JPH03165438A - Charged particle beam device - Google Patents

Charged particle beam device

Info

Publication number
JPH03165438A
JPH03165438A JP30594389A JP30594389A JPH03165438A JP H03165438 A JPH03165438 A JP H03165438A JP 30594389 A JP30594389 A JP 30594389A JP 30594389 A JP30594389 A JP 30594389A JP H03165438 A JPH03165438 A JP H03165438A
Authority
JP
Japan
Prior art keywords
sample
charged particle
particle beam
image
electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30594389A
Other languages
Japanese (ja)
Other versions
JP2824679B2 (en
Inventor
Masahiko Kimoto
木元 正彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI TEKUNIKUSU KK
Original Assignee
NIPPON DENSHI TEKUNIKUSU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI TEKUNIKUSU KK filed Critical NIPPON DENSHI TEKUNIKUSU KK
Priority to JP1305943A priority Critical patent/JP2824679B2/en
Publication of JPH03165438A publication Critical patent/JPH03165438A/en
Application granted granted Critical
Publication of JP2824679B2 publication Critical patent/JP2824679B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To regulate the spatial effect by composing a pair of reflection electron detecting elements to regulate the position as desired at the position on the same plane almost vertical to a charged particle beam. CONSTITUTION:When an electron beam 1 is radiated on a sample 4 on a sample stage 3, signals of the secondary electrons, the reflecting electrons, and the like are generated from the surface of the sample 4. Of these signals, the reflecting electrons 5a and 5b are in the same directions separated from the scanning area of the incident electron beam 1, and they can be detected by a pair of semiconductor reflection electron detecting elements 6a and 6b which are provided on the same plane almost vertical to the incident electron beam 1. The detected signals include the composition signal and the unevenness signal of the sample 4 surface respectively at the same time, and since the detecting elements 6a and 6b are provided in the same direction to the incident electron beam 1, a stereoscopic picture image including the composition signal and the unevenness signal can be formed by adding and processing the signals detected by the detecting elements 6a and 6b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、試料上において電子線等の荷電粒子線を2次
元的に走査し、この走査に伴って試料より発生する反射
電子を一対の反射電子検出素子で検出し、この一対の検
出素子の出力信号に基づいて試料像を表示するようにし
た走査型電子顕微鏡等の荷電粒子線装置に関し、特に、
一対の反射電子検出素子を電子線等の荷電粒子線の走査
領域外の一方に偏移配置可能に構成して、試料の組成像
、凹凸像に加えて、試料の立体像を表示可能にした荷電
粒子線装置に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention involves two-dimensionally scanning a charged particle beam such as an electron beam over a sample, and converting backscattered electrons generated from the sample during this scanning into a pair of In particular, regarding charged particle beam devices such as scanning electron microscopes that detect with a backscattered electron detection element and display a sample image based on the output signals of this pair of detection elements,
A pair of backscattered electron detection elements is configured so that it can be shifted to one side outside the scanning area of a charged particle beam such as an electron beam, making it possible to display a three-dimensional image of the sample in addition to the composition image and unevenness image of the sample. It relates to a charged particle beam device.

〔従来の技術〕[Conventional technology]

従来の走査型電子顕微鏡、電子線プローブマイクロアナ
ライザー(EPMA)等の試料上において電子線等の荷
電粒子線を2次元的に走査し、この走査に伴って試料よ
り発生する反射電子を一対の反射電子検出素子で険出し
、この一対の検出素子の出力信号に基づいて試料像を表
示するようにした荷電粒子線装置においては、入射電子
ビームに対して対称の位置に半導体素子を使った反射電
子検出素子が配置されていた。このように反射電子検出
素子を配!すると、試料から発生する反射電子信号を演
算処理することによって、組成信号と凹凸信号に分離し
て、それぞれ組成像と凹凸像を形成することができる。
A charged particle beam such as an electron beam is scanned two-dimensionally over a sample using a conventional scanning electron microscope or an electron probe microanalyzer (EPMA), and the backscattered electrons generated from the sample during this scanning are captured by a pair of reflected electrons. In a charged particle beam device in which an electron detection element is used to display a sample image based on the output signals of a pair of detection elements, a semiconductor element is used to detect reflected electrons at a symmetrical position with respect to the incident electron beam. A detection element was placed. Arrange the backscattered electron detection element like this! Then, by processing the backscattered electron signal generated from the sample, it is possible to separate it into a composition signal and an unevenness signal, and form a composition image and an unevenness image, respectively.

第6図の説明図を用いてこの点を説明すると、図の(a
)のように試料に組成の違いだけがあり、表面に凹凸は
ないものとすると、反射電子の強度は原子番号にほぼ比
例するので、例えば、図示のように試料上で入射電子ビ
ームの左側に配置された反射電子検出素子Aによる検出
信号は図示へのようになり、入射電子ビームの右側に配
置された反射電子検出素子已による検出信号は図示Bの
ようになる。したがって、信号AとBの和は信号A+B
のようになり、それらの差は信号A−Bのようになる。
To explain this point using the explanatory diagram in Figure 6, (a
), the intensity of the backscattered electrons is approximately proportional to the atomic number. The detection signal from the backscattered electron detecting element A arranged is as shown in the figure, and the detection signal by the backscattered electron detecting element 2 arranged on the right side of the incident electron beam is as shown in the figure B. Therefore, the sum of signals A and B is signal A+B
The difference between them becomes signal A-B.

反射電子検出素子AとBは入射電子ビームに対して対称
に配置されているので、和信号A+Bは試料の組成分布
を表す組成像になるが、差信号へ−Bはゼロになり、何
らの像信号も有しない。また、第6図の(b)のように
試料に組成の違いがなく、表面の凹凸の違いのみがある
ものすると、左右の反射電子検出素子A、Bに入射する
反射電子の量は入射電子ビームが当たる点表面の傾きに
よって異なるので、例えば、図示のように反射電子検出
素子八による検出信号は図示Aのようになり、また、反
射電子検出素子已による検出信号は図示Bのようになる
。したがって、信号AとBの和は信号A+Bのようにな
り、それらの差は信号A−Bのようになる。反射電子検
出素子Aと已に入る総反射電子量は一定であると見なせ
るので、和信号A+Bは一定の値になり、何ら像信号を
含んでいない。これに対し、差信号A−Bは図示のよう
に表面の凹凸を表現する凹凸像になる。したがって、雨
検出素子からの信号の合算信号から試料の組成像が、ま
た、減算信号から試料の凹凸像が得られることになる。
Since the backscattered electron detection elements A and B are arranged symmetrically with respect to the incident electron beam, the sum signal A + B becomes a composition image representing the composition distribution of the sample, but the difference signal -B becomes zero and there is no It also has no image signal. Furthermore, if the sample has no difference in composition and only a difference in surface roughness as shown in Figure 6(b), the amount of backscattered electrons incident on the left and right backscattered electron detection elements A and B is the amount of incident electrons. This varies depending on the inclination of the surface of the point where the beam strikes, so for example, as shown in the figure, the detection signal from backscattered electron detection element 8 will be as shown in figure A, and the detection signal by backscattered electron detection element 2 will be as shown in figure B. . Therefore, the sum of signals A and B becomes signal A+B, and the difference between them becomes signal A-B. Since the total amount of reflected electrons entering the reflected electron detection element A can be considered to be constant, the sum signal A+B has a constant value and does not include any image signal. On the other hand, the difference signal A-B becomes an uneven image representing the unevenness of the surface as shown in the figure. Therefore, a composition image of the sample can be obtained from the summed signal of the signals from the rain detection elements, and an uneven image of the sample can be obtained from the subtracted signal.

ここで言う凹凸像とは、水平に置かれた試料に対して真
上から照明を当て、真上から見た像のことであり、立体
感に乏しく、試料表面の凹凸の激しい試料の観察には不
向きである。また、このように入射電子ビームに対して
左右対称に配置された一対の検出素子A、Bからなる反
射電子検出器では、構造的、原理的に試料を傾斜してあ
らゆる方向からの室体的画像を形成することができない
。その理由は、このような反射電子検出器は試料に近接
して配置しなければならず、試料を傾斜しようとすると
ΔかB何れかの検出素子に試料が突き当たるおそれがあ
るためである。
The concave-convex image referred to here is an image viewed from directly above when a sample placed horizontally is illuminated, and it lacks a three-dimensional effect and is useful for observing samples with extremely uneven sample surfaces. is not suitable. In addition, in a backscattered electron detector consisting of a pair of detection elements A and B arranged symmetrically with respect to the incident electron beam, structurally and in principle, the sample is tilted so that the chamber body can be viewed from all directions. Unable to form an image. The reason for this is that such a backscattered electron detector must be placed close to the sample, and if an attempt is made to tilt the sample, there is a risk that the sample will hit either the Δ or B detection element.

一方、入射電子ビームの一方の側に配置される、シンチ
レータ、ライトガイド、光電子増倍管から構成されてい
る二次電子検出器では、前記の半導体素子を使った反射
電子検出器よりも立体的な画像を形成することができる
と共に、試料の傾斜も可能である。しかし、シンチレー
タ、ライトガイド、光電子増倍管から構成されている二
次電子検出器で形成される立体的な画像は二次電子像で
あり、反射電子像ではない。また、この画像には、当然
のことながら組成信号と凹凸信号の両方が含まれており
、これらの信号を分離して組成像のみ、または凹凸像の
みを表示することができない。さらに、このような二次
電子検出器においては、シンチレータの前面に高電圧を
かけているので低真空中に配置すると放電を起こすので
、低真空走査型電子顕微鏡に用いることができない問題
点もあ〔発明が解決しようとする課題〕 本発明は、上記のような2種類の電子検出器の問題点を
解決するために完成されたものであり、従来の一対の半
導体素子からなる反射電子検出器を用いる走査型電子顕
微鏡等において、反射電子検出器の配置に工夫を施すこ
とにより、試料傾斜を可能とし、組成信号と凹凸信号を
含む立体的な画像を形成すると共に、必要に応じて組成
信号と凹凸信号を分離して組成像のみ、又は、凹凸像の
みを表示可能とした装置を提供することを目的とするも
のである。
On the other hand, a secondary electron detector consisting of a scintillator, a light guide, and a photomultiplier tube placed on one side of the incident electron beam has a three-dimensional In addition to being able to form a wide-angle image, it is also possible to tilt the sample. However, a three-dimensional image formed by a secondary electron detector composed of a scintillator, a light guide, and a photomultiplier tube is a secondary electron image, not a backscattered electron image. Moreover, this image naturally includes both a composition signal and an unevenness signal, and it is not possible to separate these signals and display only the composition image or only the unevenness image. Furthermore, in such a secondary electron detector, a high voltage is applied to the front surface of the scintillator, so if it is placed in a low vacuum, a discharge will occur, so there is a problem that it cannot be used in a low vacuum scanning electron microscope. [Problems to be Solved by the Invention] The present invention was completed in order to solve the problems of the two types of electron detectors as described above. In scanning electron microscopes and other devices that use The object of the present invention is to provide an apparatus that can display only a composition image or only a concavo-convex image by separating the concave-convex signal and the concave-convex signal.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は、上記の目的を達成するために完成されたもの
である。すなわち、本発明の走査型電子顕微鏡等の荷電
粒子線装置は、試料上において電子線等の荷電粒子線を
2次元的に走査し、この走査に伴って試料より発生する
反射電子を一対の反射電子検出素子で検出し、この一対
の検出素子の出力信号を合算又は減算処理した信号から
いずれかを選択して試料像を表示するようにした装置に
おいて、前記一対の反射電子検出素子を前記荷電粒子線
に対して対称な配置位置から一体のまま前記荷電粒子線
の走査領域から外れた同じ方向の位置であって、前記荷
電粒子線にほぼ垂直な同一面上の位置に位置調節可能に
構成したことを特徴とするものである。
The present invention has been completed to achieve the above object. That is, the charged particle beam device of the present invention, such as a scanning electron microscope, scans a charged particle beam such as an electron beam two-dimensionally over a sample, and collects reflected electrons generated from the sample during this scanning into a pair of reflected electrons. In an apparatus in which a sample image is displayed by selecting one of the signals detected by electron detection elements and the output signals of the pair of detection elements being summed or subtracted, the pair of backscattered electron detection elements are The structure is such that the position can be adjusted from a symmetrical arrangement position with respect to the particle beam to a position in the same direction outside the scanning area of the charged particle beam and on the same plane substantially perpendicular to the charged particle beam. It is characterized by the fact that

この場合、前記一対の反射電子検出素子から得られる信
号を合算処理して試料の反射電子像を得る処理装置と、
前記信号を減算処理して試料の反射電子像を得る処理装
置とを備えているので、試料の立体像、組成像、凹凸像
のいずれかを選択的に表示できる。
In this case, a processing device that obtains a backscattered electron image of the sample by processing signals obtained from the pair of backscattered electron detection elements;
Since the apparatus includes a processing device that performs subtraction processing on the signal to obtain a backscattered electron image of the sample, it is possible to selectively display a three-dimensional image, a composition image, or an uneven image of the sample.

なお、前記反射電子検出素子としては、半導体素子を用
いるのが典型的である。
Note that a semiconductor element is typically used as the reflected electron detection element.

〔作用〕[Effect]

一対の反射電子検出素子を電子線等の荷電粒子線に対し
て対称な配置位置から一体のまま前記荷電粒子線の走査
領域から外れた同じ方向の位置であって、前記荷電粒子
線にほぼ垂直な同一面上の位置に位置調節可能に構成し
たため、立体的な画像、組成像、凹凸像の3種類の画像
が形成できる。
A pair of backscattered electron detection elements are placed in the same direction away from the scanning area of the charged particle beam while remaining integrated from a symmetrical arrangement position with respect to the charged particle beam such as an electron beam, and approximately perpendicular to the charged particle beam. Since the position can be adjusted on the same plane, three types of images can be formed: a three-dimensional image, a composition image, and an uneven image.

また、立体的な画像において、一対の反射電子検出素子
と荷電粒子線との距離を変えることによって、又は、図
示しない試料ステージの2勅を変えることによって、試
料表面の凹凸の影の看を制御し、立体感を調整すること
もできる。
In addition, in a three-dimensional image, the appearance of shadows caused by irregularities on the sample surface can be controlled by changing the distance between the pair of backscattered electron detection elements and the charged particle beam, or by changing the two positions of the sample stage (not shown). You can also adjust the three-dimensional effect.

さらに、一対の反射電子検出素子を荷電粒子線の走査領
域から外れた同じ方向の位置に配置した状態においては
、試料又は試料台を反射電子検出素子に接触させないで
、試料台を傾斜させることができるため、試料表面のあ
らゆる方向からの立体的な画1象を観察することができ
る。
Furthermore, when a pair of backscattered electron detection elements are placed in the same direction away from the charged particle beam scanning area, it is possible to tilt the sample stand without bringing the sample or sample stand into contact with the backscattered electron detection elements. Therefore, it is possible to observe a three-dimensional image of the sample surface from all directions.

〔実施側温 本発明は、走査型電子顕微鏡、電子線プローブマイクロ
アナライザー(EPMA)等の試料上におし)で電子線
等の荷電粒子線を2次元的に走査し、この走査に伴って
試料より発生する電子を検出して、その信号に基づいて
試料像を表示するようにした荷電粒子線装置の検出器に
関するものである。
[In the present invention, a charged particle beam such as an electron beam is scanned two-dimensionally with a scanning electron microscope, an electron beam probe microanalyzer (EPMA), etc. on a sample, and along with this scanning, The present invention relates to a detector for a charged particle beam device that detects electrons generated from a sample and displays an image of the sample based on the signal.

第1図は本発明の原理を示すた狛の模式図である。FIG. 1 is a schematic diagram of a fence illustrating the principle of the present invention.

上記のような装置においては、真空に保たれた試料室2
中に置かれている試料台3上に載置された試料4を、図
示してない電子源から照射された入射電子ビーム1が走
査するように構成されている。
In the above-mentioned apparatus, the sample chamber 2 kept in vacuum is
It is configured such that an incident electron beam 1 irradiated from an electron source (not shown) scans a sample 4 placed on a sample stage 3 placed inside.

電子ビームlが試料台3上の試料4を照射すると、二次
電子や反射電子などの信号が試料4の表面より発生する
。この中の反射電子5a、5bは、入射電子ビーム1の
走査領域から外れた同じ方向であって、試料4の上側に
相互に離れて、入射電子ビーム1にほぼ垂直な同一面上
に配置されている一対の半導体反射電子検出素子6a、
6bによって検出される。検出素子6a、6bによって
検出された信号は、それぞれ試料4表面の組成信号と凹
凸信号を同時に含んでおり、なおかつ、検出素子6a、
6bは入射電子ビーム1に対して同じ方向に配置されて
いるため、検出素子6a、6bで検出された信号を合算
処理すると、組成信号と凹凸信号を含んだ立体的な画像
を形成することができる。これをもう少し説明すると、
例えば、第2図に示すように、試料4上に4′のような
突起がある場合、図で突起4′の右(lUに入射電子ビ
ームlが当たると、その点から生じて左側に配置された
検出素子6a、6bに入射すべき反射電子5a。
When the electron beam l irradiates the sample 4 on the sample stage 3, signals such as secondary electrons and reflected electrons are generated from the surface of the sample 4. The reflected electrons 5a and 5b are arranged in the same direction away from the scanning area of the incident electron beam 1, separated from each other above the sample 4, and on the same plane substantially perpendicular to the incident electron beam 1. a pair of semiconductor backscattered electron detection elements 6a,
6b. The signals detected by the detection elements 6a and 6b simultaneously include a composition signal and an unevenness signal on the surface of the sample 4, and the signals detected by the detection elements 6a and
Since detection elements 6b are arranged in the same direction with respect to the incident electron beam 1, when the signals detected by detection elements 6a and 6b are combined, a three-dimensional image including a composition signal and an unevenness signal can be formed. can. To explain this a little more,
For example, as shown in Figure 2, if there is a protrusion 4' on the sample 4, when the incident electron beam l hits the right (lU) of the protrusion 4' in the figure, it will come from that point and be placed to the left. The reflected electrons 5a should be incident on the detection elements 6a and 6b.

5bの一部はこの突起4′によってケラれるため、検出
素子6a、6bによって検出される信号は本来の強さよ
りも弱くなる。したがって、上記の合算信号によって合
成される画像は、あたかも検出素子6a、6bの位置に
光源を置いて試料4を照明し、入射電子ビーム1の方向
から試料4を見た時のように、試料4の表面形状に応じ
て影ができた画像になり、立体感に富んだ画像になる。
Since a portion of 5b is obscured by this protrusion 4', the signal detected by the detection elements 6a and 6b becomes weaker than its original strength. Therefore, the image synthesized by the above summed signals is as if the sample 4 were illuminated by placing a light source at the positions of the detection elements 6a and 6b and the sample 4 was viewed from the direction of the incident electron beam 1. The image will have shadows depending on the surface shape of 4, resulting in an image rich in three-dimensionality.

また、一対の反射電子検出素子6a、6bと入射電子ビ
ームlとの距離を変えることによって、又は、図示しな
い試料ステージの2劾を変えることによって、試料表面
の凹凸の影の量を制御し、立体感を調整することもでき
る。このように、本発明によると、一対の反射電子検出
素子6a、6bを入射電子ビーム1の走査領域から外れ
た同じ方向であって、試料4の上側に相互に離れて、入
射電子ビ−ムlにほぼ垂直な同一面上に配置することに
より、試料4表面の立体像を得ることができる。
In addition, by changing the distance between the pair of backscattered electron detection elements 6a, 6b and the incident electron beam l, or by changing the position of the sample stage (not shown), the amount of shadow of the unevenness on the sample surface is controlled, You can also adjust the three-dimensional effect. As described above, according to the present invention, the pair of backscattered electron detecting elements 6a and 6b are placed in the same direction outside the scanning area of the incident electron beam 1, and are spaced apart from each other above the sample 4 to detect the incident electron beam. A three-dimensional image of the surface of the sample 4 can be obtained by arranging them on the same plane substantially perpendicular to 1.

第3図は、このような検出素子6a、6bの配置2こお
いて、試料4を入射電子ビーム1に対して傾斜させたと
きの模式図であり、試料4をあらゆる方向から見るのに
適していると共に、試料4の傾斜角を変えて両眼視差に
よる立体画像を得ようとする場合等に有効である。この
ように、本発明においては、一対の反射電子検出素子6
a、6bを入射電子ビーム1の走査領域から外れた同じ
方向に配置可能であるため、試料台を傾斜しても試料又
は試料台が検出素子6a、6bに接触しないようにでき
るので、試料を傾斜して観察することができる。
FIG. 3 is a schematic diagram when the sample 4 is tilted with respect to the incident electron beam 1 with such an arrangement 2 of the detection elements 6a and 6b, which is suitable for viewing the sample 4 from all directions. This is also effective when attempting to obtain a stereoscopic image using binocular parallax by changing the inclination angle of the sample 4. In this way, in the present invention, the pair of backscattered electron detection elements 6
a and 6b can be arranged in the same direction outside the scanning area of the incident electron beam 1, so even if the sample stage is tilted, the sample or the sample stage can be prevented from coming into contact with the detection elements 6a and 6b. It can be observed tilted.

また、第4図は、半導体反射電子検出素子6as6bの
相対位置を変えないで一体のまま入射電子ビーム1を横
切って入射電子ビーム1に対して対称に調整して配置し
た場合の模式図であり、検出素子6aと6bの間を通し
て入射電子ビーム1を試料4に照射して走査する。これ
は、まさに第6図に示した従来の反射電子検出器の配置
であり、反射電子5aを検出した検出素子6aの信号と
反射電子5bを検出した検出素子6bの信号を合算処理
をした信号で画像を表示すると組成像となり、これらを
減算処理をした信号をもとに画像を表示すると凹凸像と
なることは、前記した通りである。
Moreover, FIG. 4 is a schematic diagram when the semiconductor backscattered electron detection element 6as6b is arranged symmetrically with respect to the incident electron beam 1 across the incident electron beam 1 without changing its relative position. , the sample 4 is irradiated with the incident electron beam 1 through between the detection elements 6a and 6b and scanned. This is exactly the arrangement of the conventional backscattered electron detector shown in FIG. 6, and is a signal obtained by adding up the signal of the detection element 6a that detected the backscattered electrons 5a and the signal of the detection element 6b that detected the backscattered electrons 5b. As described above, when an image is displayed, it becomes a compositional image, and when an image is displayed based on the signals obtained by subtracting these, it becomes a concavo-convex image.

第5図は、反射電子検出器1例のゐ出素子部分の平面図
であり、6a、6bは半導体反射電子検出素子を示して
おり、7は入射電子ビーム1通過用の孔を示している。
FIG. 5 is a plan view of the output element part of one example of a backscattered electron detector, in which 6a and 6b show semiconductor backscattered electron detection elements, and 7 shows a hole for passing the incident electron beam 1. .

8は雨検出素子6a、6b間の離間部である。反射電子
検出素子6a、6bは通常シリコン等のP−N接合から
なるものであるが、必ずしもこれに限られるものではな
い。
Reference numeral 8 indicates a space between the rain detection elements 6a and 6b. The backscattered electron detection elements 6a and 6b are usually made of a PN junction made of silicon or the like, but are not necessarily limited to this.

本発明においては、このように一対の反射電子検出素子
6a、6bからなる反射電子検出器を一体のまま、装置
の外の真空外から、第1図の位置から第4図の位置へ、
又はその逆の方向へ位置調整が可能な構造に構成できる
た狛、組成信号と凹凸信号を含む立体的な画像を形成で
きると共に、必要に応じて組成信号と凹凸信号とを分離
した組成像のみ、又は、凹凸像のみの3種類の画像を形
成することのできる装置を構成することができる。
In the present invention, the backscattered electron detector consisting of the pair of backscattered electron detection elements 6a and 6b is moved from the position shown in FIG. 1 to the position shown in FIG.
Or, it is possible to form a three-dimensional image that includes a composition signal and an unevenness signal, and only a composition image with the composition signal and unevenness signal separated as necessary. Alternatively, it is possible to configure an apparatus that can form three types of images, including only uneven images.

〔発明の効果〕〔Effect of the invention〕

本発明の走査型電子顕微鏡、電子線プローブマイクロア
ナライ−等の荷電粒子線装置においては、一対の反射電
子検出素子を前記荷電粒子線に対して対称な配置位置か
ら一体のまま前記荷電粒子線の走査領域から外れた同じ
方向の位置であって、前記荷電粒子線にほぼ垂直な同一
面上の位置に位置調節可能に構成したため、立体的な画
像、組成像、凹凸像の3種類の画像が形成できる。また
、立体的な画像において、一対の反射電子検出素子と荷
電粒子線との距離を変えることによって、又は、図示し
ない試料ステージの2勅を変えることによって、試料表
面の凹凸の影の量を制御し、立体感を調整すること毛で
きる。
In a charged particle beam device such as a scanning electron microscope or an electron beam probe microanalyzer according to the present invention, a pair of backscattered electron detection elements are arranged symmetrically with respect to the charged particle beam while remaining integral with the charged particle beam. Since the position can be adjusted to a position in the same direction outside the scanning area of the charged particle beam and on the same plane almost perpendicular to the charged particle beam, three types of images can be obtained: a three-dimensional image, a composition image, and an uneven image. can be formed. In addition, in a three-dimensional image, the amount of shadows caused by unevenness on the sample surface can be controlled by changing the distance between a pair of backscattered electron detection elements and the charged particle beam, or by changing the length of the sample stage (not shown). You can also adjust the three-dimensional appearance of the hair.

さらに、一対の反射電子検出素子を荷電粒子線の走査領
域から外れた同じ方向の位置に配置した状態においては
、試料台を傾斜させることができるため、試料表面のあ
らゆる方向からの立体的な画像を観察することができる
。この時、試料台は、電子線等の荷電粒子線の照射点を
試料表面に保ったまま、試料を傾斜、平行移動すること
ができるユーセントリック式構造にすることができ、試
料台を傾斜しても試料または試料台が反射電子検出素子
に接触しないようにできる。
Furthermore, when a pair of backscattered electron detection elements are placed in the same direction outside the charged particle beam scanning area, the sample stage can be tilted, allowing three-dimensional images of the sample surface from all directions. can be observed. At this time, the sample stage can have a eucentric structure that allows the sample to be tilted and moved in parallel while keeping the irradiation point of the charged particle beam such as an electron beam on the sample surface. The sample or sample stage can be prevented from coming into contact with the backscattered electron detection element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理を示すだめの模式図、第2図は本
発明の原理によって試料の像が立体感に富んだ画像にな
ることを説明するための図、第3図は試料を入射電子ビ
ームに対して傾斜させたときの模式図、第4図は半導体
反射電子検出素子を入射電子ビームに対して対称に配置
した場合の模式図、第5図は半導体反射電子検出素子か
らなる反射電子検出器の1例の平面図、第6図は入射電
子ビームに対して対称な位置に一対の反射電子検出器を
配置した場合に組成像と凹凸像を分離して得られる原理
を示すための図である。 l−入射電子ビーム、2−試料室、3−試料台、4−試
料、4′−試料上の突起、5a、5b−反対電子、 6a。 6b−一半導体反射電子検出素子、 7−入射電子ビーム通過用の孔、 8−m=対の反射 電子検出素子間の離間部 出 願 人 株式会社 日常子テクニクス
Figure 1 is a schematic diagram showing the principle of the present invention, Figure 2 is a diagram to explain that the principle of the present invention creates a sample image with a rich three-dimensional effect, and Figure 3 is a diagram showing the sample image. A schematic diagram when tilted with respect to the incident electron beam, Figure 4 is a schematic diagram when the semiconductor backscattered electron detection element is arranged symmetrically with respect to the incident electron beam, and Figure 5 is a schematic diagram of the semiconductor backscattered electron detection element. Figure 6, a plan view of an example of a backscattered electron detector, shows the principle by which a compositional image and a concave-convex image can be separated when a pair of backscattered electron detectors are placed at symmetrical positions with respect to the incident electron beam. This is a diagram for 1 - incident electron beam, 2 - sample chamber, 3 - sample stage, 4 - sample, 4' - protrusion on sample, 5a, 5b - opposing electrons, 6a. 6b-1 semiconductor backscattered electron detection element, 7-hole for incident electron beam passage, 8-m=separation part between pair of backscattered electron detection elements Applicant: Kyoko Technics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)試料上において電子線等の荷電粒子線を2次元的
に走査し、この走査に伴って試料より発生する反射電子
を一対の反射電子検出素子で検出し、この一対の検出素
子の出力信号を合算又は減算処理した信号からいずれか
を選択して試料像を表示するようにした走査型電子顕微
鏡等の荷電粒子線装置において、前記一対の反射電子検
出素子を前記荷電粒子線に対して対称な配置位置から一
体のまま前記荷電粒子線の走査領域から外れた同じ方向
の位置であって、前記荷電粒子線にほぼ垂直な同一面上
の位置に位置調節可能に構成したことを特徴とする荷電
粒子線装置。
(1) A charged particle beam such as an electron beam is scanned two-dimensionally on a sample, and a pair of backscattered electron detection elements detect backscattered electrons generated from the sample during this scanning, and the output of this pair of detection elements In a charged particle beam apparatus such as a scanning electron microscope that displays a sample image by selecting one of the signals obtained by adding or subtracting signals, the pair of backscattered electron detection elements are connected to the charged particle beam. It is characterized in that the position can be adjusted from a symmetrical arrangement position to a position in the same direction outside the scanning area of the charged particle beam and on the same plane substantially perpendicular to the charged particle beam. charged particle beam device.
JP1305943A 1989-11-24 1989-11-24 Charged particle beam equipment Expired - Fee Related JP2824679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1305943A JP2824679B2 (en) 1989-11-24 1989-11-24 Charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1305943A JP2824679B2 (en) 1989-11-24 1989-11-24 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH03165438A true JPH03165438A (en) 1991-07-17
JP2824679B2 JP2824679B2 (en) 1998-11-11

Family

ID=17951168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1305943A Expired - Fee Related JP2824679B2 (en) 1989-11-24 1989-11-24 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP2824679B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8641945B2 (en) 2002-04-30 2014-02-04 Symrise Ag Method of preparing aroma particles
WO2015118605A1 (en) * 2014-02-04 2015-08-13 富士通株式会社 Material evaluation device and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158758U (en) * 1986-03-28 1987-10-08
JPH0166747U (en) * 1987-10-26 1989-04-28

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62158758U (en) * 1986-03-28 1987-10-08
JPH0166747U (en) * 1987-10-26 1989-04-28

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8641945B2 (en) 2002-04-30 2014-02-04 Symrise Ag Method of preparing aroma particles
WO2015118605A1 (en) * 2014-02-04 2015-08-13 富士通株式会社 Material evaluation device and method
JPWO2015118605A1 (en) * 2014-02-04 2017-03-23 富士通株式会社 Material evaluation apparatus and method

Also Published As

Publication number Publication date
JP2824679B2 (en) 1998-11-11

Similar Documents

Publication Publication Date Title
US8440969B2 (en) Method and apparatus for acquiring simultaneous and overlapping optical and charged particle beam images
KR100576940B1 (en) Method and system for the examination of specimen using a charged particle beam
JP3786875B2 (en) Objective lens for charged particle beam devices
US4211924A (en) Transmission-type scanning charged-particle beam microscope
US6548810B2 (en) Scanning confocal electron microscope
US5517033A (en) Apparatus for improved image resolution in electron microscopy
US9728372B2 (en) Measurement method and electron microscope
US20230258587A1 (en) Material analysis with multiple detectors
JP6999751B2 (en) Segmented detector for charged particle beam devices
US10890545B2 (en) Apparatus for combined stem and EDS tomography
US4399360A (en) Transmission electron microscope employing sequential pixel acquistion for display
JPH03165438A (en) Charged particle beam device
US7767962B2 (en) Method for SEM measurement of features using magnetically filtered low loss electron microscopy
JP3499690B2 (en) Charged particle microscope
JP2810216B2 (en) Pattern inspection method and apparatus
JPH11273608A (en) Scanning electron microscope
Goldstein et al. Special topics in scanning electron microscopy
Haydon et al. Optical shadowing in the electron microscope
JPH0541195A (en) Scanning electron microscopic device
JP2006172919A (en) Scanning electron microscope having three-dimensional shape analysis function
JP3705760B2 (en) High-performance X-ray image observation system with optimal electron optical design
JPH01149354A (en) Electron microscope
EP3780065A1 (en) Charged particle microscope with a pixelated detector, and method of detecting particulate radiation using a pixelated detector
KR970022392A (en) Scanning electron microscope
JPH07105899A (en) Method for forming sample image

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080911

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090911

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees