JPH03166343A - Heat treatment of metal - Google Patents

Heat treatment of metal

Info

Publication number
JPH03166343A
JPH03166343A JP2165493A JP16549390A JPH03166343A JP H03166343 A JPH03166343 A JP H03166343A JP 2165493 A JP2165493 A JP 2165493A JP 16549390 A JP16549390 A JP 16549390A JP H03166343 A JPH03166343 A JP H03166343A
Authority
JP
Japan
Prior art keywords
nitrogen
annealing
hydrogen
furnace
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2165493A
Other languages
Japanese (ja)
Inventor
Robert Franks
ロバート・フランクス
Paul Francis Stratton
ポール・フランシス・ストラットン
Colin J Precious
コリン・ジョン・プレシャス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BOC Group Ltd
Original Assignee
BOC Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Ltd filed Critical BOC Group Ltd
Publication of JPH03166343A publication Critical patent/JPH03166343A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • C21D1/763Adjusting the composition of the atmosphere using a catalyst

Abstract

PURPOSE: To enable economically advantageous annealing by bringing impure oxygen into nitrogen contact reaction with excessive hydrogen, when producing an annealing atmosphere of a metal harder to be oxidized than iron at a site from non extra low temp. produced nitrogen.
CONSTITUTION: For example, when nitrogen is separated from air by pressure self absorption at a plant 2, the nitrogen containing 5-3vol% oxygen impurity is generally produced. This nitrogen flow is passed in a catalyst reactor 4, and oxygen impurity in nitrogen flow is reacted with the hydrogen stoichiometrically a little excessive at a reaction temp. by using a Pd or Pt catalyst. The produced gas mixture consists of nitrogen, hydrogen and water vapor. This produced gas mixture is introduced into a heat treatment furnace 6 to anneal a metal product of copper, bronze, etc., harder to be oxidized than iron. By this method, gloss annealing is made possible.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 本発明は、金属の熱処理に関するものである。[Detailed description of the invention] The present invention relates to heat treatment of metals.

そして、特に鉄よりも酸化しにくい金属の熱処理に関す
るものである。そのような金属としては、コバルト、ニ
ッケル、鉛、銅、パラジウム、銀、金、それらの金属の
合金、及び水銀の合金が挙げられる。
In particular, it relates to heat treatment of metals that are more difficult to oxidize than iron. Such metals include cobalt, nickel, lead, copper, palladium, silver, gold, alloys of these metals, and alloys of mercury.

鉄よりも酸化しにくい金属でできている製品を製造する
時には、該製品をアニール工程にかげることが一般的に
望ましい。該製品は比較的酸化しにくいが、それにもか
かわらずアニール操作を行うために用いる炉の中を、還
元又は非酸化雰囲気に保つことがなお必要である。理論
的に窒素を用いてアニールのための不活性雰囲気を形成
することができるということが知られている。一般的に
、窒素は、極低温で蒸留することによって空気から分離
され、酸素のような反応性不純物を100万分の1だけ
含む必要がある窒素源から供給することができる。該窒
素は、異なる熱処理の範囲に対しての雰囲気として熱処
理場で用いることができる。
When manufacturing articles made of metals that are less susceptible to oxidation than iron, it is generally desirable to subject the articles to an annealing process. Although the product is relatively resistant to oxidation, it is nevertheless necessary to maintain a reducing or non-oxidizing atmosphere in the furnace used to perform the annealing operation. It is known that nitrogen can theoretically be used to form an inert atmosphere for annealing. Generally, nitrogen can be supplied from a nitrogen source that is separated from air by distillation at cryogenic temperatures and must contain only parts per million of reactive impurities such as oxygen. The nitrogen can be used in a heat treatment shop as an atmosphere for different heat treatment ranges.

近年、極低温蒸留法によって作業現場外で窒素を製造し
、それを作業現場に輸送するよシも、非極低温法によっ
て作業現場で窒素を製造した方が、ある種の経済的利点
があることが分かって来た。
In recent years, although it is possible to produce nitrogen off-site using cryogenic distillation methods and transport it to the work site, there are certain economic advantages to producing nitrogen on-site using non-cryogenic methods. I came to understand that.

空気から窒素を分離するために用いることができる方法
には、主に2つの室温法がある。第1の方法は、吸収剤
によって空気から酸素を吸収し窒素製造物を製造するこ
とと、吸収が起こる時ようも低い圧力を吸収剤にかげて
吸収剤を周期的に再生することを伴う圧力自在吸収によ
るものである。
There are two main room temperature methods that can be used to separate nitrogen from air. The first method involves absorbing oxygen from the air with an absorbent to produce a nitrogen product and periodically regenerating the absorbent by subjecting the absorbent to a very low pressure when the absorption occurs. This is due to free absorption.

第2の方法は、半透膜によって空気を分離する方法であ
る。空気を分離するのに適する公知の半透膜は、窒素よ
シもずっと速い速度で膜を通して酸素を拡散させるので
、その結果不透過ガスは窒素に富むことになる。
The second method is to separate air using a semipermeable membrane. Known semipermeable membranes suitable for separating air allow oxygen to diffuse through the membrane at a much faster rate than nitrogen, so that the non-permeable gas is enriched in nitrogen.

極低温で製造した窒素を作業現場に輸送する経費を考慮
に入れるとすれば、極低温法を用いて空気から窒素を分
離するようも、該非極低温法を用いた方がより安価に、
酸素を1多程度含む窒素製造物を製造することができる
。多くの工業的方法にとって、非極低温で製造した窒素
が容量基準で1条程度の酸素を不純物として含むという
事は、欠点とはならない。しかしながら、鉄よシも酸化
しにくい金属をアニールする時には、そのような酸素濃
度は確かに欠点となることが分かった。適当なアニール
雰囲気は、非極低温で製造した窒素と水素を混合するこ
とによって製造することができるということはすぐに考
えられるが、例えば400〜800℃の温度において行
われる銅のアニールでは、水素と酸素の間の反応は、該
雰囲気に化学量論的に過剰な水素を添加しても、銅の酸
化が依然として起こる実質的な危険温度範囲の少なくと
も低温部分の温度でも十分にゆっくシと進行する。
If you take into account the cost of transporting nitrogen produced at cryogenic temperatures to the work site, it is cheaper to separate nitrogen from air using cryogenic methods, but it is cheaper to use non-cryogenic methods.
Nitrogen products can be produced that contain more or less oxygen. For many industrial processes, it is not a disadvantage that nitrogen produced at non-cryogenic temperatures contains about 1 by volume of oxygen as an impurity. However, it has been found that such an oxygen concentration is certainly a drawback when annealing metals that are difficult to oxidize, such as iron. Although it is readily conceivable that a suitable annealing atmosphere could be produced by mixing non-cryogenically produced nitrogen and hydrogen, for example in copper annealing carried out at temperatures between 400 and 800 °C, hydrogen The reaction between hydrogen and oxygen is slow enough to occur even at temperatures in at least the cold part of the critical temperature range, where copper oxidation still occurs, even with the addition of a stoichiometric excess of hydrogen to the atmosphere. proceed.

酸素を初めに触媒を用いて水素と反応させ、次に生じた
水蒸気を吸収剤又はゲッターによって吸収するという方
法によって、容量基準で約1弾の酸素を含む窒素を精製
することは公知である。窒素を精製する吸収工程の信頼
性を考えると、精製ガスを連続的に製造することができ
るように2つの並列吸収ステージを有し、そのうちの一
方を再生している間にもう一方を用いることができるよ
うな装置が必要である。吸収ステージが必要であるとい
うことは,装置の資本及び運転経費をかなり増加させる
ことになり、非極低温法による作業現場での窒素製造か
ら生じる経済的利点をなくしてしまう傾向がある。
It is known to purify nitrogen containing about one bullet of oxygen by volume by first reacting oxygen with hydrogen using a catalyst and then absorbing the resulting water vapor by absorbers or getters. Considering the reliability of the absorption process to purify nitrogen, it is recommended to have two parallel absorption stages so that purified gas can be produced continuously, one of which is regenerated while the other is used. A device that can do this is needed. The need for an absorption stage significantly increases the capital and operating costs of the equipment and tends to eliminate the economic benefits derived from on-site nitrogen production by non-cryogenic methods.

従って、経済的観点から、測定可能な量の酸素不純物を
含む非極低温製造窒素の利用を魅力あるものにしてくれ
る鉄よりも酸化しにくい金属でできている製品をアニー
ルする方法と装置に対するニート゛( need )が
ある。
Therefore, from an economic point of view, there is a need for a method and apparatus for annealing products made of metals that are less oxidizable than iron, making the use of non-cryogenically produced nitrogen containing measurable amounts of oxygen impurities attractive. There is (need).

本発明方法に従って、製品を熱処理炉の中でアニール温
度に暴露し、アニール炉の現場で空気から窒素を分離し
て少なくとも95容量係の窒素と少量の酸素不純物を含
むガス混合物を製造し、該酸素不純物を化学量論的に過
剰な水素と触媒を用いて反応させて水蒸気を生成し、そ
して窒素、水蒸気、及び未反応水素から成る生成ガス混
合物を炉の中に通してアニール雰囲気を製造する工程か
ら戊る、鉄よりも酸化しにくい金属の製品をアニールす
る方法を提供する。
In accordance with the method of the invention, the product is exposed to an annealing temperature in a heat treatment furnace, and nitrogen is separated from the air in situ in the annealing furnace to produce a gas mixture containing at least 95 parts by volume of nitrogen and a small amount of oxygen impurity; Oxygen impurities are catalytically reacted with a stoichiometric excess of hydrogen to produce water vapor, and the product gas mixture of nitrogen, water vapor, and unreacted hydrogen is passed through a furnace to create an annealing atmosphere. To provide a method for annealing metal products that are more difficult to oxidize than iron and are produced in a process.

化学量論的に過剰な水素を用いる代わbに:2H2+0
2−−)2H20 上記の反応に必要な化学量論的に正確な量の水素を用い
ることができる。従って、その時生成ガス混合物は酸素
と水素を含んでいない。
Instead of using a stoichiometric excess of hydrogen: 2H2+0
2--)2H20 The exact stoichiometric amount of hydrogen required for the above reaction can be used. Therefore, the product gas mixture is then free of oxygen and hydrogen.

本発明は又、アニール炉、少なくとも95容量係の窒素
と酸素不純物を含むガス混合物を空気から分離する手段
、及び該酸素不純物を化学量論的に過剰な水素と触媒を
用いて反応させ、窒素、水蒸気、及び未反応水素から成
るガス混合物を生成させる、アニール炉と連絡する出口
を有し適当なアニール雰囲気を炉の中でつくることがで
きる触媒反応器、から威る鉄よシも酸化しにくい金属の
製品をアニールするための装置も提供する。
The invention also includes an annealing furnace, means for separating from air a gas mixture containing at least 95 volumes of nitrogen and oxygen impurities, and catalytically reacting the oxygen impurities with a stoichiometric excess of hydrogen, A catalytic reactor having an outlet communicating with an annealing furnace and capable of creating a suitable annealing atmosphere in the furnace, which produces a gas mixture consisting of water vapor, water vapor, and unreacted hydrogen, can The Company also provides equipment for annealing products made of difficult metals.

本発明に従う方法と装置は、鉄より酸化しにくい金属を
光沢アニールするのに特に適している。
The method and apparatus according to the invention are particularly suitable for brightly annealing metals that are less susceptible to oxidation than iron.

好ましくは窒素製造物は、水素との触媒反応の上流では
0.5〜3容量優の酸素を含む。一般的に、化学量論的
に過剰な水素が要求されるとしてもほんの少量である。
Preferably the nitrogen product contains between 0.5 and 3 volumes of oxygen upstream of the catalytic reaction with hydrogen. Generally, only a small amount, if any, of stoichiometric excess of hydrogen is required.

例えば、600℃程度の温度で銅を光沢アニールする場
合、アニール雰囲気において水蒸気に対する水素の分圧
比が1×10 以下に下がらなげれば、適当なアニール
条件を保つことができる。
For example, when copper is brightly annealed at a temperature of about 600° C., appropriate annealing conditions can be maintained as long as the partial pressure ratio of hydrogen to water vapor in the annealing atmosphere does not fall below 1×10.

触媒反応は、プラチナ又はパラジウム触媒によって好ま
しく起こる。別法として、銅又はニッケル触媒を用いる
ことができる。触媒は、一般的に、水素と酸素との反応
によって200℃の温度まで加熱される。
The catalytic reaction preferably takes place with a platinum or palladium catalyst. Alternatively, copper or nickel catalysts can be used. The catalyst is generally heated to a temperature of 200° C. by reaction of hydrogen and oxygen.

ここで、本発明に従う方法と装置を、添付の図面を用い
てその例を記述する。第1図は、銅の光沢アニールのた
めの装置の概略図であう、第2図は連続) y シxベ
ルト炉(mesh belt furnace)を含む
本発叩に従う装置を示す概略図である。
The method and apparatus according to the invention will now be described by way of example with the aid of the accompanying drawings. 1 is a schematic diagram of an apparatus for bright annealing of copper; FIG. 2 is a schematic diagram illustrating an apparatus according to the present blasting including a continuous mesh belt furnace; FIG.

第1図には、圧力自在吸収によって空気から窒素を分離
するためのプラント2が示されている。
FIG. 1 shows a plant 2 for separating nitrogen from air by pressure free absorption.

この目的に適するプラントと装置は、例えば英国特許明
細書2073043Aと2195097Aに記載されて
いる。生成窒素は一般的に0.5〜3容量多の酸素不純
物を含む。窒素流を触媒反応器4の中を通して、窒素流
中の不純物を、反応温度においてパラジウム又はプラチ
ナ触媒を用いて化学量論的に少し過剰の水素と反応させ
る。生成ガス混合物は、窒素、水素、及び水蒸気から或
る。該生成ガス混合物を、銅又は青銅、銅一ニッケル、
又は亜鉛を15重量褒まで含む黄銅でつくられている製
品を一般的に10分〜2時間の間、400℃〜800℃
の温度でアニール雰囲気に浸漬することによってアニー
ルし、バッチで又は連続状態で処理する熱処理炉6に入
れる。該雰囲気中の、即ちI X IO−6以上の値で
触媒反応器4から供給される窒素中の水蒸気分圧に対す
る水素の分圧比を保つことによって、銅を還元する雰囲
気における条件を維持することができる。従って、゛製
品の光沢のある表面は、アニールの間維持される。
Plants and equipment suitable for this purpose are described, for example, in British patent specifications 2073043A and 2195097A. The produced nitrogen generally contains 0.5 to 3 volumes of oxygen impurity. A nitrogen stream is passed through the catalytic reactor 4 and the impurities in the nitrogen stream are reacted with a small stoichiometric excess of hydrogen using a palladium or platinum catalyst at the reaction temperature. The product gas mixture consists of nitrogen, hydrogen, and water vapor. The produced gas mixture is made of copper or bronze, copper-nickel,
or products made of brass containing up to 15% zinc by weight, generally at 400°C to 800°C for a period of 10 minutes to 2 hours.
The sample is annealed by being immersed in an annealing atmosphere at a temperature of 100 mL and placed in a heat treatment furnace 6 for batchwise or continuous processing. Maintaining the conditions in the atmosphere for reducing copper by maintaining the partial pressure ratio of hydrogen to water vapor in the atmosphere, i.e. in the nitrogen supplied from the catalytic reactor 4 at a value greater than or equal to I x IO-6. Can be done. Therefore, the shiny surface of the product is maintained during annealing.

第2図には、長さ1mの入口ゾー712、長さ5.67
mの加熱ゾー714、及び長さ6.86mの冷却ゾーン
16を有する従来の連続メッシュベルト炉10が示され
ている。炉lOには、炉の外側から炉の内側への空気の
進入を妨げるじゃま板(baffle) 18又はその
他同種類のものが備わっている。加熱ゾー714と冷却
ゾー716は、それぞれガスに対する入口加と麓を有す
る。
FIG. 2 shows an inlet zone 712 with a length of 1 m, a length of 5.67 m
A conventional continuous mesh belt furnace 10 is shown having a heating zone 714 of m and a cooling zone 16 of 6.86 m in length. The furnace IO is equipped with baffles 18 or the like to prevent air from entering the inside of the furnace from outside the furnace. Heating zone 714 and cooling zone 716 each have an inlet and a base for gas.

入口加と麓は、水素、水蒸気、及び窒素から成るガス混
合物の供給源別との連絡にそれぞれ別に配置することが
できる。供給源別は、圧力自在吸収によって空気から窒
素を分離するためのプラント26と、該窒素中の酸素不
純物を水素と反応させるための触媒反応器路から成る。
The inlet and the base can each be placed in communication with a separate source of a gas mixture consisting of hydrogen, water vapor, and nitrogen. The source section consists of a plant 26 for separating nitrogen from air by pressure free absorption and a catalytic reactor line for reacting oxygen impurities in the nitrogen with hydrogen.

アルミニウムで支持されたパラジウムから成る市販の触
媒を用いる。一般的に、触媒は、水素と酸素との反応に
よって加熱され、ガス混合物は50〜150℃の範囲の
温度となって反応器28を出る。
A commercially available catalyst consisting of palladium supported on aluminum is used. Typically, the catalyst is heated by the reaction of hydrogen and oxygen, and the gas mixture exits reactor 28 at a temperature in the range of 50-150°C.

操業時には、触媒反応器耐からの窒素、水蒸気、及び水
素から或るガス混合物を、入口加と22のどちらか又は
両方を通して炉10の中へ入れる。加熱ゾーン14を、
一般的に500〜800℃の範囲の選択した温度まで加
熱する。光沢アニールする銅加工物を炉のベルト(示さ
れていない)の上に載せ、次に、一般的に加工物が、3
0分〜1時間炉の中に滞留するような速度でベルトを炉
の中を通してゆっくシと前進させる。加工物は加熱ゾー
ン14を通って進むので、その温度は加熱ゾーン14の
温度まで大体上昇する。加熱ゾーン14を出るとすぐに
、加工物は冷却ゾー716の中へ入シ、その中の比較的
冷たい雰囲気と接触して冷却される。一般的に、炉10
を出る時の加工物の温度は、室温と50℃の間である。
In operation, a gas mixture of nitrogen, steam, and hydrogen from the catalytic reactor is admitted into the furnace 10 through either or both of the inlet ports 22. heating zone 14,
Heat to a selected temperature, generally in the range of 500-800<0>C. The copper workpiece to be brightly annealed is placed on the furnace belt (not shown) and then the workpiece is typically
The belt is slowly advanced through the oven at a speed such that it remains in the oven for 0 minutes to 1 hour. As the workpiece advances through heating zone 14, its temperature increases approximately to the temperature of heating zone 14. Upon exiting heating zone 14, the workpiece enters cooling zone 716 and is cooled by contact with the relatively cold atmosphere therein. Generally, the furnace 10
The temperature of the workpiece on exit is between room temperature and 50°C.

本発明に従う雰囲気を用いると、炉10から光沢のある
アニール加工物が確実に出て来る。
Using the atmosphere according to the invention ensures that a bright annealed workpiece emerges from the furnace 10.

第2図に示されている装置に対して何度も実験テストを
行った。そのテストの結果を以下の表1〜4に示す。
A number of experimental tests were performed on the apparatus shown in FIG. The results of the tests are shown in Tables 1-4 below.

表1は、水素を様々な異なる割合でPSAプラント( 
0.5 %酸素不純物)からの窒素と混合し、生じた混
合物を水素と酸素との間の触媒反応を行わないで炉の中
へ通した比較実験の結果を示す。加熱ゾーンに入るのに
、遊離酸素に対するジェターとして働←特性を有するニ
ッケルとクロムを多く含む合金でできているマツフル(
muffle)を経由して入るのが、用いた炉の特徴で
あった。従って、ガス混合物と共に炉の中に入る全ての
酸素は、ガス混合物から実質的に除去される。その結果
、酸素レベルが、水素との反応のために化学量論的修必
要な量ようもわずかに過剰の時でも、750℃において
光沢のある加工物を得ることができた。異なる水素レベ
ルでの、炉10の加熱ゾーン14と冷却ゾーン16の両
方における酸素濃度、水素濃度、及び露点に関する実験
結果を表1に示す。
Table 1 shows how hydrogen is added to the PSA plant (
The results of a comparative experiment are shown in which the mixture was mixed with nitrogen from 0.5% oxygen (oxygen impurity) and the resulting mixture was passed through a furnace without catalytic reaction between hydrogen and oxygen. Matsufuru (made of a nickel- and chromium-rich alloy with the property of acting as a jetter for free oxygen to enter the heating zone)
The characteristic of the furnace used was that it entered via a muffle. Therefore, all oxygen that enters the furnace with the gas mixture is substantially removed from the gas mixture. As a result, glossy workpieces could be obtained at 750° C. even when the oxygen level was slightly in excess of the required stoichiometric adjustment for reaction with hydrogen. Experimental results for oxygen concentration, hydrogen concentration, and dew point in both heating zone 14 and cooling zone 16 of furnace 10 at different hydrogen levels are shown in Table 1.

表2に示す結果は、窒素、酸素、及び水素の混合物を入
口加を通して炉の加熱ゾーンに入れる前の上流にある触
媒反応器沼において反応させた以外は、表1と同様な一
連の実験に関するものである。
The results shown in Table 2 are for a series of experiments similar to Table 1, except that the mixture of nitrogen, oxygen, and hydrogen was reacted in the catalytic reactor swamp upstream before entering the heating zone of the furnace through the inlet gas. It is something.

表3と表4に示した実験は、入口加を通して加熱ゾー7
14にガス混合物を直接導入していないということ以外
は表1と表2に示す実験とそれぞれ比較することができ
る。むしろ入口皐を通して冷却ゾーン16の中へ直接導
入する。表3には、ガス混合物が触媒反応器を迂回した
実験を示し、一方表4には触媒反応器を用いた実験を示
す。表3によって示される実験で得られた低い露点は、
ガス混合物を冷却ゾーンに直接供給すると、たとえ加熱
ゾーンを750℃の温度で運転していても、触媒反応器
路における、酸素と少なくとも理論量の水素との反応が
うまく行かないと、光沢のない加工物を生じがちになる
ことを示す。
The experiments shown in Tables 3 and 4 show that heating zone 7 is
Comparisons can be made with the experiments shown in Tables 1 and 2, respectively, except that no gas mixture was introduced directly into 14. Rather, it is introduced directly into the cooling zone 16 through the inlet cage. Table 3 shows the experiments in which the gas mixture bypassed the catalytic reactor, while Table 4 shows the experiments with the catalytic reactor. The experimentally obtained low dew points shown by Table 3 are
If the gas mixture is fed directly to the cooling zone, even if the heating zone is operated at a temperature of 750 °C, a lack of reaction between oxygen and at least the stoichiometric amount of hydrogen in the catalytic reactor path will result in a lackluster appearance. Indicates that it tends to produce artifacts.

もし酸素に対してジェターとして働くマツフルを有して
いない炉10を用いるならば、そしてもし実質的に75
0℃よシも低い温度で加熱ゾーン14を運転するならば
、銅加工物は光沢仕上されないことにさらに留意しなげ
ればならない。
If we use a furnace 10 that does not have a jetter to act as a jetter for oxygen, and if substantially 75
It should further be noted that if the heating zone 14 is operated at temperatures lower than 0° C., the copper workpiece will not have a bright finish.

表1一加熱ゾーンに直接導入したH2/02/N2混合
物表2一加熱ゾーンの中に入る前の上流で触媒を用いて
反応させたH2/o2/N2混合物C 860mV 0.2優 +12 2.6 910mV  0.95%  +14 920mV  1.2%   +10 3。15 950mV  1.9多   +11 950mV  2.05%  +12馳3.9 965mV  2.5係   +12 960mV  2.6%   +12 4,25 970mV  3.15%  +12 970mV  3.1%   +11’7表3一冷却ゾ
ーンに直接導入したH2/0。/N2C 4000ppm O俤 一31% 表4−冷却ゾーンに入る前の上流で触媒を用いて反応さ
せたH2/02/N2混合物 添加H2 ゾーン 雰囲気組成 C 4500ppm −36 0.7 815mV    O%   +6 950 ppm   O %    −32袖1.45 825mV    O多   +13μ880mV  
  0.24   0 2.05 895mV    0.55% +11極920mV 
   0.7%   +72.6 935mV    1.5%  +10%945mV 
   1.65俤 +8 3.15 960mV    2.3%  +10960mV  
  2.2q6+8多 3.9 970mV    3.14   +10970mV 
   3.2係  +8 4.25 980mV    3.65% +8μ980mV  
  3.7%  +8 酸素濃度は、酸素探触子(oxygen probe)
を用いて測定した。試料採取点におげる加熱ゾーンから
のガス温度は、750℃であった:試料採取点における
冷却ゾーンからのガス温度は、200 ’Cであった。
Table 1 - H2/02/N2 mixture introduced directly into the heating zone Table 2 - H2/o2/N2 mixture reacted with a catalyst upstream before entering the heating zone C 860 mV 0.2 superior + 12 2. 6 910mV 0.95% +14 920mV 1.2% +10 3.15 950mV 1.9 +11 950mV 2.05% +12 3.9 965mV 2.5 +12 960mV 2.6% +12 4,25 970mV 3. 15% +12 970mV 3.1% +11'7 Table 3 - H2/0 introduced directly into the cooling zone. /N2C 4000ppm O 31% Table 4 - Addition of H2/02/N2 mixture catalyzed upstream before entering the cooling zone Zone atmosphere composition C 4500ppm -36 0.7 815mV O% +6 950 ppm O% -32 sleeve 1.45 825mV O +13μ880mV
0.24 0 2.05 895mV 0.55% +11 poles 920mV
0.7% +72.6 935mV 1.5% +10%945mV
1.65 yen +8 3.15 960mV 2.3% +10960mV
2.2q6+8 3.9 970mV 3.14 +10970mV
Section 3.2 +8 4.25 980mV 3.65% +8μ980mV
3.7% +8 Oxygen concentration is measured using an oxygen probe.
Measured using The gas temperature from the heating zone at the sampling point was 750°C; the gas temperature from the cooling zone at the sampling point was 200'C.

ほとんどの結果を、ミリボルト(mV)で示す。有効酸
素濃度は、式 E = 0.0215.T. loge (20.95
/ %O2)(式中、EはmV単位の酸素探触子の値、
Tは酸素探触子が位置する地点のケルビン温度、多02
は容量多で表わす酸素濃度である) を用いて計算することができる。
Most results are given in millivolts (mV). The effective oxygen concentration is determined by the formula E = 0.0215. T. loge (20.95
/ %O2) (where E is the oxygen probe value in mV,
T is the Kelvin temperature at the point where the oxygen probe is located,
is the oxygen concentration expressed in terms of volume).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、銅の光沢アニールのための装置の概略図であ
り、第2図は連続メッシュベルト炉を含む本発明に従う
装置を示す概略図Z″ある。 図面の浄書(内容に変更なし) FIG.1
1 is a schematic diagram of an apparatus for bright annealing of copper, and FIG. 2 is a schematic diagram Z'' showing an apparatus according to the invention comprising a continuous mesh belt furnace. Engraving of the drawings (no changes in content) FIG.1

Claims (1)

【特許請求の範囲】 1、製品を熱処理炉の中でアニール温度に暴露し、アニ
ール炉のある現場で空気から窒素を分離して少なくとも
95容量%の窒素と少量の酸素不純物を含むガス混合物
を製造し、該酸素不純物を化学量論的に過剰な水素と触
媒を用いて反応させて水蒸気を生成し、そして窒素、水
蒸気、及び未反応水素を含む生成ガス混合物を炉の中に
通してアニール雰囲気をつくる工程を含む鉄よりも酸化
しにくい金属でできている製品をアニールする方法。 2、製品を熱処理炉の中でアニール温度に暴露し、アニ
ール炉のある現場で空気から窒素を分離して少なくとも
95容量%の窒素と少量の酸素不純物を含むガス混合物
を製造し、該酸素不純物を理論量の水素と触媒を用いて
反応させて水蒸気を生成し、そして窒素と水蒸気を含む
生成ガス混合物を炉の中に通してアニール雰囲気をつく
る工程を含む鉄よりも酸化しにくい金属でできている製
品をアニールする方法。 3、窒素製造物は、触媒を用いて水素と反応させる前の
上流においては0.5〜3容量%の酸素を含む請求項1
又は2記載の方法。 4、該触媒反応は、プラチナ又はパラジウム触媒によっ
て起こる上記請求項のうちの任意の一つに記載の方法。 5、該金属は、コバルト、ニッケル、鉛、銅、パラジウ
ム、銀又は金、又はそのような金属のうちの少なくとも
1つの合金、又は水銀の合金である上記請求項のうちの
任意の一つに記載の方法。 6、該金属を、光沢アニールする上記請求項のうちの任
意の1つに記載の方法。 7、該生成ガス混合物を、連続炉の冷却ゾーンへ直接導
入する上記請求項のうちの任意の1つに記載の方法。 8、アニール炉、少なくとも95容量%の窒素と少量の
酸素不純物を含むガス混合物を空気から分離する手段、
及び該酸素不純物を化学量論的に過剰な水素と触媒を用
いて反応させ、窒素、水蒸気、及び未反応水素から成る
ガス混合物を生成させる、アニール炉と連絡する出口を
有し適当なアニール雰囲気を炉の中でつくることができ
る触媒反応器、を含む鉄よりも酸化しにくい金属ででき
ている製品をアニールするための装置。 9、触媒反応器が、プラチナ又はパラジウム触媒を含む
請求項8記載の装置。
[Claims] 1. The product is exposed to an annealing temperature in a heat treatment furnace, and nitrogen is separated from the air at the site of the annealing furnace to form a gas mixture containing at least 95% by volume of nitrogen and a small amount of oxygen impurity. the oxygen impurity is catalytically reacted with a stoichiometric excess of hydrogen to produce water vapor, and the product gas mixture containing nitrogen, water vapor, and unreacted hydrogen is passed through a furnace to anneal. A method of annealing products made of metals that are less susceptible to oxidation than iron, which involves creating an atmosphere. 2.Exposing the product to annealing temperature in a heat treatment furnace, separating nitrogen from air at the site of the annealing furnace to produce a gas mixture containing at least 95% by volume nitrogen and a small amount of oxygen impurity; is made of a metal that is less oxidizable than iron, and involves reacting with a stoichiometric amount of hydrogen using a catalyst to produce water vapor, and then passing the resulting gas mixture containing nitrogen and water vapor through a furnace to create an annealing atmosphere. How to anneal the product. 3. Claim 1: The nitrogen product contains 0.5 to 3% by volume of oxygen upstream before reacting with hydrogen using a catalyst.
Or the method described in 2. 4. A method according to any one of the preceding claims, wherein the catalytic reaction takes place with a platinum or palladium catalyst. 5. According to any one of the preceding claims, the metal is cobalt, nickel, lead, copper, palladium, silver or gold, or an alloy of at least one of such metals, or an alloy of mercury. Method described. 6. A method according to any one of the preceding claims, wherein the metal is brightly annealed. 7. Process according to any one of the preceding claims, characterized in that the product gas mixture is introduced directly into the cooling zone of a continuous furnace. 8. an annealing furnace, a means for separating from air a gas mixture containing at least 95% by volume of nitrogen and small amounts of oxygen impurities;
and a suitable annealing atmosphere having an outlet in communication with an annealing furnace for catalytically reacting the oxygen impurity with a stoichiometric excess of hydrogen to produce a gas mixture consisting of nitrogen, water vapor, and unreacted hydrogen. A device for annealing products made of metals that are less susceptible to oxidation than iron, including a catalytic reactor, which can be made in a furnace. 9. The apparatus of claim 8, wherein the catalytic reactor comprises a platinum or palladium catalyst.
JP2165493A 1989-06-22 1990-06-22 Heat treatment of metal Pending JPH03166343A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB898914366A GB8914366D0 (en) 1989-06-22 1989-06-22 Heat treatment of metals
GB8914366.3 1989-06-22

Publications (1)

Publication Number Publication Date
JPH03166343A true JPH03166343A (en) 1991-07-18

Family

ID=10658890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2165493A Pending JPH03166343A (en) 1989-06-22 1990-06-22 Heat treatment of metal

Country Status (7)

Country Link
EP (1) EP0404496A1 (en)
JP (1) JPH03166343A (en)
KR (1) KR910001073A (en)
AU (1) AU621230B2 (en)
CA (1) CA2019565A1 (en)
GB (1) GB8914366D0 (en)
ZA (1) ZA904677B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5284526A (en) * 1992-12-22 1994-02-08 Air Products And Chemicals, Inc. Integrated process for producing atmospheres suitable for heat treating from non-cryogenically generated nitrogen
US5417774A (en) * 1992-12-22 1995-05-23 Air Products And Chemicals, Inc. Heat treating atmospheres
US5320818A (en) * 1992-12-22 1994-06-14 Air Products And Chemicals, Inc. Deoxygenation of non-cryogenically produced nitrogen with a hydrocarbon
US5290480A (en) * 1992-12-22 1994-03-01 Air Products And Chemicals, Inc. Process for producing furnace atmospheres by deoxygenating non-cryogenically generated nitrogen with dissociated ammonia
US5401339A (en) * 1994-02-10 1995-03-28 Air Products And Chemicals, Inc. Atmospheres for decarburize annealing steels
KR100432697B1 (en) * 1997-01-31 2004-09-07 동양매직 주식회사 Dish washing machine using heated water to improve hygiene and control method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535074A (en) * 1965-10-29 1970-10-20 Hitachi Ltd Method and apparatus for purifying crude inert gases
FR2306936A1 (en) * 1975-04-11 1976-11-05 Azote & Prod Chim METHOD AND DEVICE FOR GENERATING A REDUCING ATMOSPHERE FOR A HEAT TREATMENT PLANT
US4398971A (en) * 1981-12-31 1983-08-16 Aga Aktiebolag Method of heating, holding or heat treatment of metal material
US4701187A (en) * 1986-11-03 1987-10-20 Air Products And Chemicals, Inc. Process for separating components of a gas stream
JPS63310915A (en) * 1987-06-10 1988-12-19 Daido Steel Co Ltd Operating method for continuous type heat treatment furnace
FR2639250B1 (en) * 1988-11-24 1990-12-28 Air Liquide
FR2639252B1 (en) * 1988-11-24 1990-12-28 Air Liquide

Also Published As

Publication number Publication date
AU5759290A (en) 1991-01-03
CA2019565A1 (en) 1990-12-22
AU621230B2 (en) 1992-03-05
GB8914366D0 (en) 1989-08-09
KR910001073A (en) 1991-01-30
ZA904677B (en) 1991-08-28
EP0404496A1 (en) 1990-12-27

Similar Documents

Publication Publication Date Title
US5348592A (en) Method of producing nitrogen-hydrogen atmospheres for metals processing
US5069728A (en) Process for heat treating metals in a continuous oven under controlled atmosphere
JP4225574B2 (en) Method for producing powder mainly composed of iron
EP0240270A1 (en) One-step process for purifying an inert gas
JPH03166343A (en) Heat treatment of metal
US5057164A (en) Process for thermal treatment of metals
JP3482122B2 (en) Generation of a low dew point oxygen-free protective atmosphere for performing heat treatment.
JP2698674B2 (en) Method of heat treating metal in furnace and in heat treatment atmosphere
Rashed et al. Kinetics of reduction of nickel oxide with hydrogen gas in the 230-452° C range
JPH07112925B2 (en) Metal heat treatment method in furnace under heat treatment atmosphere
US4359351A (en) Protective atmosphere process for annealing and or spheroidizing ferrous metals
US4859434A (en) Production of endothermic gases with methanol
US5322676A (en) Process for producing furnace atmospheres using noncryogenically generated nitrogen
US2998303A (en) Method for purifying hydrogen contaminated with methane
Mikhalenko et al. Characteristics of hydrogen sorption/desorption for palladium foil doped by yttrium
JP2971122B2 (en) Noble gas purification method
CA2183089C (en) Process for avoiding stickers in the annealing of cold strip under hydrogen-containing atmospheres
EP0040023A1 (en) Gas carburizing
CA2111627C (en) Process for producing furnace atmospheres by deoxygenating noncryogenically generated nitrogen with dissociated ammonia
US5401339A (en) Atmospheres for decarburize annealing steels
CA2067676A1 (en) Process for making a silver nitrate solution
Pulkkinen Kinetics of nitrogenation of α-irons containing chromium, molybdenum, and silicon in ammonia–hydrogen mixtures
SU959810A1 (en) Method of cleaning gas from oxygen
SU1002241A2 (en) Method for controlling synthesis of ammonia
RU2027779C1 (en) Method to produce isotropic eletrical steel