and thermal resistance properties

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000034342A3 (en) * 1998-12-09 2000-10-19 Basf Ag Method for producing expandable polystyrene particles
WO2005100467A1 (en) * 2004-04-12 2005-10-27 Nisshinbo Industries, Inc. Resin composition
JP2006015677A (en) * 2004-07-05 2006-01-19 Achilles Corp Fire-retardant woody board
JP2006257150A (en) * 2005-03-15 2006-09-28 Sekisui Plastics Co Ltd Carbon-containing and styrene-modified polyethylene-based resin particle and expandable resin particle, method for producing such particles, preliminarily expanded particle and expanded molded form
JP2007009054A (en) * 2005-06-30 2007-01-18 Suminoe Textile Co Ltd Flame retardant and method for producing the same
JP2013525537A (en) * 2010-04-21 2013-06-20 シンブラ・テクノロジー・ベスローテン・フエンノートシヤツプ Particulate foamable polymer and preparation method and use thereof
JP2013181070A (en) * 2012-02-29 2013-09-12 Sekisui Plastics Co Ltd Styrene-based resin particle, method for producing the same, foamable particle, foamed particle and foam molded body

Also Published As

Publication number Publication date
JP2924020B2 (en) 1999-07-26

Similar Documents

Publication Publication Date Title
RU2302432C2 (en) Styrene foaming polymeric compounds containing the carbon particles
US3050476A (en) Method of making a self extinguishing expandable polymer of styrene by bromination
EP1709110B1 (en) Expanded polystyrene bead having functional skin layer, manufacturing process thereof, and functional eps product and manufacturing process thereof using the same
US4035315A (en) Fire-resistant styrene polymer foams
JPH03167237A (en) Production of flame-retardant polystyrene resin foam
MX2012007690A (en) Method for producing expandable styrene polymer particles having reduced thermal conductivity.
JPH03167236A (en) Flame-retardant polystyrene resin foam and its production
CA1040799A (en) Expandable ethylenically unsaturated polymer particle compositions
DE2900751A1 (en) EXPANDABLE COMPOUNDED ACID-COAGULABLE LATEX MASS AND PROCESS FOR THE PRODUCTION
RU2204547C2 (en) Intumescent coke-forming fire retardant, method of preparation thereof, method of fire-protective treatment of combustible substance, and a method for extinguishing heat source
US3994836A (en) Process for preparing flame resistant molded articles of foamed polystyrene
US3655600A (en) Flame resistant materials and methods for producing same
JPH07179647A (en) Resin particle for production of flame retardant foam of good dimensional stability and its production
US5837740A (en) Expandable ABS resin beads and process for producing the same
JPH03220209A (en) Manufacture of expandable polymer bead and material obtained therefrom
JP3281412B2 (en) Process for producing expandable particles of styrenic polymer with improved processability and mechanical properties
DE60002831T2 (en) FLAME RESISTANT POLYVINYLARINE COMPOSITIONS
JPH02214745A (en) Manufacture of expan dable styrene polymer particle
JP2005015560A (en) Regenerated expandable styrenic resin particle and its manufacturing method
US3553114A (en) Method of coating a deliquescent substance onto the surface of foamable beads and foaming the beads; the foamable and foamed products obtained therefrom
JPH08511564A (en) Method for producing pearly expandable styrene polymer having excellent foaming performance
US2584082A (en) Method of making rigid foam composition
TWI434917B (en) Improved environmentally safe fire retardant protein free compositions, and methods of manufacturing thereof
JPS5928339B2 (en) Method for manufacturing expandable polystyrene resin particles
JPH0742362B2 (en) Expandable styrene resin particles and method for producing the same