JPH03166363A - Icb vapor deposition device - Google Patents

Icb vapor deposition device

Info

Publication number
JPH03166363A
JPH03166363A JP30558789A JP30558789A JPH03166363A JP H03166363 A JPH03166363 A JP H03166363A JP 30558789 A JP30558789 A JP 30558789A JP 30558789 A JP30558789 A JP 30558789A JP H03166363 A JPH03166363 A JP H03166363A
Authority
JP
Japan
Prior art keywords
film
cluster
vapor deposition
electron
polyimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30558789A
Other languages
Japanese (ja)
Inventor
Kunio Imai
邦男 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pioneer Corp
Original Assignee
Pioneer Electronic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Electronic Corp filed Critical Pioneer Electronic Corp
Priority to JP30558789A priority Critical patent/JPH03166363A/en
Publication of JPH03166363A publication Critical patent/JPH03166363A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To prevent the revaporization, etc., of an org. film and to form a high-purity film by using an MIM element with a polyimide LB film as the insulating layer and irradiating a cruster injected through a nozzle with an electron beam to ionize the cluster. CONSTITUTION:The ICB vapor deposition device is formed by a means for injecting the vapor of a vaporization material 2 into a high vacuum from a nozzle 4 to form a cluster A, an electron irradiation means for irradiating the cluster A with an electron B to ionize the cluster and a means for forming a thin film. The ionized cluster C is accelerated by an electric field in the film forming means and deposited on a substrate 9 along with a neutral cluster. An MIM element 6 with a polyimide LB film 13 as the insulating layer is used in the electron irradiation means. The element 6 has a negative electrode 12 and an Al positive electrode 14 with the LB film 13 in between, a DC voltage is impressed between both electrodes 12 and 14, and the electron B is emitted.

Description

【発明の詳細な説明】 技術分野 本発明はI C B (Ion1zed Cluste
r Beam)蒸着装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to ICB (Ion1zed Cluster)
r Beam) vapor deposition apparatus.

背景技術 ICB蒸着装置においては、蒸着物質を充填したるつぼ
を高温に加熱して蒸着物質を蒸気化させ、るつぼに設け
た小孔(ノズル)から高真空中に噴出させることにより
、断熱膨脹に基づく過冷却状態を起こし、クラスタと呼
ばれる塊状の原子集団を形成させる。クラスタの一部は
るつぼ上方に設けたイオン化部で電子照射されてイオン
化される。
BACKGROUND ART In ICB vapor deposition equipment, a crucible filled with a vapor deposition material is heated to a high temperature to vaporize the vapor deposition material, and the vaporized material is ejected into a high vacuum from a small hole (nozzle) provided in the crucible. This causes a state of supercooling, forming a mass of atoms called a cluster. A part of the cluster is ionized by electron irradiation in an ionization section provided above the crucible.

更に、このイオン化したクラスタを電界加速し、イオン
化されなかった中性クラスタとともに蒸着しようとする
基板上へ付着させて薄膜を形成することが行なわれる。
Further, the ionized clusters are accelerated in an electric field and deposited together with the non-ionized neutral clusters on the substrate to be deposited to form a thin film.

かかる従来のICB蒸着装置においては、電子照射のた
めにヒータを使用した熱電子発生源が備えられている。
Such conventional ICB deposition equipment is equipped with a thermionic generation source using a heater for electron irradiation.

ところが、有機薄膜を成膜する場合、このヒータの熱が
有機膜を再蒸発させたり、有機物がヒータに触れて熱分
解するため戊膜した薄膜に不純物が含まれてしまう。従
って、ヒータの熱を遮るために水冷カバーや液化窒素に
よる冷却装置を設置しなければならず複雑な装置になっ
てしまうという問題点があった。
However, when forming an organic thin film, the heat from this heater re-evaporates the organic film, or the organic matter comes into contact with the heater and is thermally decomposed, so that the formed thin film contains impurities. Therefore, there is a problem in that a water cooling cover or a cooling device using liquefied nitrogen must be installed to block the heat of the heater, resulting in a complicated device.

また、ヒータの寿命が短いのでヒータ交換を頻繁に行な
う必要があるだけでなく経時変化により電子発生状態が
安定しないという問題点もあった。
Furthermore, since the life of the heater is short, it is necessary to replace the heater frequently, and there is also the problem that the state of electron generation is unstable due to changes over time.

発明の概要 [発明の目的] 本発明の目的は、複雑な装置となることなく有機物の熱
分解を防止しかつ常に安定した電子発生状態を得ること
ができるICB蒸着装置を提供することである。
Summary of the Invention [Object of the Invention] An object of the present invention is to provide an ICB vapor deposition apparatus that can prevent thermal decomposition of organic matter and always obtain a stable electron generation state without becoming a complicated apparatus.

[発明の構成] 本発明のICB蒸着装置は、蒸着物質を蒸発させてそれ
をノズルから高真空中に噴出させてクラスタを形成させ
る手段と、クラスタに対して電子照射してイオン化させ
る電子照射手段と、イオン化したクラスタを電界加速し
て中性クラスタと共に基板上に付着させて薄膜を形成さ
せる手段とからなる装置であり、電子照射手段がポリイ
ミドLB膜を絶縁層としたMIM素子を用いて電子照射
することを特徴としている。
[Structure of the Invention] The ICB vapor deposition apparatus of the present invention includes means for vaporizing a vapor deposition material and ejecting it from a nozzle into a high vacuum to form clusters, and an electron irradiation means for ionizing the clusters by irradiating them with electrons. and a means for accelerating the ionized clusters with an electric field and depositing them on the substrate together with the neutral clusters to form a thin film. It is characterized by irradiation.

実施例 以下、本発明の実施例を図面を参照しつつ詳細に説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

第1図に示した本発明の〜実施例たるICB蒸着装置に
おいては、内部が高真空に保持されるケース部材(図示
せず)内にるつぼ1か設けられ、そのるつぼ1の中には
蒸着物質2が充填されている。るつぼ1の周囲には蒸着
物質2を加熱して蒸気化させるためにヒータ3が設けら
れている。また、るつぼ1には蒸発化した物質を噴出す
るノズルとして小孔4が形成されている。小孔4の上方
にはイオン化部が設けられている。イオン化部は電子発
生源としてM I M(Metal Insulato
r Metal)素子6を有している。
In the ICB vapor deposition apparatus according to the embodiment of the present invention shown in FIG. Filled with substance 2. A heater 3 is provided around the crucible 1 to heat and vaporize the vapor deposition material 2. Further, a small hole 4 is formed in the crucible 1 as a nozzle for spouting the evaporated substance. An ionization section is provided above the small hole 4. The ionization section uses MIM (Metal Insulator) as an electron generation source.
r Metal) element 6.

M I M素子6は第2図に示すようにガラス基板11
表面に負電極12が蒸着により膜として形成されている
。負電極12は例えば、金(八〇)からなる。その負電
極12には絶縁層として累積されたL B (Lang
muir−Blodgett )膜13が設けられてい
る。LB膜13はポリイミド(PI)からなり、数十λ
程度の厚さを有する。LB膜13上には正電極14が蒸
着により膜として形成されている。
The MIM element 6 is mounted on a glass substrate 11 as shown in FIG.
A negative electrode 12 is formed as a film on the surface by vapor deposition. The negative electrode 12 is made of, for example, gold (80%). The negative electrode 12 has LB (Lang) accumulated as an insulating layer.
A muir-Blodgett) membrane 13 is provided. The LB film 13 is made of polyimide (PI) and has a thickness of several tens of λ
It has a certain thickness. A positive electrode 14 is formed as a film on the LB film 13 by vapor deposition.

正電極14は例えば、アルミニウム(A1)からなり、
この電極が電子放出面として作用する。
The positive electrode 14 is made of aluminum (A1), for example,
This electrode acts as an electron emitting surface.

MIM素子6は正電極14を小孔13からの噴出経路方
向に向けて設けられている。MIM索子6の内側には格
子7が設けられている。このM IM素子6及び格子7
からなるイオン化部の上方には加速電極8が設けられて
いる。加速電極8の上方に蒸着膜が形成される基板9が
その形成面を小孔13の方向に向けて設けられる。
The MIM element 6 is provided with the positive electrode 14 facing in the direction of the ejection path from the small hole 13 . A grid 7 is provided inside the MIM cord 6. This M IM element 6 and grating 7
An accelerating electrode 8 is provided above the ionization section consisting of. A substrate 9 on which a vapor deposited film is formed is provided above the accelerating electrode 8 with its formation surface facing the direction of the small hole 13 .

加速電極8及び基板9は電気的にはアースされている。Accelerating electrode 8 and substrate 9 are electrically grounded.

格子7には直流電圧源21によって正電位E1が印加さ
れる。MIM素子6の正電極14には直流電圧源22に
よって正電位E1より電圧E2だけ低い電位がバイアス
電位として印加される。負電極12と正電極14との間
には直流電圧源23が設けられ、負電極12には正電極
14の印加電位より直流電圧源23の出力電圧E3だけ
低い電位が印加される。また、るっぽ1には直流電圧i
21によって正電位E1が印加される。ヒータ3の一端
には直流電圧源24によって正電位E1より電圧E4だ
け低い電位がバイアス電位として印加され、ヒータ3の
両端間には交流電圧源25の出力電圧e1が印加される
A positive potential E1 is applied to the grid 7 by a DC voltage source 21. A potential lower than the positive potential E1 by a voltage E2 is applied as a bias potential to the positive electrode 14 of the MIM element 6 by the DC voltage source 22. A DC voltage source 23 is provided between the negative electrode 12 and the positive electrode 14, and a potential lower than the potential applied to the positive electrode 14 by an output voltage E3 of the DC voltage source 23 is applied to the negative electrode 12. In addition, Rupo 1 has a DC voltage i
21 applies a positive potential E1. A potential lower than the positive potential E1 by a voltage E4 is applied as a bias potential by a DC voltage source 24 to one end of the heater 3, and an output voltage e1 of an AC voltage source 25 is applied between both ends of the heater 3.

なお、ケース部材内部は図示しない真空ポンプによって
高真空(例えば、10−’Pa以下)にされる。
Note that the inside of the case member is brought to a high vacuum (eg, 10-'Pa or less) by a vacuum pump (not shown).

かかる構成においては、るっぽ1内の蒸着物質2はヒー
タ3の加熱により蒸気化されて小孔4から高真空中に噴
出される。噴出された蒸気化した蒸着物質2は断熱膨脹
に基づいた過冷却状態となり、クラスタAを形成する。
In such a configuration, the vapor deposition substance 2 in the lupus 1 is vaporized by heating by the heater 3 and is ejected from the small hole 4 into a high vacuum. The ejected vaporized deposition material 2 is in a supercooled state based on adiabatic expansion and forms a cluster A.

このクラスタは数百個程度の原子が互いに緩く結合した
状態をとる。
This cluster consists of several hundred atoms loosely bonded to each other.

一方、MIM索子6には直流電圧源23の出力電圧E3
が印加されるので、この電圧E3は負電極12及び正電
極14のAIとAu金属中のそれぞれのフェルミ準位の
差を作りLB膜13を介してトンネル電流を生じさせる
。すなわち、負電極12より生じた電子はLB膜13を
通過して正電極14に至り、電圧E3によりエネルギー
が上昇する。これにより正電極14面より電子Bが真空
中に放出される。
On the other hand, the output voltage E3 of the DC voltage source 23 is applied to the MIM cable 6.
is applied, this voltage E3 creates a difference between the Fermi levels in the AI and Au metals of the negative electrode 12 and the positive electrode 14, and generates a tunnel current through the LB film 13. That is, electrons generated from the negative electrode 12 pass through the LB film 13 and reach the positive electrode 14, and their energy increases due to the voltage E3. As a result, electrons B are emitted from the surface of the positive electrode 14 into the vacuum.

MIM素子6においてLB膜13は単分子層を重ねた数
十λ程度の厚さで非常に薄く、しかもポリイミドは絶縁
性が極めて良いので絶縁層としてLB膜13を用いたこ
とにより電子がLB膜13でほとんど消費されることな
く放出されて電子放出効率が良好となる。放出された電
子は正電極14より高い電位にある格子7に向って移動
する。
In the MIM element 6, the LB film 13 is very thin, with a thickness of about several tens of λ, made by stacking monomolecular layers, and polyimide has extremely good insulation properties, so by using the LB film 13 as an insulating layer, electrons can be transferred to the LB film. 13, the electrons are emitted with almost no consumption, resulting in good electron emission efficiency. The emitted electrons move toward the grid 7, which is at a higher potential than the positive electrode 14.

格子7を通過した電子は上記のクラスタに衝突してクラ
スタを1価のイオンにせしめる。
The electrons that have passed through the lattice 7 collide with the clusters, causing the clusters to become monovalent ions.

イオン化したクラスタCは加速電極8のアース電位によ
って加速されて広い運動エネルギー分布を有する蒸着粒
子となり、イオン化されなかった中性クラスタと共に基
板9に衝突する。基板9には衝突したクラスタが付着し
て蒸着薄膜が形成されるのである。
The ionized clusters C are accelerated by the earth potential of the accelerating electrode 8 to become deposited particles having a wide kinetic energy distribution, and collide with the substrate 9 together with the neutral clusters that have not been ionized. The collided clusters adhere to the substrate 9, forming a deposited thin film.

なお、上記した実施例においては、MIM素子の負電極
には金が用いられ、正電極にはアルミニウムが用いられ
ているが、これに限らず、他の金属を用いても良く、仕
事関数が大きい金属を用いた電極が正電極となる。
In the above embodiment, gold is used for the negative electrode and aluminum is used for the positive electrode of the MIM element, but the present invention is not limited to this, and other metals may be used, and the work function is The electrode using a large metal becomes the positive electrode.

発明の効果 以上の如く、本発明によるICB蒸着装置においては、
蒸着物質を蒸発させてノズルを介して高真空中に噴出さ
せて得たクラスタをイオン化させるためにポリイミドL
B膜を絶縁層としたMIM素子を用いてクラスタに対し
て電子照射をすることが行なわれる。よって、電子発生
源としてヒータを用いなくて済むので、有機薄膜を成膜
する場合に有機膜の再蒸発や有機物の熱分解を防止する
ことができ、これにより高純度で薄膜を成膜させること
ができる。また、MIM素子はヒータのような消耗部品
ではないので交換することなく常に安定した電子発生状
態を得ることができる。
As described above, the ICB deposition apparatus according to the present invention has the following effects:
Polyimide L was used to ionize the clusters obtained by evaporating the deposited material and ejecting it into a high vacuum through a nozzle.
A cluster is irradiated with electrons using an MIM element having a B film as an insulating layer. Therefore, since there is no need to use a heater as an electron generation source, it is possible to prevent re-evaporation of the organic film and thermal decomposition of organic matter when forming an organic thin film, and thereby to form a thin film with high purity. Can be done. Furthermore, since the MIM element is not a consumable part like a heater, a stable electron generation state can always be obtained without replacing it.

更に、熱を遮るために水冷カバーや液化窒素による冷却
装置を設置する必要がないので構成を簡単にすることが
できると共に小形化することができる。
Furthermore, since there is no need to install a water-cooling cover or a cooling device using liquid nitrogen to block heat, the configuration can be simplified and the device can be made smaller.

また、MIM素子は様々な形態を採ることができるので
、装置の構成、機能に合せたものにすることが容易であ
り、ポリイミドLB膜を絶縁層としたMIM素子を用い
たことにより効率よく電子を取り出すことができる。
In addition, since MIM elements can take various forms, it is easy to adapt them to the configuration and function of the device, and by using MIM elements with polyimide LB film as an insulating layer, electronic can be taken out.

【図面の簡単な説明】 第1図は本発明の実施例を示す概略図、第2図は第1図
の装置中のMIM素子を示す断面図である。 主要部分の符号の説明 1・・・るつぼ 2・・・蒸着物質 6・・・MIM素子 8・・・加速電極 9・・・基板 13・・・ポリイミドLB膜 第1図 第2図
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing an MIM element in the apparatus of FIG. Explanation of symbols of main parts 1... Crucible 2... Vapor deposition material 6... MIM element 8... Accelerating electrode 9... Substrate 13... Polyimide LB film Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)蒸着物質を蒸発させてそれをノズルから高真空中
に噴出させてクラスタを形成させる手段と、前記クラス
タに対して電子照射してイオン化させる電子照射手段と
、イオン化したクラスタを電界加速して中性クラスタと
共に基板上に付着させて薄膜を形成させる手段とからな
るICB蒸着装置であって、前記電子照射手段はポリイ
ミドLB膜を絶縁層としたMIM素子を用いて電子照射
することを特徴とするICB蒸着装置。
(1) A means for evaporating a deposition material and ejecting it from a nozzle into a high vacuum to form a cluster, an electron irradiation means for ionizing the cluster by irradiating it with electrons, and an electric field acceleration means for accelerating the ionized cluster. an ICB vapor deposition apparatus comprising a means for depositing neutral clusters on a substrate together with a thin film to form a thin film, the electron irradiation means irradiating electrons using an MIM element having a polyimide LB film as an insulating layer. ICB vapor deposition equipment.
(2)前記MIM素子は前記ポリイミドLB膜を挟む金
からなる負電極及びアルミニウムからなる正電極を有し
、前記正負電極間に直流電圧が印加されて前記正電極面
から電子を放出することを特徴とする請求項1記載のI
CB蒸着装置。
(2) The MIM element has a negative electrode made of gold and a positive electrode made of aluminum sandwiching the polyimide LB film, and when a DC voltage is applied between the positive and negative electrodes, electrons are emitted from the positive electrode surface. I according to claim 1 characterized in
CB vapor deposition equipment.
JP30558789A 1989-11-24 1989-11-24 Icb vapor deposition device Pending JPH03166363A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30558789A JPH03166363A (en) 1989-11-24 1989-11-24 Icb vapor deposition device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30558789A JPH03166363A (en) 1989-11-24 1989-11-24 Icb vapor deposition device

Publications (1)

Publication Number Publication Date
JPH03166363A true JPH03166363A (en) 1991-07-18

Family

ID=17946938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30558789A Pending JPH03166363A (en) 1989-11-24 1989-11-24 Icb vapor deposition device

Country Status (1)

Country Link
JP (1) JPH03166363A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37698E1 (en) 1990-10-25 2002-05-14 Matsushita Electric Industrial Co. Method of manufacturing a fluorocarbon-based coating film
KR100642738B1 (en) * 2002-11-27 2006-11-10 고려대학교 산학협력단 Methed for preparing polyaniline thin film using a cluster beam deposition apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE37698E1 (en) 1990-10-25 2002-05-14 Matsushita Electric Industrial Co. Method of manufacturing a fluorocarbon-based coating film
USRE38752E1 (en) 1990-10-25 2005-07-05 Matsushita Electric Industrial Co., Ltd Method of manufacturing a fluorocarbon-based coating film
KR100642738B1 (en) * 2002-11-27 2006-11-10 고려대학교 산학협력단 Methed for preparing polyaniline thin film using a cluster beam deposition apparatus

Similar Documents

Publication Publication Date Title
US3046936A (en) Improvement in vacuum coating apparatus comprising an ion trap for the electron gun thereof
JPH0543787B2 (en)
US4854265A (en) Thin film forming apparatus
US5180477A (en) Thin film deposition apparatus
JPS5989763A (en) Vapor deposition device for thin film
JPH03166363A (en) Icb vapor deposition device
JPH0543784B2 (en)
JP2843125B2 (en) Thin film forming equipment
JPH03104881A (en) Formation of thin film of iron-iron nitride
JP2549398B2 (en) Method for forming thin film of silicon dioxide
JP3452458B2 (en) Thin film forming equipment
JP2594949B2 (en) Thin film forming equipment
JP3431174B2 (en) Substrate coating equipment
JPH0645871B2 (en) Reactive ion plating method
JP2768960B2 (en) Thin film forming equipment
JPH05339720A (en) Device for formation of thin film
JP3174313B2 (en) Thin film forming equipment
JPS61279115A (en) Thin film forming device
JPS63192862A (en) Thin film forming device
JP2544405B2 (en) Method for forming transparent sapphire thin film
JP2593292Y2 (en) Metal ion source radiation reflector structure
JPH0788571B2 (en) Thin film forming equipment
JPH0617240A (en) Thin film forming device
JPS6393870A (en) Thin film forming device
JPH04221066A (en) Thin film vapor-depositing device