JPH03165925A - Method for cooling thin hot rolled coil - Google Patents

Method for cooling thin hot rolled coil

Info

Publication number
JPH03165925A
JPH03165925A JP30584989A JP30584989A JPH03165925A JP H03165925 A JPH03165925 A JP H03165925A JP 30584989 A JP30584989 A JP 30584989A JP 30584989 A JP30584989 A JP 30584989A JP H03165925 A JPH03165925 A JP H03165925A
Authority
JP
Japan
Prior art keywords
coil
thin hot
rolled
cooling
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30584989A
Other languages
Japanese (ja)
Inventor
Yoshio Oike
大池 美雄
Junji Sato
準治 佐藤
Akifumi Fujiwara
藤原 昭文
Kiyoshi Hirata
平田 清
Eiji Yoneda
米田 英次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30584989A priority Critical patent/JPH03165925A/en
Publication of JPH03165925A publication Critical patent/JPH03165925A/en
Pending legal-status Critical Current

Links

Landscapes

  • Winding, Rewinding, Material Storage Devices (AREA)

Abstract

PURPOSE:To reduce the greatest temperature difference in the direction of plate width in a cooling process and to prevent ununiform plastic distortion from generation by specifying and arranging the distance between plate with end parts of an adjacent thin hot rolled coil. CONSTITUTION:A thin hot coil 1 having a plate thickness 3.5mm or under coiled at a coiling temperature 400 deg.C or higher, after hot rolling is carried into a coil cooling yard C within 40 min after it is coiled. A thin hot rolled coil 1 carried into a cold yard of the coil 1 is adjoined successively to the thin hot rolled coil carried in previously at the end faces of plate width in a down end state and arranged so that the distance between the plate width end parts of the adjacent thin hot rolled coil 1 is not greater than 300 mm. Thus, the max, temperature difference in the plate thickness direction during process is reduced, the ununiform plastic distortion is prevented from generation, and a bot rolled steel sheet excellent in flatness in obtained.

Description

【発明の詳細な説明】 1 〔産業上の利用分野〕 本発明は、熱間圧延後、巻取られた薄物熱延コイルの冷
却方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION 1 [Field of Industrial Application] The present invention relates to a method for cooling a thin hot-rolled coil that has been wound up after hot rolling.

(征来の技術とその問題点] 一gに熱間圧延後、巻取られた熱延コイルはコイル冷却
ヤードに搬送され、ダウンエンド状態で一段あるいは二
段積みして大気中で冷却された後、酸洗ライン、スキン
バスライン、シャーライン、スリンタライン等の次工程
に搬送される。
(Seira's technology and its problems) After hot rolling to 1g, the coiled hot-rolled coil was transported to a coil cooling yard, where it was stacked in one or two layers with the down end and cooled in the atmosphere. After that, it is transported to the next process such as pickling line, skin bath line, shear line, and slinter line.

ところで、上記コイル冷却ヤードにおける熱延コイルは
、第9図に示す如くコイル円周方向が隣の熱延コイル6
と近接するように配置して置かれ、コイル幅方向は通常
lm以上の間隔が採られている。このような配置で冷却
された熱延コイル6は、次工程で巻戻された時、特に板
厚3 . 5m+n以下の薄物熱延コイルでは熱間圧延
後、巻取られる前と板の平坦度が変化している場合があ
る。このように冷却後の薄物熱延コイルに平坦度不良が
生じた場合次工程で通板トラブル等の問題を起こすばか
りでなく、製品の品質不良となる場合がある。
By the way, the hot-rolled coils in the coil cooling yard are arranged so that the circumferential direction of the coils is adjacent to the hot-rolled coil 6 as shown in FIG.
The coils are placed close to each other, and the spacing in the width direction of the coil is usually 1 m or more. When the hot-rolled coil 6 cooled in this arrangement is unwound in the next process, the thickness of the coil 6 is particularly reduced to 3. In a thin hot-rolled coil of 5 m+n or less, the flatness of the plate may change after hot rolling and before being wound. In this way, if a flatness defect occurs in the thin hot-rolled coil after cooling, it not only causes problems such as threading trouble in the next process, but also may result in poor quality of the product.

2 本発明は、上記の問題点に鑑み、薄物熱延コイルの冷却
後の次工程における通板トラブル等および製品の品質不
良を防止すべくなされたもので、薄物熱延コイルの冷却
過程で生しる平坦度変化を防止した薄物熱延コイルの冷
却方法を提供することを目的とするものである。
2 In view of the above-mentioned problems, the present invention was made in order to prevent threading troubles and product quality defects in the next process after cooling a thin hot-rolled coil. It is an object of the present invention to provide a method for cooling a thin hot-rolled coil that prevents a change in flatness.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達或するために、本発明に係わる薄物熱延コ
イルの冷却方法は、熱間圧延後、巻取温度が400゜C
以上で巻取られた板厚3.5mm以下の薄物熱延コイル
を、巻取後40分以内にコイル冷却ヤードに搬入すると
共に、コイル冷却ヤードにおいて、搬入されてくる薄物
熱延コイルをダウンエンド状態で、先に搬入した薄物熱
延コイルと順次板幅端面を隣接させ、且つ隣接する薄物
熱延コイルの板幅端部間の距離が3001IIII1以
下となるように配置して置くものである。
In order to achieve the above object, the method for cooling a thin hot-rolled coil according to the present invention is such that the coiling temperature is 400°C after hot rolling.
The thin hot-rolled coil with a thickness of 3.5 mm or less that has been wound in the above manner is transported to the coil cooling yard within 40 minutes after winding, and the incoming thin hot-rolled coil is down-ended in the coil cooling yard. In this state, the thin hot-rolled coils brought in earlier are sequentially placed so that their width end surfaces are adjacent to each other, and the distance between the sheet width ends of adjacent thin hot-rolled coils is 3001III1 or less.

そして、コイル冷却ヤードにコイル搬送設備を配設する
場合は、搬入された高温の薄物熱延コイルを順次コイル
搬送設備の入側からi1Nすると共に、コイル搬送設備
の出側でのコイル払出し時の温度を250゜C以下とす
るものである。
When installing coil transport equipment in the coil cooling yard, the high temperature thin hot-rolled coils brought in are sequentially heated from the input side of the coil transport equipment, and at the time of unloading the coils at the exit side of the coil transport equipment. The temperature is kept below 250°C.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者等は、上記の問題点の知見後、薄物熱延コイル
の冷却過程での平坦度変化について鋭意研究を行った。
After discovering the above-mentioned problem, the present inventors conducted intensive research on changes in flatness during the cooling process of thin hot-rolled coils.

第3因は、前記第9図に示す如く置かれた板厚3,5n
un以下の薄物熱延コイルについて、熱間圧延後、巻取
られる前と、その冷却後に巻戻した時の平坦度の変化傾
向を調べた結果を示す図である。
The third factor is the plate thickness of 3.5n, which is placed as shown in Fig. 9 above.
FIG. 2 is a diagram showing the results of examining the flatness change tendency of a thin hot-rolled coil having a diameter of less than 100 nm after hot rolling, before being wound up, and when it is unwound after cooling.

この図より明らかなように、冷却後の薄物熱延コイルは
、平坦度が耳波傾向に変化しているものが多い。
As is clear from this figure, the flatness of many of the thin hot-rolled coils after cooling changes in a wave-like manner.

第4図は、熱間圧延、巻取後の冷却過程における薄物熱
延コイルの板幅中央部と板幅端部(縁から201Ill
l1内側の部位)の温度分布を測定した結果を示す図で
ある。この図より明らかなように、巻取直後のコイル板
幅方向の温度差は50゜C前後であるが、コイル冷却過
程では、板幅端部の冷却速度が速いため、巻取後2〜3
時間後にはコイル板幅方向の温度差は100゜C以上と
なり、その後この温度差は徐々に減少する。
Figure 4 shows the central part of the sheet width and the end part of the sheet width (201Ill from the edge) of the thin hot rolled coil during the cooling process after hot rolling and coiling.
It is a figure which shows the result of measuring the temperature distribution of the area|region inside l1. As is clear from this figure, the temperature difference in the width direction of the coil plate immediately after winding is around 50°C, but in the coil cooling process, the cooling rate at the edge of the plate width is fast, so it is
After some time, the temperature difference in the width direction of the coil plate becomes 100°C or more, and then this temperature difference gradually decreases.

第5図は、薄物熱延コイルとして巻取られた鋼板(以下
鋼板と言う〉の板幅方向温度差とそれによって発生する
熱応力の関係を示す図で、また第6図は、400″C近
傍での鋼板の降伏応力を測定した結果を示す図である。
Figure 5 is a diagram showing the relationship between the temperature difference in the width direction of a steel plate wound as a thin hot-rolled coil (hereinafter referred to as steel plate) and the thermal stress generated thereby. It is a figure showing the result of measuring the yield stress of a steel plate in the vicinity.

これら第5図および第6図より明らかなように、400
”C近傍では100゜C前後の温度差で発生する熱応力
は鋼板の降伏応力を越えるか、あるいはそれに近い値と
なる。
As is clear from these figures 5 and 6, 400
In the vicinity of C, the thermal stress generated by a temperature difference of around 100°C exceeds or approaches the yield stress of the steel plate.

第7図は、第6因に示した各温度において鋼板の降伏応
力の80%の応力を引張試験にて鋼板に負荷し、除荷し
た後に残った塑性ひずみを測定した結果を示す図である
。一般に負荷応力が鋼板の降伏応力を越えれば塑性ひず
みが残留することは自明であるが、この図によれば、負
荷応力が鋼板の降伏応力以下であっても0.05%程度
の微少な塑性ひずみが残留することが分かる。
Figure 7 is a diagram showing the results of applying a stress equal to 80% of the yield stress of the steel plate to a steel plate in a tensile test at each temperature shown in factor 6, and measuring the plastic strain remaining after unloading. . Generally, it is obvious that plastic strain remains if the applied stress exceeds the yield stress of the steel plate, but according to this figure, even if the applied stress is less than the yield stress of the steel plate, there is a slight plastic strain of about 0.05%. It can be seen that distortion remains.

また、上記したように、冷却過程における薄物熱延コイ
ルは板幅端部が板幅中央部よりも速く冷5 却されるため板幅端部には引張の熱応力が発生する。
Further, as described above, in the thin hot-rolled coil during the cooling process, the edge portions of the sheet width are cooled faster than the center portion of the sheet width, so that tensile thermal stress is generated at the edge portions of the sheet width.

以上の知見より、第3図に示した冷却過程における耳波
傾向の平坦度不良は、冷却過程における100゜C前後
の板幅方向の温度差に起因する熱応力が鋼板の降伏応力
に近い値となり、板幅方向に不均一な塑性ひずみが生し
るために発生するものと推定される。すなわち、この板
幅方向の不均一な塑性ひずみは冷却後のコイル状態では
形状剛性が高いため、板幅端部の圧縮残留応力として存
在し、コイル巻戻し時にこの圧縮残留応力が開放され、
鋼板が座屈して耳波となる。ちなみに0.05%の不均
一な塑性ひずみΔεで生じる耳波の急峻度λは、よく知
られた次の換算式によれば約1.4%(波のピッチ1m
で波の高さ14mmの耳波)となり実際に観察された耳
波の大きさとほぼ一致する。
From the above findings, the poor flatness of the ear wave tendency during the cooling process shown in Figure 3 is due to the thermal stress caused by the temperature difference in the sheet width direction of around 100°C during the cooling process being close to the yield stress of the steel sheet. It is presumed that this occurs due to non-uniform plastic strain in the width direction of the plate. In other words, this non-uniform plastic strain in the sheet width direction exists as a compressive residual stress at the sheet width end because the shape rigidity is high in the coil state after cooling, and this compressive residual stress is released when the coil is unwound.
The steel plate buckles and forms an ear wave. By the way, according to the well-known conversion formula, the steepness λ of the ear waves produced by a non-uniform plastic strain Δε of 0.05% is approximately 1.4% (wave pitch 1m).
The height of the wave was 14 mm), which is almost the same as the size of the actually observed ear wave.

λ−2/πJΔεXIOO(%) 一方、板厚が3.5nm超の厚物熱延コイルで耳波が発
生し難いのは、鋼板の座屈服界応力が高いためと思われ
る。
λ-2/πJΔεXIOO (%) On the other hand, the reason why ear waves are difficult to generate in a thick hot-rolled coil with a plate thickness of more than 3.5 nm is considered to be because the buckling boundary stress of the steel plate is high.

6 本発明は、上述の知見に基づいてなされたものであって
、熱間圧延後、400゜C以上の高温で巻取られた薄物
熱延コイルを、巻取後40分以内にコイル冷却ヤードに
搬入すると共に、コイル冷却ヤードにおいて、搬入され
てくる薄物熱延コイルをダウンエンド状態で、先に搬入
した薄物熱延コイルと順次板幅端面を隣接させ、且つ隣
接する薄物熱延コイルの板幅端部間の距離が3001以
下となるように配置して置き、冷却過程におけるコイル
板幅方向の最大温度差を低減し、熱応力により板幅方向
に不均一な塑性ひずみが発生することを防止し、コイル
冷却過程での平坦度変化を防ぐようにしている。
6 The present invention was made based on the above-mentioned knowledge, and the present invention is based on the above-mentioned knowledge, and the present invention is based on the above-mentioned findings. At the same time, in the coil cooling yard, the incoming thin hot-rolled coil is brought in in a down-end state, and the thin hot-rolled coil brought in earlier is sequentially brought in adjacent to the sheet width end face, and the plate of the adjacent thin hot-rolled coil is The coils are arranged so that the distance between the width ends is 300 mm or less to reduce the maximum temperature difference in the width direction of the coil plate during the cooling process and to prevent uneven plastic strain from occurring in the width direction of the coil plate due to thermal stress. This is to prevent changes in flatness during the coil cooling process.

巻取直後からコイル冷却ヤードまでの搬入時間を40分
以内としたのは、第4同に示したように、巻取直後のコ
イル板幅方向の温度差は50″C前後であり、この温度
差はコイル冷却の進行に伴って増大するが、40分以内
であれば70゜C以下であり、そして第5図および第6
図から分かるようにこの温度差(70゜C以下)であれ
ば発生する熱応力は鋼板の降伏応力よりも充分に小さい
ためである。
The reason why the delivery time from immediately after winding to the coil cooling yard was set within 40 minutes was because, as shown in Part 4, the temperature difference in the width direction of the coil plate immediately after winding was around 50"C, and this temperature The difference increases as coil cooling progresses, but remains below 70°C within 40 minutes, and as shown in Figures 5 and 6.
As can be seen from the figure, this is because the thermal stress generated at this temperature difference (70° C. or less) is sufficiently smaller than the yield stress of the steel plate.

また、ダウンエント状態で、しかも板幅端面を隣接させ
、且つ隣接する薄物熱延コイルの板幅端部間の距離が3
00mm以下となるように配置して置くのは、前後して
置かれる400゜C以上の高温の熱延コイル如らの輻射
熱等にまり熱延コイルが相互に保熱しあい、コイル板幅
端部のwI温速度を遅らせコイル板幅方向の温度差を極
力小さくして降温するためであり、薄物熱延コイルの板
幅端部間の距離が300lIIIa超ではこの効果が享
受できないためである。ちなみに第8図は、冷却過程に
おける互いに隣接する薄物熱延コイルの板幅端部間の距
離と、コイル板幅方向に発生する最大温度差との関係を
調査した結果を示す図である。この図によれば、互いに
隣接する薄物熱延コイルの板幅端部間の距離が小さいほ
ど冷却過程で発生する板幅方向の最大温度差は少なく、
この距離が300mmで板幅方向の最大温度差は80゜
C程度となる。この最大温度差80゜Cで鋼板に発生す
る熱応力は、前記第5図および第6図より求めて明らか
なように鋼板の降伏応力を充分に下回っており、薄物熱
延コイルをコイル冷却ヤードで冷却するに際して、互い
に隣接する薄物熱延コイルの板幅端部間の距離を300
1以下とすれば、過大な熱応力の発生を防止し、コイル
冷却過程で発生する平坦度変化を防ぐことができる。
In addition, in the downent state, the width end faces of the thin hot rolled coils are adjacent to each other, and the distance between the width ends of the adjacent thin hot rolled coils is 3.
The reason why they are arranged so that the width is 00 mm or less is that the hot-rolled coils retain heat from each other due to the radiant heat of the hot-rolled coils placed in front and behind each other at a high temperature of 400°C or more. This is to reduce the temperature by slowing down the wI temperature rate and minimizing the temperature difference in the width direction of the coil plate, and this effect cannot be enjoyed if the distance between the width ends of the thin hot rolled coil exceeds 300lIIIa. Incidentally, FIG. 8 is a diagram showing the results of investigating the relationship between the distance between the width ends of mutually adjacent thin hot-rolled coils during the cooling process and the maximum temperature difference that occurs in the width direction of the coil plates. According to this figure, the smaller the distance between the sheet width ends of adjacent thin hot-rolled coils, the smaller the maximum temperature difference in the sheet width direction that occurs during the cooling process.
When this distance is 300 mm, the maximum temperature difference in the board width direction is about 80°C. The thermal stress generated in the steel plate at this maximum temperature difference of 80°C is well below the yield stress of the steel plate, as determined from Figures 5 and 6 above, and the thin hot-rolled coil is placed in a coil cooling yard. When cooling, the distance between the width edges of adjacent thin hot rolled coils is
If it is 1 or less, excessive thermal stress can be prevented from occurring, and changes in flatness that occur during the coil cooling process can be prevented.

〔実 施 例〕〔Example〕

以下、図面を参照して、本発明の実施例を説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1図は、本発明に係わる薄物熱延コイルの冷却方法を
適用したコイル冷却ヤードにおける板厚3.5n+II
1以下の薄物熱延コイルの配置を示す図である。
FIG. 1 shows a sheet with a thickness of 3.5n+II in a coil cooling yard to which the thin hot-rolled coil cooling method according to the present invention is applied.
FIG. 2 is a diagram showing the arrangement of one or less thin hot-rolled coils.

図において、1は、熱間圧延後、600゜C@後で巻取
られた厚さ3.5mm以下の薄物熱延コイルを示す。こ
の薄物熱延コイル1は、巻取後20分前後でコイル冷却
ヤードCに搬入し、搬入順に板幅端部間の距離lがほぼ
300IImとなるように、且つダウンエンド状態で2
0〜30コイルを列単位として置いた。列間隔は、約2
mとなるようにした。また各9 列の少なくとも先後端には、並行操業により巻取られた
厚さ3.5mm超の厚物熱延コイル2を配置した。
In the figure, reference numeral 1 indicates a thin hot-rolled coil having a thickness of 3.5 mm or less that was wound up at 600°C after hot rolling. This thin hot-rolled coil 1 is transported to the coil cooling yard C approximately 20 minutes after being wound up, and is transported in the order in which the distance l between the sheet width ends is approximately 300 II m, and in the down-end state 2.
0 to 30 coils were placed in rows. The row spacing is approximately 2
m. Further, at least at the front and rear ends of each of the nine rows, thick hot-rolled coils 2 having a thickness of more than 3.5 mm, which were wound in parallel operation, were arranged.

このような方法で冷却した薄物熱延コイル1の50コイ
ルについて、スキンバスラインにかける際平坦度を調査
したところ、いずれのコイルも急峻度λが0.5%以内
になっており、平坦度の良好な熱延薄板鋼板を得ること
ができた。
When we investigated the flatness of 50 thin hot-rolled coils 1 cooled in this way when applying them to skin bath lines, all of the coils had a steepness λ of 0.5% or less, indicating that the flatness It was possible to obtain hot-rolled thin steel sheets with good quality.

尚、上記実施例では、薄物熱延コイルlを列単位に平面
的に置いた例を説明したが、複数列のコイルの上にコイ
ルを2段積みにしてもよい。
Incidentally, in the above embodiment, an example was explained in which the thin hot-rolled coils l were placed in a planar manner in rows, but the coils may be stacked in two layers on top of a plurality of rows of coils.

第2図は、本発明の別の実施態様を示す図である。FIG. 2 shows another embodiment of the invention.

図において、3はコイル冷却ヤードCに敷設されたコイ
ル搬送用コンベア、lは薄物熱延コイルを示す。この薄
物熱延コイルlは、巻取後40分以内にコイル冷却ヤー
ドCに搬入し、搬入順にコイル搬送用コンベア3の人側
4からコイル板幅端部間の距Rlが3001IIII1
以下となるようにして載置され、コイル搬送用コンヘア
3の出側5へと送られl0 る。そして、コイル搬送用コンベア3上で250″C以
下まで冷却し、冷却された薄物熱延コイル1から順に従
来の冷却ヤードへ搬出され、そこで所定温度まで冷却し
、次工程に搬送される。
In the figure, 3 indicates a coil conveyor installed in the coil cooling yard C, and l indicates a thin hot-rolled coil. The thin hot-rolled coil l is transported to the coil cooling yard C within 40 minutes after being wound up, and the distance Rl between the coil plate width end from the man side 4 of the coil transport conveyor 3 is 3001III1 in the order of delivery.
The coil is placed in the following manner and sent to the exit side 5 of the coil conveying conhair 3. The thin hot rolled coils 1 are then cooled down to 250''C or less on the coil transport conveyor 3, and are sequentially transported to a conventional cooling yard, starting with the cooled thin hot rolled coil 1, where they are cooled to a predetermined temperature and transported to the next process.

ところで、コイル搬送用コンベア3上での薄物熱延コイ
ルlの冷却温度を250゜C以下としたのは、前記第4
図に示したように、250゜C以下に冷却された後は、
コイルの板幅方向温度差は減少し、その温度差により生
じる熱応力は鋼板の降伏応力よりも充分に小さいからで
ある。
By the way, the reason why the cooling temperature of the thin hot-rolled coil l on the coil conveyor 3 is set to 250°C or less is due to the fourth embodiment.
As shown in the figure, after being cooled to below 250°C,
This is because the temperature difference in the width direction of the coil decreases, and the thermal stress caused by the temperature difference is sufficiently smaller than the yield stress of the steel plate.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明に係わる薄物熱延コイルの
冷却方法によれば、熱間圧延後、巻取温度が400’C
以上で巻取られた板厚3.5mm以下の薄物熱延コイル
を、巻取後40分以内にコイル冷却ヤードに搬入すると
共に、コイル冷却ヤードにおいて、搬入されてくる薄物
熱延コイルをダウンエンド状態で、先に搬入した薄物熱
延コイルと順次板幅端面を隣接させ、且つ隣接する簿物
熱延コイルの板幅端部間の距離が300mlI1以下と
なるように配11 置して置くことにより、冷却過程におけるコイル板幅方
向の最大温度差を低減し、熱応力により板幅方向に不均
一な塑性ひずみが発生することを防止するようにしたた
め、平坦度の良好な熱延薄鋼板を得る効果を有する。さ
らには、次工程での通板トラブル等も低減させることが
でき、生産性を向上させる効果も有する。
As detailed above, according to the method for cooling a thin hot-rolled coil according to the present invention, the coiling temperature is 400'C after hot rolling.
The thin hot-rolled coil with a thickness of 3.5 mm or less that has been wound in the above manner is transported to the coil cooling yard within 40 minutes after winding, and the incoming thin hot-rolled coil is down-ended in the coil cooling yard. In this state, the thin hot-rolled coils brought in earlier should be placed so that their width end faces are adjacent to each other, and the distance between the width ends of adjacent hot-rolled coils is 300mlI1 or less. This reduces the maximum temperature difference in the width direction of the coil plate during the cooling process and prevents uneven plastic strain from occurring in the width direction of the coil plate due to thermal stress. It has the effect of obtaining. Furthermore, troubles such as sheet threading in the next process can be reduced, and productivity can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は、本発明の実施例におけるコイル冷却ヤードで
の薄物熱延コイルの配置を示す図、第2図は、本発明の
別の実施態様を示す図、第3図は、従来法により置かれ
た薄物熱延コイルについて、熱間圧延後、巻取られる前
と、その冷却後に巻戻した時の平坦度の変化傾向を示す
図、第4図は、熱間圧延、巻取後の冷却過程における薄
物熱延コイルの板幅中央部と板幅端部の温度分布を示す
図、第5図は、薄物熱延コイルとして巻取られた鋼板の
板幅方向温度差とそれによって発生する熱応力の関係を
示す図、第6図は、鋼板の温度と降伏応力の関係を示す
図、第7図は、鋼板に降伏応12 力近傍の応力を負荷した後に残る塑性ひずみを示す図、
第8図は、冷却過程における互いに隣接する薄物熱延コ
イルの板幅端部間の距離と、コイル板幅方向に発生する
最大温度差との関係を示す図、第9図は、従来のコイル
冷却ヤードでの熱延コイルの配置を示す図である。 1 薄物熱延コイル  2 厚物熱延コイル3 コイル
搬送用コンベア 4 コンベアの入側  5 コンベアの出側C コイル
冷却ヤード l コイル板幅端部間の距離
FIG. 1 is a diagram showing the arrangement of thin hot-rolled coils in a coil cooling yard in an embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG. Figure 4 shows the change in flatness of a thin hot-rolled coil after hot rolling, before winding, and after cooling and unwinding. Figure 5 shows the temperature distribution in the widthwise center and edge of a thin hot-rolled coil during the cooling process, and shows the temperature difference in the widthwise direction of the steel sheet wound as a thin hot-rolled coil and the resulting temperature difference. Figure 6 is a diagram showing the relationship between thermal stress, Figure 6 is a diagram showing the relationship between temperature and yield stress of a steel plate, Figure 7 is a diagram showing the plastic strain remaining after a stress near the yield stress of 12 mm is applied to the steel plate,
FIG. 8 is a diagram showing the relationship between the distance between the width ends of adjacent thin hot rolled coils during the cooling process and the maximum temperature difference that occurs in the width direction of the coil plates. FIG. 3 is a diagram showing the arrangement of hot-rolled coils in a cooling yard. 1 Thin hot rolled coil 2 Thick hot rolled coil 3 Conveyor for conveying coils 4 Inlet side of the conveyor 5 Outlet side of the conveyor C Coil cooling yard l Distance between coil plate width ends

Claims (2)

【特許請求の範囲】[Claims] (1)熱間圧延後、巻取温度が400℃以上で巻取られ
た板厚3.5mm以下の薄物熱延コイルを、巻取後40
分以内にコイル冷却ヤードに搬入すると共に、コイル冷
却ヤードにおいて、搬入されてくる薄物熱延コイルをダ
ウンエンド状態で、先に搬入した薄物熱延コイルと順次
板幅端面を隣接させ、且つ隣接する薄物熱延コイルの板
幅端部間の距離が300mm以下となるように配置して
置くことを特徴とする薄物熱延コイルの冷却方法。
(1) After hot rolling, a thin hot-rolled coil with a thickness of 3.5 mm or less, which was wound at a winding temperature of 400°C or higher, is
In the coil cooling yard, the incoming thin hot-rolled coils are brought in in a down-end state, and the thin hot-rolled coils are successively brought in adjacent to the thin hot-rolled coils brought in earlier, and A method for cooling a thin hot-rolled coil, the method comprising arranging the thin hot-rolled coil so that the distance between the width ends of the thin hot-rolled coil is 300 mm or less.
(2)コイル冷却ヤードにコイル搬送設備を配設し、搬
入された高温の薄物熱延コイルを順次コイル搬送設備の
入側から載置すると共に、コイル搬送設備の出側でのコ
イル払出し時の温度を250℃以下とすることを特徴と
する第1請求項に記載の薄物熱延コイルの冷却方法。
(2) Coil transport equipment is installed in the coil cooling yard, and the high-temperature thin hot-rolled coils brought in are placed one after another from the input side of the coil transport equipment, and when the coils are unloaded at the exit side of the coil transport equipment. The method for cooling a thin hot-rolled coil according to claim 1, characterized in that the temperature is set to 250°C or less.
JP30584989A 1989-11-24 1989-11-24 Method for cooling thin hot rolled coil Pending JPH03165925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30584989A JPH03165925A (en) 1989-11-24 1989-11-24 Method for cooling thin hot rolled coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30584989A JPH03165925A (en) 1989-11-24 1989-11-24 Method for cooling thin hot rolled coil

Publications (1)

Publication Number Publication Date
JPH03165925A true JPH03165925A (en) 1991-07-17

Family

ID=17950105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30584989A Pending JPH03165925A (en) 1989-11-24 1989-11-24 Method for cooling thin hot rolled coil

Country Status (1)

Country Link
JP (1) JPH03165925A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143592A (en) * 2013-03-26 2013-06-12 济钢集团有限公司 Hot rolled strip uncoiler
JP2018047483A (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Shape control method of metal strip and shape control device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143592A (en) * 2013-03-26 2013-06-12 济钢集团有限公司 Hot rolled strip uncoiler
JP2018047483A (en) * 2016-09-21 2018-03-29 Jfeスチール株式会社 Shape control method of metal strip and shape control device

Similar Documents

Publication Publication Date Title
JP2018144050A (en) Cooling method of steel plate, cooling device of steel plate and manufacturing method of steel plate
JPH03165925A (en) Method for cooling thin hot rolled coil
JP3656707B2 (en) Controlled cooling method for hot rolled steel sheet
US6240617B1 (en) Large unit weight hot rolling process and rolling apparatus therefor
TWI799028B (en) Manufacturing method and manufacturing equipment of cold-rolled steel sheet
JP7111217B1 (en) Cold-rolled steel sheet manufacturing method and manufacturing equipment
JP2002361314A (en) Apparatus and method for continuous heat treatment of hot-rolled plate of grain oriented silicon steel
JP2001137943A (en) Method and device for controlling flatness of metallic sheet
JPS63104704A (en) Method of manufacturing metallic tape through rolling treatment and roll row
JPH1157805A (en) Method of manufacturing acid pickled hot rolled steel plate
JP4949425B2 (en) Hot rolling cooling device and cooling method
JP2604518B2 (en) Steel plate straightening method
JP3183011B2 (en) Hot thin plate manufacturing equipment and hot thin plate manufacturing method
JPS5832217B2 (en) Method for manufacturing ferritic stainless steel sheet with good formability
JPH09168802A (en) Continuous warm rolling mill of stainless steel strip
JPH08127819A (en) Method and device for flattened annealing for grain oriented silicon steel sheet
JPH0760303A (en) Cold rolling equipment of steel strip
JP2004261838A (en) Method for manufacturing steel plate to be divided in hot rolling mill line, steel plate to be divided, apparatus, computer program and computer-readable recording medium
JPS59110403A (en) Installation for producing hot rolled steel sheet
JPS59178128A (en) Outlet side device of treating line for steel strip
JPS5827004B2 (en) Continuous cold rolling equipment
JPH07241602A (en) Hot rolling device
JPH07314004A (en) Rolling equipment
JPH06246307A (en) Method for hot-rolling sheet material
JPH06212277A (en) Heat treatment method of trip