JPH03164503A - Compressed air storage generating set - Google Patents

Compressed air storage generating set

Info

Publication number
JPH03164503A
JPH03164503A JP30192089A JP30192089A JPH03164503A JP H03164503 A JPH03164503 A JP H03164503A JP 30192089 A JP30192089 A JP 30192089A JP 30192089 A JP30192089 A JP 30192089A JP H03164503 A JPH03164503 A JP H03164503A
Authority
JP
Japan
Prior art keywords
air storage
storage tank
air
water
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30192089A
Other languages
Japanese (ja)
Inventor
Hiroaki Kaneda
金田 博晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30192089A priority Critical patent/JPH03164503A/en
Publication of JPH03164503A publication Critical patent/JPH03164503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

PURPOSE:To install a generator even in a place having no enough water head difference by providing a hydraulic turbine driven by use of a water head difference between an upper water tank and an air storage tank on the same shaft as an electric motor, and providing a pump for supplementating water head and required pressure coaxially with a generator. CONSTITUTION:An upper water tank 12 for balancing air pressure is provided above an air storage tank 11, and a hydraulic turbine 14 is disposed in the midway of a pipe 13 used as a path for supplying water from the air storage tank 11 to the upper water tank 12. The hydraulic turbine 14 is coaxially connected as an electric motor 16 for driving a compressor 15, and the output thereof is used as a part of driving power for the compressor 15. A cooling device 18 for cooling the compressed air is provided for the air output of the compressor 15, and the compressed air after cooling is fed into the air storage tank 11 by a pipe 17. A pump 21 is disposed in the middle portion of a pipe 22 used as a path for supplying water from the upper water tank 12 to the air storage tank 11, and a generator 20 and a gas expander 19 using combustion gas generated in a combustor 24 as a power source are disposed coaxially with the rotary shaft of the pump.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、電動機に連結れた圧縮空気を貯蔵槽へ送り込
む圧縮機と、発電機と連結し、上記貯蔵槽内の圧縮空気
により駆動されるエキスパンダとを有する圧縮空気貯蔵
発電装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a compressor that is connected to an electric motor and sends compressed air to a storage tank, and a generator that is connected to a generator that is driven by the compressed air in the storage tank. The present invention relates to a compressed air storage power generation device having an expander.

[従来の技術] 空気を圧縮機により圧縮して貯蔵槽(空気貯蔵槽)に貯
蔵し、これを取出して加熱し、更にエキスパンダにて膨
張させて動力を取出し、発電機にて発電する発電装置(
即ち圧縮空気貯蔵発電装置)では、空気貯蔵槽を含む部
分に種々の手段がある。
[Prior art] Air is compressed by a compressor, stored in a storage tank (air storage tank), taken out and heated, and further expanded in an expander to extract power, and then a generator is used to generate electricity. Device(
In other words, in a compressed air storage power generation device), there are various means for the part including the air storage tank.

中でも、空気貯蔵槽の上方に水槽(上部水槽)を設け、
空気貯蔵槽との位置の差によって生じる水頭により貯蔵
空気圧を設定し、空気量の増減によって貯蔵槽内の水面
が上下に移動する装置では、貯蔵槽内の空気圧力が空気
の増減に関係なくほぼ一定であり、また、全貯蔵空気量
の80%以上の空気量を一定の圧力下で出し入れするこ
とができる。
Among them, a water tank (upper water tank) is installed above the air storage tank,
In devices where the storage air pressure is set by the water head generated due to the difference in position with the air storage tank, and the water level in the storage tank moves up and down as the amount of air increases or decreases, the air pressure in the storage tank is approximately constant regardless of the increase or decrease in air. Moreover, an air amount of 80% or more of the total stored air amount can be taken in and out under a constant pressure.

[発明が解決しようとする課題] 上記した空気貯蔵槽の上方に上部水槽が設けられた圧縮
空気貯蔵発電装置において、上部水槽と空気貯蔵槽との
水頭差は、その貯蔵槽の大きさにも関係するが、最低8
0m程度から効率が比較的良いとされている500m前
後までの範囲で必要になる。このため、例えば空気貯蔵
槽を地上に設置した場合、上部水槽は最低でも80mの
高さに設置しなければならず、しかも上部水槽全体の重
量を支える構造物が必要であることから、これらを人工
的に製作する場合には建設費が膨大なものとなる欠点が
あった。
[Problems to be Solved by the Invention] In the compressed air storage power generation device in which the upper water tank is provided above the air storage tank, the water head difference between the upper water tank and the air storage tank depends on the size of the storage tank. Related, but at least 8
It is necessary in the range from about 0 m to around 500 m, where efficiency is said to be relatively good. For this reason, for example, if an air storage tank is installed on the ground, the upper water tank must be installed at a height of at least 80 m, and a structure that supports the entire weight of the upper water tank is required. If it were manufactured artificially, the construction cost would be enormous.

本発明は上記事情に鑑みてなされたものでその目的は、
空気貯蔵槽との水頭差が充分大きくとれない高さに上部
水槽を設置した場合でも、必要な水頭差が確保でき、空
気貯蔵槽に貯蔵した空気の大部分が利用できる圧縮空気
貯蔵発電装置を提供することにある。
The present invention has been made in view of the above circumstances, and its purpose is to:
Even if the upper water tank is installed at a height where the water head difference between the air storage tank and the air storage tank is not large enough, the compressed air storage power generation system can secure the necessary water head difference and utilize most of the air stored in the air storage tank. It is about providing.

[課題を解決するための手段] 本発明は、電動機に連結された圧縮空気を空気貯蔵槽へ
送り込む圧縮機と、発電機と連結し、空気貯蔵槽内の圧
縮空気により駆動されるエキスパンダとを有する圧縮空
気貯蔵発電装置において、空気貯蔵槽より上方に設けら
れる上部水槽の位置が、従来から発電装置に要求されて
いる高さよりも低い位置に設置されていても、空気の出
入れに伴う内圧の変化をほぼ一定に保持し、しかも貯蔵
空気量の大部分を利用して必要な水頭を得るための手段
として、空気の貯蔵時には上部水槽と空気貯蔵槽とに水
頭差があることから、これを動力として回収する水車を
電動機と同軸に設けると共に、発電装置が要求する水頭
差を得るため、水頭と要求圧力を補完するポンプ(水ポ
ンプ)を発電機と同軸に設け、上部水槽と空気貯蔵槽と
を水車及びポンプを各々介して連結するようにしたこと
を特徴とするものである。
[Means for Solving the Problems] The present invention includes a compressor connected to an electric motor to feed compressed air into an air storage tank, an expander connected to a generator and driven by the compressed air in the air storage tank. In a compressed air storage power generation device having a As a means to maintain the change in internal pressure almost constant and to obtain the necessary water head by using most of the stored air volume, there is a difference in water head between the upper water tank and the air storage tank when storing air. A water wheel that recovers this water as power is installed coaxially with the electric motor, and in order to obtain the water head difference required by the generator, a pump (water pump) that supplements the water head and required pressure is installed coaxially with the generator, and the upper water tank and air This system is characterized in that it is connected to a storage tank through a water wheel and a pump, respectively.

〔作 用〕[For production]

上記の構成において、空気貯蔵槽内に空気が無い場合に
は、空気貯蔵槽に水が充満しており、したがって上部水
槽の水面は最低となっている。この状態で圧縮機を起動
し、空気貯蔵槽に空気を送り込むと、空気貯蔵槽の内圧
は上部水槽との水頭差とバランスして空気圧が設定され
る。しかし、この状態では、上部水槽の取付位置が要求
水頭(一般には最低でも80m)より低い位置にある場
合には、所定の圧力は得られない。このため空気貯蔵槽
と上部水槽に何らかの抵抗を入れる必要があり、本発明
では空気貯蔵槽と上部水槽とを結ぶ水管に水車を設けて
いる。この水車には、空気貯蔵槽に送り込まれる空気と
同一の体積流量の水が、空気貯蔵槽内圧力から上部水槽
との水頭差を差引いた差圧で流れ、これにより水車には
動力が生じる。水車は圧縮機を駆動する電動機と直結さ
れており、水車に動力が生じることにより電動機出力を
減じることができる。
In the above configuration, when there is no air in the air storage tank, the air storage tank is filled with water, and therefore the water level in the upper water tank is the lowest. When the compressor is started in this state and air is sent into the air storage tank, the internal pressure of the air storage tank is balanced with the head difference with the upper water tank and the air pressure is set. However, in this state, if the upper water tank is installed at a position lower than the required water head (generally at least 80 m), the predetermined pressure cannot be obtained. For this reason, it is necessary to provide some kind of resistance between the air storage tank and the upper water tank, and in the present invention, a water wheel is provided in the water pipe connecting the air storage tank and the upper water tank. Water with the same volumetric flow rate as the air sent into the air storage tank flows through this water turbine at a differential pressure equal to the pressure inside the air storage tank minus the head difference with the upper water tank, and this generates power in the water turbine. The water wheel is directly connected to the electric motor that drives the compressor, and by generating power in the water wheel, the motor output can be reduced.

一方、空気貯蔵槽内の空気を取出す場合には、空気貯蔵
槽内の空気減量と同じ量の水を空気貯蔵槽内に供給する
必要がある。そこで本発明では、上記した量の水を供給
するポンプを設けることで、空気貯蔵槽内が減圧するこ
とを防止し、空気貯蔵槽内を所定圧に保つ。空気貯蔵槽
から空気を取出すのは、この空気をエキスパンダにて加
熱・膨張することで発電機で発電させるためであり、こ
の際の発電量からポンプを駆動する動力が差引かれるこ
とになる。
On the other hand, when taking out the air in the air storage tank, it is necessary to supply the same amount of water into the air storage tank as the air loss in the air storage tank. Therefore, in the present invention, by providing a pump that supplies the above amount of water, the inside of the air storage tank is prevented from being depressurized and the inside of the air storage tank is maintained at a predetermined pressure. The reason why air is taken out from the air storage tank is to heat and expand this air with an expander to generate electricity with a generator, and the power to drive the pump is subtracted from the amount of electricity generated at this time.

[実施例コ 第1図は本発明の圧縮空気貯蔵発電装置の一実施例を示
すシステム構成図である。第1図において、圧縮された
空気を貯蔵するための空気貯蔵槽11の上方には空気圧
バランス用の上部水槽12が設けられている。この上部
水槽12の設置位置は、従来から圧縮空気貯蔵発電装置
の効率的な運用に必要とされている高さ(要求水頭)よ
りは低く、空気貯蔵槽11との間の水頭差はHmである
ものとする。空気貯蔵槽11から上部水槽12への水の
供給路を成すパイプ(水管) 13の中間部には、パイ
プ13を流れる水によって駆動する水車14が設けられ
ている。この水車14は空気貯蔵槽11に圧縮空気を送
り込む圧縮機15を駆動するための電動機1Bと同軸的
に連結され、圧縮機15の駆動動力の一部として用いら
れるようになっている。圧縮機15の空気出力口には、
圧縮機15から送り出される圧縮空気を冷却し、パイプ
(空気管)17を介して空気管空気貯蔵槽11に送り込
むための冷却器18が設けられている。
[Embodiment] Fig. 1 is a system configuration diagram showing an embodiment of the compressed air storage power generation device of the present invention. In FIG. 1, an upper water tank 12 for air pressure balance is provided above an air storage tank 11 for storing compressed air. The installation position of this upper water tank 12 is lower than the height (required water head) conventionally required for efficient operation of compressed air storage power generation equipment, and the water head difference between it and the air storage tank 11 is Hm. Assume that there is. A water wheel 14 that is driven by water flowing through the pipe 13 is provided in the middle of a pipe (water pipe) 13 that forms a water supply path from the air storage tank 11 to the upper water tank 12 . This water wheel 14 is coaxially connected to an electric motor 1B for driving a compressor 15 that feeds compressed air into the air storage tank 11, and is used as part of the driving power for the compressor 15. At the air output port of the compressor 15,
A cooler 18 is provided to cool the compressed air sent out from the compressor 15 and send it to the air pipe air storage tank 11 via a pipe (air pipe) 17.

第1図の圧縮空気貯蔵発電装置には、空気貯蔵槽11に
貯蔵された圧縮空気により駆動されるガスエキスパンダ
19が設けられている。ガスエキスパンダ19には同エ
キスパンダI9の出力(駆動力)によって発電を行う発
電機20が連結されている。この発電機20には、発電
装置が要求する水頭差を得るために、水頭と要求圧力を
補完するポンプ(水ポンプ)21が同軸的に連結されて
いる。このポンプ21は、上部水槽12がら空気貯蔵槽
11への水の供給路を成すパイプ22の中間部に設けら
れている。
The compressed air storage power generation device shown in FIG. 1 is provided with a gas expander 19 that is driven by compressed air stored in an air storage tank 11. A generator 20 is connected to the gas expander 19 to generate electricity using the output (driving force) of the expander I9. A pump (water pump) 21 that complements the water head and required pressure is coaxially connected to the generator 20 in order to obtain the water head difference required by the power generation device. This pump 21 is provided in the middle of a pipe 22 that forms a water supply path from the upper water tank 12 to the air storage tank 11 .

ガスエキスパンダ19の入力口には、空気貯蔵槽IIか
らパイプ23を介して取出された空気を加熱するための
燃焼器24が設(すられ、同排気口には、空気再生用の
再生器25が接続されている。
A combustor 24 for heating the air taken out from the air storage tank II via a pipe 23 is installed at the input port of the gas expander 19, and a regenerator for air regeneration is installed at the exhaust port. 25 are connected.

さて、第1図の圧縮空気貯蔵発電装置では、空気貯蔵槽
11には、圧縮機15からの圧縮空気送り込みにより、
圧力Pで空気が貯蔵される。しかし、空気貯蔵槽1工と
上部水槽I2との水頭差Hは、上部水槽12の取付は位
置が要求水頭より低い本実施例では、 P>Hγ(γは水の密度) の関係にあり、水頭差Hだけでは圧力Pを維持できない
。そこで、空気貯蔵槽ll内の空気を取出して発電に用
いる場合に、空気の放出に従って圧力Pが低下するのを
防止するため、上部水槽12の水をポンプ21を用いて
バイブ22を介して空気貯蔵槽11に補給する。この際
、ポンプ21を通過する水量は、空気貯蔵槽11から放
出される空気流量(容積流量)、即ち空気貯蔵槽11内
の空気の減少量に相当し、昇圧する圧力は P−Hγ となる。
Now, in the compressed air storage power generation device shown in FIG.
Air is stored at pressure P. However, in this embodiment, the difference in water head between the air storage tank 1 and the upper water tank I2 is as follows: P>Hγ (γ is the density of water). The pressure P cannot be maintained by the head difference H alone. Therefore, when the air in the air storage tank 11 is taken out and used for power generation, in order to prevent the pressure P from decreasing as the air is released, the water in the upper water tank 12 is pumped into the air via the vibrator 22 using the pump 21. Replenish the storage tank 11. At this time, the amount of water passing through the pump 21 corresponds to the air flow rate (volume flow rate) released from the air storage tank 11, that is, the amount of decrease in the air in the air storage tank 11, and the pressure to increase is P-Hγ. .

空気貯蔵槽11から放出される空気はバイブ23を介し
て再生器25に供給され、同再生器25にて予熱される
。再生器25によって予熱された空気貯蔵槽11からの
放出空気は燃焼器24内で内燃加熱され、更にガスエキ
スパンダ19にて膨張されることで、発電機20の動力
として取出され、発電機20による発電が行われる。ガ
スエキスパンダ19の軸上には発電機20の他にポンプ
21が設けられており、ガスエキスパンダ19の出力の
一部はポンプ21を駆動する動力として使用される。
Air released from the air storage tank 11 is supplied to the regenerator 25 via the vibrator 23 and is preheated in the regenerator 25. The air discharged from the air storage tank 11 that has been preheated by the regenerator 25 is internally heated in the combustor 24 and further expanded in the gas expander 19 to be extracted as power for the generator 20. electricity is generated by A pump 21 is provided on the shaft of the gas expander 19 in addition to a generator 20, and a portion of the output of the gas expander 19 is used as motive power to drive the pump 21.

一方、空気貯蔵槽11に空気を貯蔵する場合は、電動a
l18によって圧縮機I5を駆動して空気を圧縮する。
On the other hand, when storing air in the air storage tank 11, an electric a
The compressor I5 is driven by l18 to compress the air.

圧縮機15によって圧縮された空気は冷却器18にて冷
却された後バイブ17を介して空気貯蔵槽11に圧送さ
れる。このとき、空気貯蔵槽11内に充満している水は
パイプ13を介して上部水槽12に押上げられるが、P
>Hγの関係があることから、本実施例では空気貯蔵槽
11の圧力(内圧)Pを所定圧に保つためにバイブ13
にP−Hγだけの抵抗、具体的にはこの差圧P−Hγを
回収する水車14を設け、その動力を得るようにしてい
る。この水車14は圧縮機15及び電動機16と同一軸
上にあり、水車14の動力は圧縮機15の駆動動力の一
部として利用される。
The air compressed by the compressor 15 is cooled by a cooler 18 and then sent under pressure to the air storage tank 11 via a vibrator 17. At this time, the water filling the air storage tank 11 is pushed up to the upper water tank 12 via the pipe 13, but P
Since there is a relationship of >Hγ, in this embodiment, the vibrator 13 is
A water wheel 14 is provided to collect a resistance equal to P-H[gamma], specifically, this differential pressure P-H[gamma], and the power thereof is obtained. This water wheel 14 is located on the same axis as the compressor 15 and the electric motor 16, and the power of the water wheel 14 is used as part of the driving power of the compressor 15.

次に本発明の他の実施例を第2図を参照して説明する。Next, another embodiment of the present invention will be described with reference to FIG.

なお、第1図と同一部分には同一符号を付して詳細な説
明を省略する。
Note that the same parts as in FIG. 1 are given the same reference numerals and detailed explanations are omitted.

第2図は第1図の圧縮空気貯蔵発電装置の一部を共通化
して構成の簡略化を図ったものである。
FIG. 2 shows a simplified configuration by sharing a part of the compressed air storage power generation device shown in FIG. 1.

即ち第2図の圧縮空気貯蔵発電装置においては、空気貯
蔵槽11から上部水槽12へと、上部水槽12がら空気
貯蔵槽11への水供給用に、2第1図の2本のパイプ1
3.22に代えて1本のバイブ31で兼用し、空気貯蔵
槽11から上部水槽I2への水供給(圧縮行程の場合)
と、上部水槽12がら空気貯蔵槽11への水供給(発電
行程の場合)とを、バルブ31.32で切替えるように
している。また、第2図の圧縮空気貯蔵発電装置におい
ては、第1図の電動機16と発電機20とを共通化した
電動機/発電機34が設けられ、同電動機/発電機34
に第1図の水車14とポンプ21とを共通化した水車/
ポンプ35が連結された構成となっている。電動機/発
電機34及び水車/ポンプ35は圧縮機15及びガスエ
キスパンダ19と同一軸上に設けられている。水車/ポ
ンプ35と圧縮機15との間には、圧縮行程においては
結合が、発電行程においては切離しがそれぞれ行われる
クラッチ3Bが介挿され、電動機/発電機34とガスエ
キスパンダ19との間には、圧縮行程においては切離し
か、発電行程においては結合がそれぞれ行われるクラッ
チ37が介挿される。以上のように第2図の圧縮空気貯
蔵発電装置では、共通化されたパイプ31、電動機/発
電機34及び水車/ポンプ35を用いた簡単な構成であ
りながら、バルブ32.83とクラッチ38.37の切
替え操作により、圧縮行程/発電行程を分離して正しい
運用が可能となる。
That is, in the compressed air storage power generation device shown in FIG. 2, the two pipes 1 shown in FIG.
3. Use one vibrator 31 instead of 22 to supply water from the air storage tank 11 to the upper water tank I2 (in case of compression stroke)
and water supply from the upper water tank 12 to the air storage tank 11 (in the case of power generation process) are switched by valves 31 and 32. In addition, in the compressed air storage power generation device shown in FIG. 2, a motor/generator 34 is provided, which is the same as the motor 16 and the generator 20 shown in FIG.
A water turbine in which the water turbine 14 and pump 21 in Fig. 1 are shared/
It has a configuration in which a pump 35 is connected. The electric motor/generator 34 and the water turbine/pump 35 are provided on the same axis as the compressor 15 and gas expander 19. A clutch 3B is inserted between the water turbine/pump 35 and the compressor 15 and is connected in the compression stroke and disconnected in the power generation stroke, and is interposed between the electric motor/generator 34 and the gas expander 19. A clutch 37 is inserted, which is disengaged during the compression stroke and engaged during the power generation stroke. As described above, the compressed air storage power generation device shown in FIG. 2 has a simple configuration using the common pipe 31, motor/generator 34, and water turbine/pump 35, but the valves 32, 83, clutch 38. By the switching operation No. 37, the compression stroke/power generation stroke can be separated to enable correct operation.

上記した第1図及び第2図の圧縮空気貯蔵発電装置にお
ける入出力と水頭差との関係を、第3図にグラフ化して
示す。同図において、横軸は水頭差Hを、縦軸は出力及
び入力を示す。図に示すように、水頭差Hと圧力Pが一
致したところでは、ポンプ入力、水車出力はO(零)と
なり、この入出力は水頭差Hが小さくなるに比例して増
加する。
The relationship between the input/output and the water head difference in the compressed air storage power generating apparatus shown in FIGS. 1 and 2 described above is shown graphically in FIG. 3. In the figure, the horizontal axis shows the water head difference H, and the vertical axis shows the output and input. As shown in the figure, when the water head difference H and the pressure P match, the pump input and the water turbine output become O (zero), and this input/output increases in proportion to the water head difference H becoming smaller.

したがって、ある水頭差ではガスエキスパンダ出力から
ポンプ入力を差引いたものが有効出力となり、圧縮機入
力から水車出力を差引いたものが必要人力となる。
Therefore, for a certain water head difference, the effective output is the gas expander output minus the pump input, and the required manpower is the compressor input minus the water turbine output.

以上は圧縮空気貯蔵発電装置について説明したが、空気
貯蔵槽に圧縮空気を貯蔵し、この圧縮空気を発電のため
に取出す構成は、例えば工場用の空気源装置にも応用可
能である。第4図は、このような工場用空気源装置の一
実施例を示すシステム構成図であり、第1図及び第2図
と同一部分には同一符号を付しである。第4図の工場用
空気源装置では、電動機工6と水車/ポンプ35とが連
結され、水車/ポンプ35には圧縮機15がクラッチ3
6を介して連結されている。第4図の構成においては、
例えば空気貯蔵槽11に空気を貯蔵する場合には、水車
/ポンプ35は(第1図に示す水車14と同様の)水車
として作用し、クラッチ3Bにより圧縮機工5を水車/
ポンプ35と結合することにより、水車/ポンプ35の
発生動力が圧縮機15の駆動動力の一部として利用され
る。圧縮機15の駆動動力の残りは電動機1Bによって
供給される。以上の空気貯蔵は、例えば夜間の余剰電力
によって電動機16を駆動することで行われる。次に、
空気貯蔵槽11に貯蔵された空気を、例えば昼間に使用
先へ供給する場合には、水車/ポンプ35は(第1図に
示すポンプ21と同様の)ポンプとして作用し、電動機
16にて水車/ポンプ35を駆動することにより上部水
槽12がら空気貯蔵tailに水を補給する。この際に
は、電動機1Bの動力が圧縮機15に伝達されないよう
にクラッチ3Gを切離して用いる。
Although the compressed air storage power generation device has been described above, the configuration of storing compressed air in an air storage tank and taking out the compressed air for power generation can also be applied to, for example, an air source device for a factory. FIG. 4 is a system configuration diagram showing one embodiment of such a factory air source device, and the same parts as in FIGS. 1 and 2 are given the same reference numerals. In the factory air source device shown in FIG.
They are connected via 6. In the configuration shown in Figure 4,
For example, when storing air in the air storage tank 11, the water wheel/pump 35 acts as a water wheel (similar to the water wheel 14 shown in FIG.
By coupling with the pump 35, the power generated by the water turbine/pump 35 is used as part of the driving power for the compressor 15. The remainder of the driving power for the compressor 15 is supplied by the electric motor 1B. The above air storage is performed, for example, by driving the electric motor 16 using surplus electricity at night. next,
When the air stored in the air storage tank 11 is to be supplied to a user during the day, for example, the water wheel/pump 35 acts as a pump (similar to the pump 21 shown in FIG. 1), and the electric motor 16 drives the water wheel. /By driving the pump 35, water is replenished from the upper water tank 12 to the air storage tail. At this time, the clutch 3G is disconnected and used so that the power of the electric motor 1B is not transmitted to the compressor 15.

[発明の効果コ 以上詳述したように本発明の圧縮空気貯蔵発電装置によ
れば、空気の貯蔵時には上部水槽と空気貯蔵槽とに水頭
差があることから、これを動力として回収する水車を電
動機と同軸に設けると共に、発電装置が要求する水頭差
を得るために、水頭と要求圧力を補完するポンプを発電
機と同軸に設け、上部水槽と空気貯蔵槽とを水車及びポ
ンプを各々介して連結する構成としたので、以下の作用
効果を得ることができる。
[Effects of the Invention] As detailed above, according to the compressed air storage power generation device of the present invention, when storing air, there is a water head difference between the upper water tank and the air storage tank, so it is necessary to use a water wheel to recover this as motive power. In addition to installing it coaxially with the electric motor, in order to obtain the water head difference required by the generator, a pump that supplements the water head and required pressure is installed coaxially with the generator, and the upper water tank and air storage tank are connected via a water wheel and a pump, respectively. Since the configuration is such that they are connected, the following effects can be obtained.

(1)一定圧力下で空気の出入れができる。(1) Air can be taken in and out under constant pressure.

(2)水頭差が充分とれない場所に設置できる。(2) Can be installed in locations where there is insufficient water head difference.

(3)空気貯蔵槽(圧力容器)内に貯蔵した空気の大部
分(80%以上)が利用できる。
(3) Most (80% or more) of the air stored in the air storage tank (pressure vessel) can be used.

(4)貯蔵圧力が低い場合(10kg/cdゲージ圧以
下)でもシステム熱効率が良い。
(4) System thermal efficiency is good even when storage pressure is low (below 10 kg/cd gauge pressure).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の圧縮空気貯蔵発電装置の一実施例を示
すシステム構成図、第2図は本発明の他の実施例を示す
システム構成図、第3図は第1図及び第2図の圧縮空気
貯蔵発電装置における入出力と水頭差との関係を説明す
るための図、第4図は本発明を応用した工場用空気源装
置の一実施例を示すシステム構成図である。 11・・・空気貯蔵槽、12・・・上部水槽、14・・
・水車、I5・・・圧縮機、I6・・−電動機、19・
・・エキスパンダ、20・・・発電機、21・・・ポン
プ、24・・・燃焼器、34・・・電動機/発電機、3
5・・・水車/ポンプ、:(13,37・・・クラッチ
Fig. 1 is a system configuration diagram showing one embodiment of the compressed air storage power generation device of the present invention, Fig. 2 is a system configuration diagram showing another embodiment of the invention, and Fig. 3 is a diagram similar to Figs. 1 and 2. FIG. 4 is a system configuration diagram showing an embodiment of a factory air source device to which the present invention is applied. 11...Air storage tank, 12...Upper water tank, 14...
・Water wheel, I5...Compressor, I6...-Electric motor, 19.
... Expander, 20... Generator, 21... Pump, 24... Combustor, 34... Electric motor/generator, 3
5...Water wheel/pump, :(13,37...Clutch.

Claims (1)

【特許請求の範囲】 電動機に連結された圧縮空気を空気貯蔵槽へ送り込む圧
縮機と、発電機と連結し、上記空気貯蔵槽内の圧縮空気
により駆動されるエキスパンダとを有する圧縮空気貯蔵
発電装置において、 上記空気貯蔵槽より上方に設けられた上部水槽と、 上記電動機と同軸に設けられた水車と、 上記発電機と同軸に設けられた揚水用ポンプと、を具備
し、上記上部水槽と上記空気貯蔵槽とを上記水車及びポ
ンプを各々介して連結するようにしたことを特徴とする
圧縮空気貯蔵発電装置。
[Claims] A compressed air storage power generation device comprising: a compressor connected to an electric motor to feed compressed air into an air storage tank; and an expander connected to a generator and driven by the compressed air in the air storage tank. The device includes an upper water tank provided above the air storage tank, a water wheel provided coaxially with the electric motor, and a water pump provided coaxially with the generator, the upper water tank and A compressed air storage power generation device characterized in that the air storage tank is connected to the water turbine and the pump through the water turbine and the pump, respectively.
JP30192089A 1989-11-22 1989-11-22 Compressed air storage generating set Pending JPH03164503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30192089A JPH03164503A (en) 1989-11-22 1989-11-22 Compressed air storage generating set

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30192089A JPH03164503A (en) 1989-11-22 1989-11-22 Compressed air storage generating set

Publications (1)

Publication Number Publication Date
JPH03164503A true JPH03164503A (en) 1991-07-16

Family

ID=17902709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30192089A Pending JPH03164503A (en) 1989-11-22 1989-11-22 Compressed air storage generating set

Country Status (1)

Country Link
JP (1) JPH03164503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579700B1 (en) * 2008-05-28 2009-08-25 Moshe Meller System and method for converting electrical energy into pressurized air and converting pressurized air into electricity
CN104005802A (en) * 2013-02-27 2014-08-27 中国科学院工程热物理研究所 Compressed air energy storage system
CN104121049A (en) * 2013-04-28 2014-10-29 中国科学院工程热物理研究所 Compressed air electric power energy storage system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579700B1 (en) * 2008-05-28 2009-08-25 Moshe Meller System and method for converting electrical energy into pressurized air and converting pressurized air into electricity
CN104005802A (en) * 2013-02-27 2014-08-27 中国科学院工程热物理研究所 Compressed air energy storage system
CN104121049A (en) * 2013-04-28 2014-10-29 中国科学院工程热物理研究所 Compressed air electric power energy storage system

Similar Documents

Publication Publication Date Title
US3939356A (en) Hydro-air storage electrical generation system
US9726150B2 (en) Units and methods for energy storage
US9938896B2 (en) Compressed air energy storage and recovery
JP3178961B2 (en) Compressed air energy storage method and system
EP1095212B1 (en) Operating a gas turbine with supplemental compressed air
CN101335473B (en) Generator
EP0377565B1 (en) Retrofit of simple cycle gas turbines for compressed air energy storage application
CN102292533B (en) The CAES power station of the air of humidification is used in the circulating decompressor in the end
CA2591805C (en) Power plant
US5685155A (en) Method for energy conversion
CN102046970A (en) Electrical energy/pressurized air conversion techniques
JP2895937B2 (en) Air storage power plant
CN102418623A (en) Rankine cycle system
JP2008196590A (en) Hydrogen supply station
CN106678541A (en) Continuous flow thermodynamic pump
GB1356488A (en) System for storage and subsequent use of energy
JPH0742573A (en) Compressed air energy storage type power leveling system
US6182615B1 (en) Combustion-driven hydroelectric generating system
JPH03164503A (en) Compressed air storage generating set
CN108350807A (en) Compressed air stores power generator and compressed air stores electricity-generating method
CN116565905A (en) Multi-energy complementary water-gas coexisting energy storage system and energy storage method
US11927374B2 (en) System and method of pumped heat energy storage
US6729136B2 (en) Liquid metal/liquid nitrogen power plant for powering a turbine or any use device
JPH08121699A (en) Pressure governor device for high pressure gas
CN105781742A (en) Energy storage and power generation system