JPH03167032A - Cooler of water cooled internal combustion engine for vehicle - Google Patents

Cooler of water cooled internal combustion engine for vehicle

Info

Publication number
JPH03167032A
JPH03167032A JP30873789A JP30873789A JPH03167032A JP H03167032 A JPH03167032 A JP H03167032A JP 30873789 A JP30873789 A JP 30873789A JP 30873789 A JP30873789 A JP 30873789A JP H03167032 A JPH03167032 A JP H03167032A
Authority
JP
Japan
Prior art keywords
radiator
vehicle
condenser
opening
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30873789A
Other languages
Japanese (ja)
Inventor
Shigeki Okochi
隆樹 大河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP30873789A priority Critical patent/JPH03167032A/en
Publication of JPH03167032A publication Critical patent/JPH03167032A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve the radiation performance of a radiator by disposing an air conditioning condenser in the forward inclined position to cover the nearly lower half portion of front face of the radiator and providing a damper opened and closed according to the travelling condition of a vehicle in an opening between the condenser and the lower portion of the radiator. CONSTITUTION:In disposing a condenser 6 in front of a radiator 3 in which engine cooling water is circulated, the lower portion 6a of the condenser 6 is faced to the front face of a vehicle and the upper portion 6b is disposed to face the nearly central portion of the front face of the radiator 3 under the forward inclined position to cover the nearly lower half of the front face of the radiator 3. Also, an under-cover 14 of the vehicle between the lower portion of the condenser 6 and the lower portion of the radiator 3 is formed with an opening 15 which can be opened and closed through connecting rods 20 or the like by dampers 17... with the operation of an actuator 16. The opening of these dampers 17 is controlled according to the travelling condition of the vehicle, so that the radiation capacity of the condenser is prevented from degradation while the radiation performance of the radiator is improved.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、車両用水冷式内燃機関の冷却装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a cooling device for a water-cooled internal combustion engine for a vehicle.

「従来の技術」 近年のスラントノーズボディ車両では、バンパ下方の開
口部からラジエータや車両用空気調和装W(以下エアコ
ンと云う)の冷凍サイクルを構成するコンデンサに対す
る冷却風を導入するようにしている。このため、第9図
に示すようにラジエータaやコンデンサbの上部よりも
下部に対する冷却風の流速が速いという不均一な風速分
布を生じ、冷却性能に悪影響を及ぼしている。また、エ
ンジンの高出力化及びエアコン搭載等に伴うエンジンル
ーム内の過密化が生じて通気抵抗が増大し、冷却ファン
の能力をーLげても冷却風の導入を十分に行うことがで
きない。特にアイドル運転時や、ラジエータやコンデン
サの熱負荷に対して車速による冷却風が十分導入されな
いため、冷却水温が上昇して一定温度以上になる高負荷
低速走行時では、水温センサの信号により自動的にエア
コンを停止して空気調和が行われない不具合を生じる場
合もある。
``Conventional technology'' In recent slant nose body vehicles, cooling air is introduced from an opening below the bumper to the radiator and the condenser that makes up the refrigeration cycle of the vehicle air conditioner W (hereinafter referred to as the air conditioner). . For this reason, as shown in FIG. 9, an uneven wind velocity distribution occurs in which the flow velocity of the cooling air is faster in the lower part than in the upper part of the radiator a and the condenser b, which adversely affects the cooling performance. Furthermore, as engines become more powerful and air conditioners are installed, engine compartments become overcrowded, increasing ventilation resistance, and even if the capacity of the cooling fan is reduced to -L, sufficient cooling air cannot be introduced. In particular, when driving at high load and at low speeds, when the cooling water temperature rises and exceeds a certain temperature because the cooling air is not sufficiently introduced depending on the vehicle speed during idling or the heat load of the radiator and condenser, the cooling air automatically responds to the signal from the water temperature sensor. In some cases, the air conditioner may be stopped and the air conditioner may not function properly.

このため、実開昭6 3−1. 7 9 2 3 6号
,実開昭63−180424号,実開昭63−1959
22号の各公報に開示されるような提案がなされている
For this reason, Utsukai Sho 6 3-1. 7 9 2 3 6, Utility Model Application No. 63-180424, Utility Model Application No. 1987-1959
Proposals have been made as disclosed in each publication No. 22.

「発明が解決しようとする課題」 しかしながら、前記実開昭63−179236号公報に
開示される自動車のラジエータ冷却風取入装置は、ラジ
エータに対する冷却風を調整可能に取入れるための装置
であって、エアコンを搭載した車両に対しては、有効な
対策とはなり得ない。
``Problems to be Solved by the Invention'' However, the radiator cooling air intake device for an automobile disclosed in the above-mentioned Japanese Utility Model Application Publication No. 63-179236 is a device for adjusting the cooling air to the radiator. This cannot be an effective measure for vehicles equipped with air conditioners.

また、実開昭63−195922号公報に開示される自
動車の冷却風導入構造は、ラジエータコアの前後のアン
ダーカバーに前部開閉翼と後部開閉翼とを設け、これら
を走行条件に応じて開閉して、ラジエータコアに対する
冷却風を増加したり、或いはラジエータコアを通過させ
ないで、直接エンジン本体へ冷却風を導入するようにし
たものである。従って、エアコン搭載車両に対する冷却
風の導入問題に直接対応したものではないが、前部開閉
翼と後部開閉翼を設けたものであるので、構造が複雑に
なるとともに開閉制御も複雑となる。
In addition, a cooling air introduction structure for an automobile disclosed in Japanese Utility Model Application Publication No. 63-195922 is provided with front opening/closing wings and rear opening/closing wings on undercovers before and after the radiator core, which can be opened/closed depending on driving conditions. The cooling air is increased to the radiator core, or the cooling air is introduced directly into the engine body without passing through the radiator core. Therefore, although it does not directly address the problem of introducing cooling air into vehicles equipped with air conditioners, since it is provided with front opening/closing wings and rear opening/closing wings, the structure is complicated and opening/closing control is also complicated.

実開昭63−180424号公報には、車体の前方に向
かって先下がりに配置されたラジエータコアの前面に、
空調用コンデンサを接合状に設置して該コア面を覆うと
ともに、ラジエータコアの後部の車体底面に開口を形成
し、自動車の走行風の大なるときのみに該開口を開放す
るダンパーを設けた自動車用ラジエータが開示されてい
る。この自動車用ラジエータは、空調用コンデンサをラ
ジエータコアの前面に設置しているもので、エアコンの
冷媒の凝縮熱で冷却風を加熱してしまうため、ラジエー
タにおける気水温度差が小さくなり、特に前記したアイ
ドル運転時や高負荷俄速走行時には、走行による冷却風
の増加も期待できないことから、ラジエータの放熱性能
が十分に発揮できず、エアコンカットやオーバーヒータ
等の不具合を生じる場合がある等の問題点がある。
Japanese Utility Model Application Publication No. 63-180424 discloses that on the front side of the radiator core, which is arranged downward toward the front of the vehicle body,
An automobile in which an air conditioning condenser is installed in a bonded manner to cover the core surface, an opening is formed on the bottom surface of the vehicle body at the rear of the radiator core, and a damper is provided to open the opening only when the wind is strong when the automobile is running. A radiator for use is disclosed. This automotive radiator has an air conditioning condenser installed in front of the radiator core, and since the cooling air is heated by the condensation heat of the air conditioner's refrigerant, the air-water temperature difference in the radiator becomes small, especially as mentioned above. During idling or high-load driving, an increase in cooling air due to driving cannot be expected, so the heat dissipation performance of the radiator cannot be fully demonstrated, which may result in problems such as air conditioner cut-off or overheating. There is a problem.

本発明は、上記問題点を解決するためになされ3 たもので、エアコン搭載車において、コンデンサ能力を
維持し、ラジエータ放熱性能を向上させるとともに、車
両の走行状態(熱負荷)に応じて放熱量を制御できる車
両用水冷式内燃機関の冷却装置を提供することを目的と
するものである。
The present invention has been made to solve the above-mentioned problems3, and it maintains the capacitor capacity and improves the heat dissipation performance of the radiator in a car equipped with an air conditioner. The object of the present invention is to provide a cooling device for a water-cooled internal combustion engine for a vehicle that can control the following.

「課題を解決するための手段」 前記目的を達成するための具体的手段として、車室空気
調和用のコンデンサをラジエータ前面に配置した車両用
水冷式内燃機関の冷却装置において、下部を車両前方に
臨ませ」二部をラジエータの前面略中央部に臨ませる前
下がりの姿勢で配置して、該ラジエータの前面略下半部
を覆うコンデンサと、該コンデンサ下方部とラジエータ
下方部との間の車両アンダーカバーに形成した開口と、
該開口を開閉して冷却風の案内をなすダンパと、該ダン
パの開度を車両の走行状態に応じて制御する制御手段と
、を備えたことを特徴とする車両用水冷式内燃機関の冷
却装置が提供される。
``Means for Solving the Problems'' As a specific means for achieving the above object, in a cooling system for a water-cooled internal combustion engine for vehicles in which a condenser for cabin air conditioning is placed in front of the radiator, the lower part is placed in front of the vehicle. A capacitor that is arranged in a forward-down position with its second part facing substantially the center of the front of the radiator to cover substantially the lower half of the front of the radiator, and a vehicle between the lower part of the capacitor and the lower part of the radiator. An opening formed in the undercover,
Cooling of a water-cooled internal combustion engine for a vehicle, comprising: a damper that opens and closes the opening to guide cooling air; and a control means that controls the opening degree of the damper depending on the running state of the vehicle. Equipment is provided.

「作用」 前記車両用水冷式内燃機関の冷却装置によれば、4 ラジエータの前面に配置されるコンデンサの下部を車両
前方に臨ませ、」二部をラジエータの前面略中央部に臨
ませる前下がり姿勢として、ラジエータの略r半分を覆
い、エンジンルーム内の通気抵抗を軽減してエンジンル
ーム内に導入する冷却風量を増加させ、該冷却風を直接
コンデンサ及びラジエータ下部を通過するものと、コン
デンサに沿って流れて、ラジエータ上部を通過するもの
とに分け、ラジエータ上部に直接低温の冷却風を導入し
て、ラジエータを通過する冷却風の不均一な風速分布を
解消し、ラジエータ放熱性能を向上できる。また、制御
手段がダンパの開度を車両の走行状態に応じて制御する
ことにより、冷却風の排出,導入を行ってコンデンサ及
びラジエータを通過する冷却風量を調整して、コンデン
サ放熱能力を低↑″させることなく、ラジエータ放熱性
能の向上を図る。
``Function'' According to the cooling system for a water-cooled internal combustion engine for a vehicle, 4. The lower part of the condenser disposed at the front of the radiator faces the front of the vehicle, and the 2nd part faces approximately the center of the front of the radiator. In terms of posture, approximately half of the radiator is covered, reducing ventilation resistance in the engine room and increasing the amount of cooling air introduced into the engine room. The low-temperature cooling air is introduced directly into the top of the radiator, eliminating the uneven wind speed distribution of the cooling air passing through the radiator and improving the heat dissipation performance of the radiator. . In addition, the control means controls the opening degree of the damper according to the running condition of the vehicle, exhausts and introduces cooling air, adjusts the amount of cooling air passing through the condenser and radiator, and lowers the heat dissipation capacity of the condenser. Improve the heat dissipation performance of the radiator without causing any problems.

「実施例」 本発明の実施例を添付図面に基づいて説明する。"Example" Embodiments of the present invention will be described based on the accompanying drawings.

第1図は、本発明の車両用水冷式内燃機関の冷却装置の
概略構成を示すブロック図である。
FIG. 1 is a block diagram showing a schematic configuration of a cooling device for a water-cooled internal combustion engine for a vehicle according to the present invention.

図中1は車両用水冷式内燃機関であるエンジンであって
、該エンジン1で直接駆動される冷却ファン2の前方に
ラジエータ3を配置する。エンジン1とラジエータ3間
には、ウォータボンプl〕によりエンジン冷却水を循環
させる。エアコンの冷凍サイクル4は、周知のようにコ
ンプレッサ5,凝縮器であるコンデンサ6,レシーバ7
,エキスバンションバルブ8,エバボレータ9等を、冷
媒循環経路10で連結することにより構成される。
In the figure, reference numeral 1 denotes an engine that is a water-cooled internal combustion engine for a vehicle, and a radiator 3 is disposed in front of a cooling fan 2 that is directly driven by the engine 1. Engine cooling water is circulated between the engine 1 and the radiator 3 by a water pump 1]. As is well known, the refrigeration cycle 4 of the air conditioner includes a compressor 5, a condenser 6, and a receiver 7.
, an extraction valve 8, an evaporator 9, etc., are connected by a refrigerant circulation path 10.

1】は冷媒循環経路10に配設された感温筒,l2はコ
ンプレッサ5とコンデンサ6を連結する冷媒循環経路1
0中に設けた圧カセンサである。
1] is a temperature sensing cylinder arranged in the refrigerant circulation path 10, and l2 is the refrigerant circulation path 1 connecting the compressor 5 and the condenser 6.
This is a pressure sensor installed inside the 0.

前記コンデンサ6には、該コンデンサ6の下方部に対応
する電動ファン13が設置されている。
An electric fan 13 corresponding to the lower part of the capacitor 6 is installed in the capacitor 6 .

コンデンサ6は、その下部6aを車両の前面に臨ませ、
上部6bをラジェータ3の前面略中央部に臨ませる前r
がり姿勢で配置し、ラジェータ3の前面略下半部を覆う
。コンデンザ6の下方部とラジエータ3の下方部との間
の車両アンダカバー14には、開口15を形或し、アク
チュエータ16により該開1]15を開閉するダンパ1
7を配置する。アクチュエータ16及びダンパ17につ
いては後記に詳述する。
The capacitor 6 has its lower part 6a facing the front of the vehicle,
Before the upper part 6b faces approximately the center of the front of the radiator 3
It is placed in a tilted position and covers approximately the lower half of the front surface of the radiator 3. An opening 15 is formed in the vehicle undercover 14 between the lower part of the condenser 6 and the lower part of the radiator 3, and a damper 1 opens and closes the opening 15 using an actuator 16.
Place 7. The actuator 16 and damper 17 will be described in detail later.

21は電子制御ユニットであり、マイクロコンピュータ
,メモリ,入出力インターフェイス(いずれも図示しな
い〉等により構成され、圧力センサ]2から冷媒圧力を
、水温センサ22からエンジン冷却水温を、エアコン吹
出し温度センサ23からエアコンから吹出される調和空
気の温度をそれぞれ検出して入力するとともに、エアコ
ンON/ 0 ト’ Fセンサ24,車速センサ25か
らの検出信号を入力し、所定の制御プログラムに従い前
記コンデンサ6の電動ファン13及びアクチュエータ1
6の作動を制御する制御信号を出力する。また、電子制
御ユニッ1・21には電源回路18が接続される。
Reference numeral 21 denotes an electronic control unit, which is composed of a microcomputer, memory, input/output interface (all not shown), etc., and detects the refrigerant pressure from the pressure sensor 2, the engine cooling water temperature from the water temperature sensor 22, and the air conditioner outlet temperature sensor 23. In addition to detecting and inputting the temperature of the conditioned air blown out from the air conditioner, the detection signals from the air conditioner ON/OFF sensor 24 and the vehicle speed sensor 25 are input, and the electric power of the capacitor 6 is controlled according to a predetermined control program. Fan 13 and actuator 1
outputs a control signal to control the operation of 6. Further, a power supply circuit 18 is connected to the electronic control units 1 and 21.

前記格成の本実施例装置は、第2図に示すように、スラ
ントノーズボディ30のエンジンルーム31に設置され
る。スラントノーズボデイ30の7 前端にはバンバ32が設けられ、該バンパ32の下方の
フロントグリル33には、冷却風導入用の開口34が形
成される。
The device of this embodiment having the above structure is installed in the engine room 31 of the slant nose body 30, as shown in FIG. A bumper 32 is provided at the front end of the slant nose body 30, and an opening 34 for introducing cooling air is formed in a front grille 33 below the bumper 32.

第3図に前記ダンパ17の詳細を示す。3枚のダンパ1
7は、それぞれ支持軸18にまり回動可能に支持された
レバー19に固定ずる。アクチュエータ16の駆動力は
連接ロツド20により、各レバー19に伝えられ、前記
電子・制御ユニット21の制御信号により、基準位置θ
。(以下省略する〉からのレバー19の回動角度θ.θ
,及びθ,の3B様で、ダンパ】7が作動ずる。回動角
度θでは各ダンパ17は第3図図示の右下がりの傾斜姿
勢であり、回動角度θ,では、ダンパ17により開口1
5を閉鎖し、回動角度θ3では、ダンパ17が第3図状
態と逆の右」二がりの傾斜姿勢となる。
FIG. 3 shows details of the damper 17. 3 dampers 1
7 is fixed to a lever 19 which is rotatably supported by a support shaft 18, respectively. The driving force of the actuator 16 is transmitted to each lever 19 by the connecting rod 20, and the reference position θ is determined by the control signal from the electronic/control unit 21.
. Rotation angle θ of the lever 19 from (omitted below)
, and θ, like 3B, the damper ]7 operates. At the rotation angle θ, each damper 17 is in an inclined position downward to the right as shown in FIG.
5 is closed, and at a rotation angle θ3, the damper 17 assumes a right-angled tilted position, which is opposite to the state shown in FIG.

第4図は、前記ダンパ17の開度を制御する電子制御ユ
ニット21の制御手順を示したフローチャートである。
FIG. 4 is a flowchart showing the control procedure of the electronic control unit 21 that controls the opening degree of the damper 17.

まずステップ100で、車速センサ25により8 検出される車速を設定速度A (km/h)と比較し、
高速であればステップ102でアクチュエータ16を駆
動し、レバー19の回動角θをθ一θ2として、ダンパ
l7により開口15を閉鎖する。車速が前記設定速度よ
り低速の場合は、ステップ104で水温センサ22によ
り検出されるエンジン冷却水温を、設定温度B(’C)
と比較して低温であれば、ステップ106に進んでエア
コンON/OFFセンサ24により、エアコンが作動し
ているが否かを判断する。エアコンが作動してなければ
、前記ステップ102へ進む。また前記ステップ106
でエアコンが作動していると判断した場合には、さらに
ステップ〕08でエアコン吹出し温度センサ23により
、エアコンから吹出される調和空気の温度と設定温度c
(’c)と比較し、調和空気の温度が低ければ前記ステ
ップ102へ進む。
First, in step 100, the vehicle speed detected by the vehicle speed sensor 25 is compared with the set speed A (km/h),
If the speed is high, the actuator 16 is driven in step 102, the rotation angle θ of the lever 19 is set to θ - θ2, and the opening 15 is closed by the damper 17. If the vehicle speed is lower than the set speed, the engine cooling water temperature detected by the water temperature sensor 22 in step 104 is set to the set temperature B('C).
If the temperature is lower than that, the process proceeds to step 106, where the air conditioner ON/OFF sensor 24 determines whether or not the air conditioner is operating. If the air conditioner is not operating, the process advances to step 102. Also, step 106
If it is determined that the air conditioner is operating, in step 08, the air conditioner outlet temperature sensor 23 measures the temperature of the conditioned air blown out from the air conditioner and the set temperature c.
Compared with ('c), if the temperature of the conditioned air is low, the process proceeds to step 102.

前記ステップ108でエアコンがら吹出される調和空気
の温度が設定温度C(’C)より高いと判断した場合は
、ステップ110へ進んで、アクヂュエータ]6を駆動
してレバー19の回動角θをθ=θ区とする。また、前
記ステップ104でエンジン冷却水温が、設定溢度B(
’C)よりも高いと判断した場合は、ステップ112へ
進みレバー19の回動角θをθ−θ3とする。
If it is determined in step 108 that the temperature of the conditioned air blown out from the air conditioner is higher than the set temperature C ('C), the process proceeds to step 110 to drive the actuator 6 to change the rotation angle θ of the lever 19. Let θ=θ area. Further, in step 104, the engine cooling water temperature is set to the set overflow B (
If it is determined that it is higher than 'C), the process proceeds to step 112 and the rotation angle θ of the lever 19 is set to θ-θ3.

前記したように、レバー19の回動角θをθ一θ2とす
る場合は、(1)冷却風として車速風を十分利用できる
場合、(2〉車速風を利用できないアイドル運転時又は
低速走行時であって、エンジン冷却水温が低くかつエア
コンが作動していない場合と、エアコンが作動していて
もエアコンがら吹出される調和空気の温度が設定温度C
(”C)より高くならない場合である。
As mentioned above, when the rotation angle θ of the lever 19 is set to θ - θ2, (1) when the vehicle speed wind can be sufficiently utilized as cooling air, (2> when the vehicle speed wind cannot be used during idling or low speed driving) When the engine cooling water temperature is low and the air conditioner is not operating, and even when the air conditioner is operating, the temperature of the conditioned air blown out from the air conditioner is the set temperature C.
This is the case where it does not become higher than (“C).

前記(1)の場合は、車速風が十分利用できエンジンル
ーム内の圧力がかなり高くなるため、ダンパl7を水平
にして開口15を閉鎖し冷却風の流出を防ぐ。これによ
り、フロントグリルの開口33から導入された冷却風は
、第5図に示すようにコンデンサ6に流入する流れと、
前下がり姿勢のコンデンザ6に沿って上方に向かう流れ
とに分かれる。コンデンサ6に沿って上方に流れる冷却
風は、コンデンサ6で加熱されることなくラジエータ3
の上部に流入する。この場合冷却風流路としては、コン
デンサ6による圧力損失が見掛け」一半分程度に減少す
ることから、その分エンジンルーム3l内への冷却風流
入量が増加する。このように、冷却風総流量の増加とラ
ジエータ3の上部への低温冷却風の直接導入により、ラ
ジエータ3の上部と下部の不均一な風速分布を解消しラ
ジエータ3の放熱性能の向上を図ることができる。
In the case of (1) above, the vehicle speed wind is sufficiently utilized and the pressure in the engine room becomes considerably high, so the damper 17 is set horizontally and the opening 15 is closed to prevent the cooling air from flowing out. As a result, the cooling air introduced from the opening 33 of the front grill flows into the condenser 6 as shown in FIG.
The flow is divided into an upward flow along the condenser 6 in the forward-sloping position. The cooling air flowing upward along the condenser 6 is not heated by the condenser 6 and flows to the radiator 3.
flows into the upper part of the In this case, since the pressure loss due to the condenser 6 in the cooling air flow path is reduced to about half the apparent value, the amount of cooling air flowing into the engine room 3l increases accordingly. In this way, by increasing the total flow rate of cooling air and directly introducing low-temperature cooling air into the upper part of the radiator 3, uneven wind speed distribution between the upper and lower parts of the radiator 3 is eliminated, and the heat dissipation performance of the radiator 3 is improved. Can be done.

また、前記(2〉の場合は、ラジエータ3の放熱性能が
低下することなく、かつエアコンが不作動の場合、又は
エアコン作動時のコンデンサ6の放熱能力が低下してい
ない場合であるので、ダンパ17を作動して開口15を
開く必要はない。
In the case of (2) above, the heat dissipation performance of the radiator 3 does not deteriorate and the air conditioner is not operating, or the heat dissipation capacity of the condenser 6 when the air conditioner is operating does not decrease, so the damper There is no need to actuate 17 to open opening 15.

レバー19の回動角θをθ一θ,とする場合は、前記(
2)の場合において、コンデンサ6の放熱能力が低下し
てエアコンの冷房能力が低下した場合である。アイドル
運転時のようにエンジン回転数が低く、エンジン冷却水
温も低いが、車速による冷却風が得られないため、ダン
パ17を第3図にl1 示すように右下がりの傾斜姿勢として開口】5を開き、
コンデンサ6を経た冷却風をラジエータ3に向かわせな
いで、直ちに開口15から車両床下に排出する(第6図
参照)。こうすることにより、コンデンサ6の後方の通
気抵抗が減少して、コンデンサ6の電動ファン13の風
量が増加し、コンデンサ6の放熱能力が向上する。この
ため、エアコンの冷房能力に支障をきたすことがない。
When the rotation angle θ of the lever 19 is θ - θ, the above (
In case 2), the heat dissipation capacity of the condenser 6 is reduced and the cooling capacity of the air conditioner is reduced. Although the engine speed is low and the engine cooling water temperature is low as during idling, the cooling air cannot be obtained due to the vehicle speed, so the damper 17 is tilted downward to the right as shown in Fig. Open,
The cooling air that has passed through the condenser 6 is not directed to the radiator 3, but is immediately discharged from the opening 15 to the underfloor of the vehicle (see FIG. 6). By doing so, the ventilation resistance behind the capacitor 6 is reduced, the air volume of the electric fan 13 of the capacitor 6 is increased, and the heat dissipation ability of the capacitor 6 is improved. Therefore, the cooling capacity of the air conditioner is not affected.

この場合、電子制御ユニット21の制御信号により、コ
ンデンサ6の電動ファンl3の回転数を高めるようにし
てもよい。
In this case, the rotation speed of the electric fan l3 of the capacitor 6 may be increased by a control signal from the electronic control unit 21.

一方、レバー19の回動角度θをθ−θ,とする場合は
、低速走行のため車速風を充分利用できず、さらにエン
ジン冷却水温が設定温度以上となる高負荷運転時である
。この場合ダンパ17は、第3図図示と逆の右上がりの
傾斜姿勢となって開UJ 1. 5を開き、ラジエータ
3の下部に直接冷却風を導入することができる。このた
め、ラジエータ3を通過する冷却風量を大幅に増加させ
ることができ、しかもその冷却風はコンデンサ6を通過
し12 ない低温のものであるので、ラジエータ3の放熱性能を
一層向上させることができる(第7図参照)。
On the other hand, when the rotation angle θ of the lever 19 is set to θ-θ, the vehicle is running at a low speed, so wind cannot be sufficiently utilized, and the engine cooling water temperature is higher than the set temperature during high-load operation. In this case, the damper 17 is tilted upward to the right, opposite to that shown in FIG. 3, and the damper 17 is opened. 5 can be opened to introduce cooling air directly into the lower part of the radiator 3. Therefore, the amount of cooling air passing through the radiator 3 can be significantly increased, and since the cooling air is at a low temperature without passing through the condenser 6, the heat dissipation performance of the radiator 3 can be further improved. (See Figure 7).

特に、エンジン回転数が高く冷却風量が少ないため、エ
ンジン冷却水温が高くなる低速登坂時におけるオーバー
ヒート等の不具合の発生を防止することができる。
In particular, since the engine speed is high and the cooling air volume is small, it is possible to prevent problems such as overheating during low-speed climbing where the engine cooling water temperature becomes high.

「他の実施例」 第8図は、本発明の他の実施例を示したものである。"Other Examples" FIG. 8 shows another embodiment of the invention.

本実施例の構成は、一枚のダンパ37をアクチュエータ
36により作動させ、ダンパ37の開度を走行状態に応
じてθ,′,θ2゜と可変するようにしたものである。
The configuration of this embodiment is such that one damper 37 is operated by an actuator 36, and the opening degree of the damper 37 is varied between θ, ', and θ2 degrees depending on the driving condition.

本実施例の他の構成及び作動については、前記実施例と
同様であるので詳細な説明を省略する。
The other configurations and operations of this embodiment are the same as those of the previous embodiment, so detailed explanations will be omitted.

本実施例は一枚のダンパ37とすることにより、ダンパ
の開閉機構の構成を簡易にすることができる。
In this embodiment, by using a single damper 37, the structure of the damper opening/closing mechanism can be simplified.

尚、前記実施例では、ダンパ17又は37の開度を段階
的に制御しているが、電子制御ユニット21に入力され
る各種センサの検出信号により車両の走行状態に応じて
、アクチュエータ16を連続的に制御し、タンパ17又
は37の開度を最適に制御することも可能である。
In the embodiment described above, the opening degree of the damper 17 or 37 is controlled in stages, but the actuator 16 is continuously controlled depending on the driving state of the vehicle based on detection signals from various sensors input to the electronic control unit 21. It is also possible to optimally control the opening degree of the tamper 17 or 37.

また、ダンパ1.7.37の開閉機構は、」二記実施例
で説明した機能を果たす構成であればよく、実施例の構
成に限定されるものではない。
Further, the opening/closing mechanism of the damper 1.7.37 may have any structure as long as it can perform the functions described in the second embodiment, and is not limited to the structure of the embodiment.

さらに、前記実施例のエンジン駆動の冷却ファンに代え
て、電動ファンによって行うこともできる。
Furthermore, instead of the engine-driven cooling fan of the above embodiment, an electric fan may be used.

「発明の効果J 本発明は」二記した構成を有し、コンデンサを前下がり
の姿勢として、ラジエータの前面略下半分を覆うように
したから、エンジンルーム内の通気抵抗を軽減してエン
ジンルーム内に導入する冷却風量を増加させ、該冷却風
を直接コンデンサ及びラジエータ下部を通過するものと
、コンデンサに沿って流れて、ラジエータ上部を通過す
るものとに分け、ラジエータ上部に直接低温の冷却風を
導入して、ラジエータを通過する冷却風の不均一な風速
分布を解消し、ラジエータ放熱性能を向−Lできる。ま
た、制御手段がダンパの開度を車両の走行状態に応じて
制御することにより、冷却風の排呂1導入を行ってコン
デンサ及びラジエータを通過ずる冷却風量を調整して、
コンデンサ放熱能力の低下を防ぐとともに、ラジエータ
放熱性能を大幅に向J二させて、アイドル運転時や高負
荷低速走行時のオーバーしー1〜やエアコンの冷房能力
の低下を防止することができる等の優れた効果がある。
``Effects of the Invention J'' The present invention has the configuration described above, and since the condenser is placed in a forward-down position and covers approximately the lower half of the front of the radiator, ventilation resistance in the engine room is reduced and The amount of cooling air introduced into the radiator is increased, and the cooling air is divided into two types: one that passes directly through the condenser and the bottom of the radiator, and the other that flows along the condenser and passes through the top of the radiator. By introducing this, it is possible to eliminate the uneven wind speed distribution of the cooling air passing through the radiator and improve the heat dissipation performance of the radiator. In addition, the control means controls the opening degree of the damper according to the running state of the vehicle, thereby introducing the cooling air into the exhaust chamber 1 and adjusting the amount of cooling air passing through the condenser and the radiator.
In addition to preventing a decrease in the heat dissipation capacity of the condenser, it also significantly improves the heat dissipation performance of the radiator, preventing overheating during idling or high-load low-speed driving, and a decrease in the cooling capacity of the air conditioner. It has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面は本発明の実施例を示し、第1図は全体構成の
概略を示したブ口ツク図、第2図は本実施例装置の配置
を示した断向図、第3図はアクチュエータ及びダンパの
詳細を示した一部の断面図、第4図はダンパ開度の制御
手順を示すフローチャー1〜、第5図〜第7図はダンパ
開度に応じた冷却風の流れを示した断面図、第8図は他
の実施例を示した断面図、第9図は従来例における冷却
風の流れを示した断面図である。 l′J l,.,エンジン、 2...冷却ファン、 3...
ラジエータ、 4...冷凍サイクル、 6...コン
デンサ、 6 a ...下部、 6b..上部、 1
3,..電動ファン、 14....車両アンダーカバ
ー15..開口、  16 ..アクチュエー夕、  
17...ダンパ、 2 1 ...電子制御ユニット
The accompanying drawings show an embodiment of the present invention, with FIG. 1 being a block diagram showing the outline of the overall configuration, FIG. 2 being a cross-sectional view showing the arrangement of the device of this embodiment, and FIG. A partial sectional view showing the details of the damper, Figure 4 is a flowchart 1 to 1 showing the control procedure for the damper opening, and Figures 5 to 7 are flowcharts of cooling air according to the damper opening. 8 is a sectional view showing another embodiment, and FIG. 9 is a sectional view showing the flow of cooling air in a conventional example. l'J l,. , engine, 2. .. .. cooling fan, 3. .. ..
Radiator, 4. .. .. Refrigeration cycle, 6. .. .. Capacitor, 6 a. .. .. lower part, 6b. .. Upper part, 1
3. .. Electric fan, 14. .. .. .. Vehicle undercover 15. .. Opening, 16. .. actuator,
17. .. .. Damper, 2 1. .. .. Electronic control unit.

Claims (1)

【特許請求の範囲】 車室空気調和用のコンデンサをラジエータ前面に配置し
た車両用水冷式内燃機関の冷却装置において、 下部を車両前方に臨ませ上部をラジエータの前面略中央
部に臨ませる前下がりの姿勢で配置して、該ラジエータ
の前面略下半部を覆うコンデンサと、該コンデンサ下方
部とラジエータ下方部との間の車両アンダーカバーに形
成した開口と、 該開口を開閉して冷却風の案内をなすダンパと、該ダン
パの開度を車両の走行状態に応じて制御する制御手段と
、 を備えたことを特徴とする車両用水冷式内燃機関の冷却
装置。
[Scope of Claims] A cooling system for a water-cooled internal combustion engine for a vehicle in which a condenser for cabin air conditioning is placed in front of the radiator, with the lower part facing the front of the vehicle and the upper part facing approximately the center of the front of the radiator. a condenser arranged in a posture such that the condenser covers substantially the lower half of the front of the radiator; an opening formed in the vehicle undercover between the lower part of the condenser and the lower part of the radiator; 1. A cooling device for a water-cooled internal combustion engine for a vehicle, comprising: a damper that provides guidance; and a control means that controls the opening degree of the damper depending on the running state of the vehicle.
JP30873789A 1989-11-28 1989-11-28 Cooler of water cooled internal combustion engine for vehicle Pending JPH03167032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30873789A JPH03167032A (en) 1989-11-28 1989-11-28 Cooler of water cooled internal combustion engine for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30873789A JPH03167032A (en) 1989-11-28 1989-11-28 Cooler of water cooled internal combustion engine for vehicle

Publications (1)

Publication Number Publication Date
JPH03167032A true JPH03167032A (en) 1991-07-18

Family

ID=17984680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30873789A Pending JPH03167032A (en) 1989-11-28 1989-11-28 Cooler of water cooled internal combustion engine for vehicle

Country Status (1)

Country Link
JP (1) JPH03167032A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020399A1 (en) * 2008-04-24 2009-10-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft cooling device
CN102292531A (en) * 2008-11-27 2011-12-21 F.G.威尔逊(工程)有限公司 Baffle arrangement for a genset enclosure
DE102010026323A1 (en) * 2010-07-07 2012-01-12 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Cooling assembly for motor car during operation of internal combustion engine, has air guide device comprising aperture upstream of heat exchanger and downstream of air inlet, and positioning device changing aperture cross-section
JP2015140081A (en) * 2014-01-28 2015-08-03 トヨタ自動車株式会社 Vehicle body front structure
JP2018099983A (en) * 2016-12-20 2018-06-28 アイシン精機株式会社 Vehicle cooling device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008020399A1 (en) * 2008-04-24 2009-10-29 Dr. Ing. H.C. F. Porsche Aktiengesellschaft cooling device
US8091516B2 (en) 2008-04-24 2012-01-10 Dr. Ing. H.C. F. Porsche Ag Cooling device
CN102292531A (en) * 2008-11-27 2011-12-21 F.G.威尔逊(工程)有限公司 Baffle arrangement for a genset enclosure
DE102010026323A1 (en) * 2010-07-07 2012-01-12 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Cooling assembly for motor car during operation of internal combustion engine, has air guide device comprising aperture upstream of heat exchanger and downstream of air inlet, and positioning device changing aperture cross-section
JP2015140081A (en) * 2014-01-28 2015-08-03 トヨタ自動車株式会社 Vehicle body front structure
JP2018099983A (en) * 2016-12-20 2018-06-28 アイシン精機株式会社 Vehicle cooling device

Similar Documents

Publication Publication Date Title
US6192838B1 (en) Engine cooling apparatus
US5205484A (en) Cooling system for a water cooled internal combustion engine for vehicle having an air conditioning apparatus
US4991405A (en) Automotive air conditioning system
KR100392622B1 (en) Vehicular air conditioner
JP2012246790A (en) Exhaust heat recovery device
KR20120063108A (en) Controling method of intercooler and cooling system of vehicle
JP2010208482A (en) Outside air introduction device for vehicle
JPH03233128A (en) Cooling device of water cooling type internal combustion engine for vehicle
JPH03167032A (en) Cooler of water cooled internal combustion engine for vehicle
JP2894033B2 (en) Cooling system for internal combustion engine for vehicles
JP2924148B2 (en) Water-cooled internal combustion engine cooling system
JP3147641B2 (en) Vehicle air conditioner
JP4288781B2 (en) Cooling system
JP2016190533A (en) Cooling system
JP3937624B2 (en) Vehicle cooling system
JP2924171B2 (en) Cooling system for water-cooled internal combustion engine for vehicles
JP2914532B2 (en) Cooling system for water-cooled internal combustion engine for vehicles
US4438732A (en) Cooling arrangement for an internal combustion engine
JPH04314914A (en) Cooling device for water-cooled internal combustion engine of vehicle
JPH0510125A (en) Cooling device of water cooling type engine for vehicle
JPS59138716A (en) Engine cooling apparatus
JPS59137211A (en) Air conditioning device
JPH08197965A (en) Engine room inside cooling device
JP4277399B2 (en) Engine cooling system for vehicles
JP3876786B2 (en) Air conditioner for vehicles