JPH03164443A - Method and apparatus for producing fiber of thermally softening material - Google Patents

Method and apparatus for producing fiber of thermally softening material

Info

Publication number
JPH03164443A
JPH03164443A JP1285563A JP28556389A JPH03164443A JP H03164443 A JPH03164443 A JP H03164443A JP 1285563 A JP1285563 A JP 1285563A JP 28556389 A JP28556389 A JP 28556389A JP H03164443 A JPH03164443 A JP H03164443A
Authority
JP
Japan
Prior art keywords
gas
nozzle
substance
flow
nozzle block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1285563A
Other languages
Japanese (ja)
Inventor
Shinji Onda
音田 新治
Narikazu Yoshii
成和 吉井
Hisao Ishibe
久雄 石部
Yasuji Ueno
上野 安二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Nippon Glass Fiber Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Nippon Glass Fiber Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP1285563A priority Critical patent/JPH03164443A/en
Publication of JPH03164443A publication Critical patent/JPH03164443A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/06Manufacture of glass fibres or filaments by blasting or blowing molten glass, e.g. for making staple fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To prevent the oxidation consumption of a platinum alloy nozzle block by the atm. air by coating the surface of the nozzle block with high-temp. gases of a low oxygen content at the time of producing glass fibers by allowing fused glass to flow out of the orifice of the platinum alloy nozzle block and ejecting the high-temp. gas from plural nozzles. CONSTITUTION:The fused glass 2 is put into the platinum alloy nozzle block 1. The fused glass is allowed to flow down as a circular conical flowing down body 4 from the bottom orifice 3. At least 3 pieces of the nozzles 6 are symmetrically disposed around this orifice 3 and the gaseous flow 7 of a high temp. and high velocity is blown to the circular conical flowing down body 4 of the fused glass to blow off the fused glass as the glass fibers 12. The glass fibers are thus produced. The high temp. gases 11, 11' of the oxygen content as low as 0 to 2vol.% and 800 to 1600 deg.C are injected at 2 to 60m/sec injection rates from a 2nd nozzles 8, 8' at the rate of 10 to 150% of the above-mentioned gaseous flow 7 in this case. The inflow of the atm. air near to the orifice 3 of the nozzle block 1 is prevented by such high-temp. gases 11 and the oxidation consumption of the platinum alloy nozzle block by the atm. air is prevented.

Description

【発明の詳細な説明】 [産業」;の利用分野] 本発明は熱軟化性物質からの繊維の製造方法、特に熱軟
化性物質を加熱溶融!7てなる高温の粘稠物質を流出オ
リフイスから流出させ、,気体噴出ノズルから加熱高速
気体流を吹き出させて前記高温粘間物質をwl維状に}
2て引き伸す繊維の製造方法、例えば該物質に旋回する
ガスジエツl・を作用せしめて該物質の繊維を製造する
t:めの方法、および装置に関する. [従来の抜術] ガラスのような熱軟化性物質からの繊維特に短繊維を効
率よく製造する方法と}一て、本出願人よりいわゆる旋
回ガスジエツ1・法(以下rR.GJ法Jという〉が提
案されている.(特公昭58  57374号)この方
法は熱軟化物質の溶融円柱状流にその進行方向断面外周
の接線方向戊分を有するガス流を溶融物が横方向に変位
するのを妨げるように接触させながら該物質を高速で旋
回させ細められた糸状物質を遠心力によって引き出すよ
うに1〜た熱軟化性物質の繊維の製造方法であるより詳
細に述べると、粘稠物質を流出オリフィスから流出させ
、前記流出オリフィスの周りに周方向に間隔を置いて配
置した、少なくとも3本の気体噴出ノズルから直線状高
速気体流く以下、第1の高速気体流ということがある)
を吹き出させ、ここにおいて前記気体流の各qは、前記
物質の中心軸線を横断する断面の外周に沿う接線方向の
成分ヒ、前記物質の流出方向に向かってまず前記物質の
中心軸線に徐々に接近し、次に前記中心軸線から徐々に
離れていく戒分とを有しており、それにより前記物質の
流出開始部から前記気体流が前記物質の中心軸線に最も
接近する部分までの範囲にある第1の区域において、前
記物質をその中心軸線の周りに0転せしめると共に、そ
の流出方向に向かって断面が徐々に減少する実質上円錐
形状にせしめ、そして第1−の区域に続く第2の区域に
おいて、前記物質を円錐形状の先端から繊維Eにせしめ
て、前記流出方向及び半径方向外方に渦巻き上に飛び出
させ、その後にこの!a維上の前記物質を前記中心軸線
から徐々に離れていく前記気体流に接触させて、さらに
引き延ばしを行うものである. このRGJ法はオリフイスより流出したガラス流に沿っ
て渦巻状に高温高圧ガス流を吹き付けてガラスを細繊化
するので、熱効率的に優れた繊維化法であり、細径m維
を効率よく製造出来る[発明が解決しようとする課題1 このRGJ法では、次のような改良課題が存在するこε
が認められた. すなわち、RGJ法によりガラス繊維の製造を続けてい
ると、次第にノズルブロック下面形状が変化しこの変化
により繊維化の安定が崩れ、良質な繊維を長期間連続し
て製造することが困難となる. 本発明は、かかる課題を克服し、低コストで効率よく短
繊維を製造し得るようにすることを目的としている. [課題を解決するための手段及び作用]本発明者等は、
RGJ法において、繊維化の安定を崩す上記のノズルブ
ロック下面形状の変化の原因についてさらに詳細な検討
を加えた結果、気体噴出ノズルから吹き出される気体噴
出ジェット流に伴って、その周囲の空気が気体流と共に
移動し、オリフィス下方の領域には、移動した空気を補
うかたちでその外周から空気(大気〉が流入することに
なり《この移動空気を伴流という),この件流(空気)
中の酸素によるノズルブロック下面の白金の酸化蒸発が
ノズルブロック下面形状の変化の原因であることが判明
した. さらに本発明者は、 第1のガス流(旋回ガス流〉に伴って、その周囲の空気
が気体流と共に移動しノズルブロック下面およびオリフ
ィス下方の領域にその外周から空気(大気)が流入する
伴流が生じその速度が2〜60 m/sにもなること. 硝子繊維のように繊維化に高温度を要する繊維を製造す
る場合においては,ノズル部を高温に加熱する必要があ
り,かなりの流速をもつ前記伴流が周辺空気である場合
には空気中の酸素によるノズル下面の酸化蒸発が促進さ
れ.静止空気中よりも増加すること. また伴流がオリフィス下方の領域に存在する溶融ガラス
を冷却することによりガラスの粘度が上昇し,延伸効率
を減少させることになり所要の小さな繊維径を得るため
により以上の高温のガラスを必要とすること、および 本出願人による特公昭58−54101 (高温加圧気
体の高速ジェット流噴出方法)の知見を基に、このよう
な白金壁の消耗はそこを通過させる気体の酸素含有率を
小にすることにより防止できること. を知見した. 理解の便のため従来法をその装置についてのベる. 第3図は従来型のRGJ法によるガラスウール製造装置
で,溶融ガラスは図示していない供給装置によって白金
合金製ボット(ノズルブロック)1に供給される.ポッ
ト内の溶融ガラス2は1000〜1 500℃の温度に
保たれている.溶融ガラスはポット1のノズル部分を通
って下端にピッチP(例えば3mmピッチ)で一列に1
0個以上並んだ熱軟化性物質流出オリフィスすなわちガ
ラス流出オリフィス3から流下する.各オリフィス3の
周辺に設けられた旋回ガスジェット噴出用ノズル6より
高速ガスジェット流7を噴出させ,これによってガラス
は細繊化されガラスウール12となる. 繊維化の為の旋回ガスジェット噴出用ノズル6からの高
速ガスジェット流7(速度600〜850m/s)によ
りその周りの大気がその高速ガスジェット流とともに移
動しその流れを補うために周りからのノズルブロック下
面に沿って速度2〜60m/sの大気の流れ〈これを伴
流という〉10が生じて、ノズルブロック下面の白金合
金と伴流中の酸素との接触によって白金合金の酸化蒸発
が起こり下面形状を変化させ繊維化の安定を崩し、良質
な繊維を長期間連続して製造することが困難になると共
に,高価な白金族金属も失われまた伴流によるコーンの
冷却によるガラスの粘度上昇で繊維化効率も悪くなる. 本発明はかかる知見に基いてなされたものである.すな
わち本発明は、白金族金属材料で楕戒されたノズルブロ
ックに流出オリフィスおよび気体噴出ノズルを互いに近
接して穿設し、前記流出オリフィスから高温の粘稠物質
を流出させ、前記気体噴出ノズルから加熱高速気体流を
吹き出させて前記高温粘稠物質を繊維状にして引き伸す
繊維の製造方法において、酸素含有率の低い高温度気体
を前記ノズルブロックの表面を覆うように供給すること
により、前記高速気体流に伴って流出オリフィスの下方
の領域にその外周から流入しようとする大気と前記ノズ
ルブロック表面との接触を防止することを特徴とする繊
維の製造方法である.本発明において、酸素″8看率の
低い高温度気体とi〜7−,′窒素ガスのような不活性
気体も用いることができるが、残酸素濃度を0−2%に
制御し7′:コ燃焼ガスを用いる車が好ましい。こt1
により該オリフィスノズルの下面の酸素濃度を減少させ
ると共にノズルブロックの温度を低くすることにより酸
化蒸発量を・減少し,白金合含壁の消耗および変形を防
止するものである5さらにコーン部の/8融ガラスの放
熱を防止することにより繊維化効率を上げ結果的にはノ
ズルブロ・ソクの下面温度を低く出来る。
[Detailed Description of the Invention] [Field of Application of Industry] The present invention relates to a method for producing fibers from a heat-softening substance, and in particular, a method for producing fibers from a heat-softening substance, in particular heating and melting a heat-softenable substance! A high-temperature viscous substance consisting of 7 is flowed out from an outflow orifice, and a heated high-speed gas flow is blown out from a gas jet nozzle to turn the high-temperature viscous substance into a fibrous form}
2. A method and apparatus for producing fibers made of the material by applying a swirling gas jet to the material. [Conventional Extraction Technique] A method for efficiently producing fibers, especially short fibers, from heat-softening materials such as glass} The present applicant has proposed the so-called whirling gas jet method (hereinafter referred to as rR.GJ method J). (Japanese Patent Publication No. 58 No. 57374) This method involves passing a gas flow having a tangential component to the outer periphery of a molten columnar flow of a thermally softened material in a direction in which the molten material is displaced in the lateral direction. This is a method for producing fibers of a heat-softening material, in which the material is rotated at high speed while being in contact with each other so as to prevent the material from flowing, and the thinned filamentous material is drawn out by centrifugal force. (hereinafter referred to as a first high-speed gas flow)
Here, each q of the gas flow has a tangential component H along the outer periphery of a cross section that crosses the central axis of the substance, and a component H in the tangential direction along the outer circumference of the cross section that intersects the central axis of the substance, and a component H that gradually approaches the central axis of the substance toward the outflow direction of the substance. and then gradually move away from the central axis, so that the gas flow extends from the beginning of the outflow of the substance to the part where the gas flow is closest to the central axis of the substance. In a certain first zone, the material is caused to rotate around its central axis and to form a substantially conical shape whose cross section gradually decreases in the direction of its outflow; In the region of !, the substance is forced into fibers E from the conical tip and spirals out in the outflow direction and radially outward, and then in this ! The substance on the a-fiber is brought into contact with the gas flow that gradually moves away from the central axis to further stretch it. This RGJ method blows a high-temperature, high-pressure gas flow in a spiral shape along the glass flow flowing out of an orifice to make the glass into fine fibers, so it is a fiberization method with excellent thermal efficiency and efficiently produces small-diameter m-fibers. [Problem to be solved by the invention 1] This RGJ method has the following improvement problems.
was recognized. In other words, if glass fibers are manufactured continuously by the RGJ method, the shape of the bottom surface of the nozzle block will gradually change, and this change will disrupt the stability of fiberization, making it difficult to continuously manufacture high-quality fibers over a long period of time. The present invention aims to overcome such problems and to enable short fibers to be produced efficiently at low cost. [Means and effects for solving the problem] The present inventors,
In the RGJ method, we conducted a more detailed study on the cause of the above-mentioned change in the shape of the bottom surface of the nozzle block that disrupts the stability of fiberization.As a result, we found that the air around the nozzle is It moves with the gas flow, and air (atmosphere) flows into the area below the orifice from the outer periphery to supplement the moved air (this moving air is called wake), and this flow (air)
It was found that oxidation and evaporation of platinum on the bottom surface of the nozzle block due to oxygen inside the nozzle block caused the change in the shape of the bottom surface of the nozzle block. Furthermore, the present inventor has proposed that as the first gas flow (swirling gas flow), the surrounding air moves with the gas flow, and air (atmosphere) flows into the lower surface of the nozzle block and the area below the orifice from the outer periphery. A flow occurs and the speed reaches 2 to 60 m/s.When manufacturing fibers such as glass fibers that require high temperatures to form, it is necessary to heat the nozzle to a high temperature, which causes a considerable amount of heat. When the wake with a flow velocity is ambient air, oxidation and evaporation of the lower surface of the nozzle due to oxygen in the air is promoted and increases compared to when in still air.Also, when the wake is present in the region below the orifice, oxidation and evaporation of the lower surface of the nozzle is accelerated. By cooling the glass, the viscosity of the glass increases, reducing the drawing efficiency and requiring a higher temperature glass in order to obtain the required small fiber diameter. Based on the knowledge of a method for ejecting a high-speed jet stream of high-temperature pressurized gas, we discovered that such wear on the platinum wall can be prevented by reducing the oxygen content of the gas that passes through it. For convenience, we will explain the conventional method for the equipment. Figure 3 shows a glass wool manufacturing equipment using the conventional RGJ method, in which molten glass is supplied to a platinum alloy bot (nozzle block) 1 by a supply device (not shown). The molten glass 2 in the pot is maintained at a temperature of 1,000 to 1,500°C.The molten glass passes through the nozzle part of the pot 1 and is blown in a line at a pitch P (for example, 3 mm pitch) to the lower end.
It flows down from zero or more heat softening substance outflow orifices, that is, glass outflow orifices 3. A high-speed gas jet stream 7 is ejected from a swirling gas jet ejection nozzle 6 provided around each orifice 3, whereby the glass is finely divided into glass wool 12. Due to the high-speed gas jet flow 7 (velocity 600 to 850 m/s) from the swirling gas jet ejection nozzle 6 for fiberization, the surrounding atmosphere moves with the high-speed gas jet flow, and in order to supplement the flow, the surrounding atmosphere moves. An atmospheric flow (referred to as a wake) 10 at a speed of 2 to 60 m/s is generated along the lower surface of the nozzle block, and the platinum alloy on the lower surface of the nozzle block comes into contact with oxygen in the wake, causing oxidation and evaporation of the platinum alloy. This causes a change in the shape of the lower surface, disrupting the stability of fiber formation, and making it difficult to continuously produce high-quality fibers over a long period of time.In addition, expensive platinum group metals are also lost, and the viscosity of the glass decreases due to cooling of the cone by the wake. As the temperature rises, the fiberization efficiency also deteriorates. The present invention has been made based on this knowledge. That is, in the present invention, an outflow orifice and a gas ejection nozzle are bored in close proximity to each other in a nozzle block made of platinum group metal material, a high temperature viscous substance flows out from the outflow orifice, and a high-temperature viscous substance flows out from the gas ejection nozzle. In the method for manufacturing fibers, in which the high-temperature viscous substance is made into a fiber and drawn by blowing out a heated high-speed gas flow, by supplying high-temperature gas with a low oxygen content so as to cover the surface of the nozzle block, This method of manufacturing fibers is characterized in that the air which tends to flow from the outer periphery of the outflow orifice into the lower region of the outflow orifice due to the high-speed gas flow is prevented from coming into contact with the nozzle block surface. In the present invention, a high-temperature gas with a low oxygen concentration and an inert gas such as nitrogen gas can also be used, but the residual oxygen concentration is controlled to 0-2%. A car that uses combustion gas is preferable.
By reducing the oxygen concentration on the lower surface of the orifice nozzle and lowering the temperature of the nozzle block, the amount of oxidation and evaporation is reduced, and the wear and deformation of the platinum alloy-containing wall is prevented. 8. By preventing heat dissipation from the molten glass, the fiberization efficiency can be increased and the temperature of the bottom surface of the nozzle blower and sink can be lowered as a result.

づ−なわち、本発明は、高温度飼ノーば1 2 0 0
℃以土の温度に保たれた白金族金属材料製のノズルブI
コックr面において.旋回ガスジエツl・噴出用ノスル
6からの高速ガスジェッl・による下面でのfト清1.
 Oの1−<なくとも一部を第2の噴田ノズル8により
酸素含有率を0−2容量%好ましくは0”−0.5容量
%の気体に置き換えることによりノズルF面の出金合金
の酸化蒸発を防止するものである9 F実施例〕 以下に,第1図及び第2図に示す実施例を参照i一なが
ら,本発明につl+’iてさらに詳細に説明する.第1
図は本発明の繊維化装置の一実施態様の概略部分底面図
であり。第2図は第1図のI−X線に沿った概略部分断
面図である.第1図及び第2図に示すR G J旋回ガ
ス噴流装置において、白金製ボット1はガラス流出オリ
フィス3およびガスジヱッI・噴出ノズル6.6′を有
する.1.300〜1450’Cに加熱された溶融ガラ
ス2は白金製のポットのガラス流出オリフィス3がら流
出し溶融円錐状流(コーン)4を形成したのちガスジェ
ット噴出ノズル6、6′から噴出する第1の気体流7.
7′により延伸され繊維12となる.旋回ガスジヱット
噴出用マニボールド5、5゜につながる第】の気体噴出
ノズル6,6゜は,それらの噴出口からl000〜15
00℃の高速ガスジェット流が.前記オリフィス3がら
流出する溶融ガラス2の中心Illl線を横断する断面
の外周に沿う接線方向の成分と,溶融ガラス2の流出方
向に向かってまず該流出流れの中心軸線に係々に接近1
〜,次に,?ffi流串流l],の中心軸線から徐々に
Mれていく成分とを有する方向を指向して配j1されて
いる.なお1第1図において第】のガス噴出ノズルは4
個示されているが、その数は制限的ではないが少なくと
も3個あることが好ま17い.また,本発明のガラス繊
維化袋置においては第1のガス噴出ノズル6,6゜が溶
融ガラス流出オリフィス3の周囲にほぼ対称に配置され
ているのが好適である.さらにまt:、図には示してい
ないが、第1、のガス噴出ノズルの外側に補助のガス噴
出ノズルを複数個設けてもよく、その中心軸は第1のガ
ス噴出ノズルの中心軸線が流出オリフィス3の中心軸線
に最も接近する点、すなわち、第1の収斂点Aのさらに
下方であって該溶融ガラス流出オリフィス3の中心Ia
1線上にほぼ収斂するか又は完全に収斂する第2の収斂
点を有しているか、あるいは該溶融ガラス流出オリフィ
スの中心軸に並行であってもよい, 第1.2図において8.8゛は、オリフィス3の下方領
域に,第1の気体流による伴流の一部を第2の気体流に
置換するための第2のノズルであって,オリフィス3を
挟んで対向配置されている.なお.本実施例では,ノズ
ル8.8′はガスパナーのノズルとなっており,ブタン
等の燃料ガスと空気等の酸素を含むガスとの混合ガス9
、9゛(当量比0.9−1.1>が混合室13、13に
導入され,予混合ガス噴田用スクリーン8a,8a’を
通ってノズル8、8゜の内部で燃焼1−で約1350℃
になった燃焼ガスが第2の気体流】!.,ll’hして
ノズルブロック下面(または外壁面)に沿ってオリフィ
ス中心軸へ向かって流れ込むよう水平姿勢にて設置され
ている.ノズルブロック下面に沿って周囲から供給する
ことにより、第1の気体流の伴流の一部として該下方領
域に取り込まれる.混合ガス中のブタン等の燃料ガスと
空気の混合割合を調整して前記の第2の気体流1】,1
1“を残酸素濃度0〜1容量%に制御して、ノズルブロ
ック下面を第2の気体流で覆い下面への酸素の供給すな
わち大気の伴流].0.10“をノズルブロック下面よ
り遮断又は減少させることができる.そして,これによ
り,ノズルブロック下面の白金酸化蒸発を防止する効果
がえられる.なお.第2の気体流11の必要な量は単位
繊維化装置あたり、第1の気体流の10〜150%とり
わけ30〜100%(列状に並んだガラス流出オリフィ
ス の単位長さ当り0.3〜2.0Nm3/H.cm)程度
とするのが好適である. 第2のノズル8の好ましい位置関係はスリット幅S3=
2〜lOmmであって、 コーン形成を阻害しない位置(間隔S2=10〜30m
m)に取り付けられる. 間隔S2及びスリット幅S3はノズル下面の第2の気体
流被覆厚みを確保する上で間隔S2はスリット幅S3の
10倍以下が好ましい5また間隔S2をあまり大きくす
ると第2の気体流の必要量が大きくなるので、ガラスの
コーン形成を阻害しない範囲、すなわち旋回ガスジェッ
ト噴出用ノズルの開口面における中心軸間の距離を81
として間隔S2がS1の2倍以上で、小さくすること(
たとえばS2を81の2倍ないし2.5倍)が好ましい
.次に第2の気体流として燃焼ガスを利用した実施例を
第1表,第2表及び第3表に示す.ただし、第1の気体
流のガス量は列状に並んだガラス流出オリフィス の単位長さあたりの数値である. 実施例1〜3、比較例1 第1の気体流  圧力    3kg/cm2ガス量 
  3Nm3/H.cm 温度(噴出用マニホールド内) 1400℃ 第2の気体流  出口スリット@  S3=4mm間隔
      S2=28mm 温度(予混合ガス噴出用スクリーン内)20〜50℃ 温度(第2の気体流ノズルの内部燃焼温度”)    
  1200〜1450℃結果は第1表に示す通りであ
る. 第1表: 第2の気体流量と白金減耗量 第2表: 第2のa体流量と白金減耗量 実施例4〜6、比較例2 第1の気体流 圧力(噴出用マニホールド内) 3kg/cm2 ガス量       3Nm3/H.cm温度(噴出用
マニホールド内)1350℃第2の気体流 出口スリット幅     S3=2mm間隔     
    S2=14mm温度(千混合ガス噴出用スクリ
ーン内)20〜50℃ 温度(第2の気体流ノズルの内部燃焼温度)     
 1150〜1400℃結果は第2表に示す通りである
. 比較例3、実施例6 結果は第3表に示す通りである. 第:3表 第2 v)′戟体(AK ( fl’治の温度)
In other words, the present invention is based on high-temperature feeding.
Nozzle I made of platinum group metal material maintained at a temperature below ℃
On the cock r side. Cleaning of the lower surface by a swirling gas jet and a high-speed gas jet from the jet nozzle 6 1.
The dispensing alloy on the face of the nozzle F is replaced by a gas having an oxygen content of 0-2% by volume, preferably 0"-0.5% by volume, through the second blower nozzle 8 at least a part of O. 9F Embodiment] The present invention will be explained in more detail below with reference to the embodiments shown in FIGS. 1 and 2.
The figure is a schematic partial bottom view of one embodiment of the fiberizing device of the present invention. Figure 2 is a schematic partial cross-sectional view taken along line I-X in Figure 1. In the R G J swirling gas jet device shown in FIGS. 1 and 2, a platinum bot 1 has a glass outflow orifice 3 and a gas jet I/spout nozzle 6.6'. The molten glass 2 heated to 1.300-1450'C flows out of the glass outflow orifice 3 of the platinum pot, forms a molten cone 4, and then jets out from the gas jet jet nozzles 6, 6'. First gas flow7.
7' to form fiber 12. The gas jet nozzles 6, 6° connected to the manibolds 5, 5° for swirling gas jet jets are located 1000 to 15° from their jet ports.
A high-speed gas jet flow at 00℃. The tangential component along the outer periphery of the cross section that crosses the center line Illll of the molten glass 2 flowing out from the orifice 3, and the component 1 that approaches the central axis of the outflow flow toward the outflow direction of the molten glass 2.
~,next,? ffi flow skew flow l], and a component gradually moving away from the central axis of the flow direction. Note that in Figure 1, the gas ejection nozzle marked with ] is 4.
Although the number is not limited, it is preferable that there be at least three. Further, in the glass fiber bag holder of the present invention, it is preferable that the first gas jet nozzles 6, 6° are arranged approximately symmetrically around the molten glass outflow orifice 3. Furthermore, although not shown in the figure, a plurality of auxiliary gas jetting nozzles may be provided outside the first gas jetting nozzle, and the central axis of the auxiliary gas jetting nozzle is parallel to the central axis of the first gas jetting nozzle. A point closest to the central axis of the outflow orifice 3, that is, a point further below the first convergence point A and the center Ia of the molten glass outflow orifice 3
8.8 in Figure 1.2, having a second point of convergence that is substantially or completely convergent in a line, or may be parallel to the central axis of the molten glass outflow orifice; is a second nozzle for replacing a part of the wake of the first gas flow with a second gas flow in a region below the orifice 3, and is disposed opposite to the orifice 3 with the orifice 3 in between. In addition. In this embodiment, the nozzle 8.8' is a gas spanner nozzle, and is used to produce a mixed gas 9 of a fuel gas such as butane and a gas containing oxygen such as air.
, 9゛ (equivalent ratio 0.9-1.1>) is introduced into the mixing chambers 13, 13, passes through the premixed gas nozzle screens 8a, 8a' and burns inside the nozzles 8, 8゜. Approximately 1350℃
The resulting combustion gas is the second gas flow]! .. , ll'h, and is installed in a horizontal position so that it flows along the bottom surface (or outer wall surface) of the nozzle block toward the center axis of the orifice. By supplying the gas from the periphery along the lower surface of the nozzle block, it is taken into the lower region as part of the wake of the first gas flow. The mixing ratio of fuel gas such as butane and air in the mixed gas is adjusted to produce the second gas flow 1], 1.
1" is controlled to a residual oxygen concentration of 0 to 1% by volume, and the lower surface of the nozzle block is covered with a second gas flow. Oxygen supply to the lower surface, that is, the wake of the atmosphere].0.10" is blocked from the lower surface of the nozzle block. Or it can be decreased. This also has the effect of preventing platinum oxidation and evaporation on the bottom surface of the nozzle block. In addition. The required amount of the second gas stream 11 is 10 to 150%, in particular 30 to 100%, of the first gas stream per unit fiberizing device (0.3 to 10% per unit length of the row of glass outlet orifices). It is preferable to set it to about 2.0Nm3/H.cm). The preferred positional relationship of the second nozzle 8 is that the slit width S3=
2 to 10 mm and does not inhibit cone formation (spacing S2 = 10 to 30 m)
m). The distance S2 and the slit width S3 are preferably 10 times or less than the slit width S3 in order to ensure the thickness of the second gas flow covering the bottom surface of the nozzle5.In addition, if the distance S2 is too large, the required amount of the second gas flow will be reduced. becomes large, so the distance between the central axes on the opening surface of the swirling gas jet nozzle should be set at 81, which is a range that does not inhibit the formation of a cone in the glass.
The interval S2 must be at least twice that of S1, and it must be made smaller (
For example, it is preferable that S2 be 2 times to 2.5 times that of 81). Next, Tables 1, 2, and 3 show examples in which combustion gas is used as the second gas flow. However, the gas amount of the first gas flow is a value per unit length of the glass outflow orifices arranged in a row. Examples 1 to 3, Comparative Example 1 First gas flow Pressure 3 kg/cm2 Gas amount
3Nm3/H. cm Temperature (inside the jetting manifold) 1400°C Second gas flow outlet slit @ S3 = 4mm interval S2 = 28mm Temperature (inside the screen for premixed gas jetting) 20-50°C Temperature (internal combustion of the second gas flow nozzle temperature")
The results at 1200-1450°C are shown in Table 1. Table 1: Second gas flow rate and platinum depletion Table 2: Second gas flow rate and platinum depletion Examples 4 to 6, Comparative Example 2 First gas flow pressure (inside the jetting manifold) 3 kg/ cm2 Gas amount 3Nm3/H. cm Temperature (inside the blowout manifold) 1350℃ Second gas outlet slit width S3 = 2mm interval
S2 = 14mm Temperature (inside the screen for ejecting mixed gas) 20 to 50°C Temperature (internal combustion temperature of the second gas flow nozzle)
The results at 1150-1400°C are shown in Table 2. Comparative Example 3, Example 6 The results are shown in Table 3. Chapter: 3 Table 2 v)' Temperature of AK (fl')

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の繊維化装置の一実施態様の概略部分底
面図であり、第2図は第1図のI−I線に沿った概唱部
分断面図であり、第3図は従来型の装置を説明する概略
部分底面図であり第4図は第3図のII−IX線に沿っ
た概略部分断面図である.第5図は本発明の第2の気体
噴出ノズルの取付例を示したものである. 1 白金合金性ノズルブロック 1゛ボットケーシング 2 溶融ガラス 3 ガラス流出オリフィス 4 溶融円錐状流(コーン〉 5,5′旋回ガスジエツ1一噴出用マニホールド6.6
’D回ガスジェット噴出用ノズル7.7゛ 高速ガスジ
ェッ1・流 8、8“ 第2の気体噴出ノズル 8a,8a’矛混合ガス噴出用スクリーン9.9′ 可
燃性予混合ガス 10.10’  ノズルブロック周囲の大気伴流11.
11’  第2の気体流 12 繊I1t流 S1 旋回ガスジェット噴出用ノズルの開口面に才二け
る中心軸間の距離 S2 第2のノズルの間隔
FIG. 1 is a schematic partial bottom view of an embodiment of the fiberizing apparatus of the present invention, FIG. 2 is a schematic partial cross-sectional view taken along line I-I in FIG. 1, and FIG. 4 is a schematic partial bottom view illustrating the mold apparatus, and FIG. 4 is a schematic partial sectional view taken along the line II-IX in FIG. 3. FIG. 5 shows an example of mounting the second gas jet nozzle of the present invention. 1 Platinum alloy nozzle block 1 Bot casing 2 Molten glass 3 Glass outflow orifice 4 Melt cone flow (cone) 5,5' swirling gas jet 1 - Manifold for ejection 6.6
'D-time gas jet ejection nozzle 7.7' High-speed gas jet 1/flow 8, 8' Second gas ejection nozzle 8a, 8a' Mixed gas ejection screen 9.9' Flammable premixed gas 10.10' Atmospheric wake around the nozzle block 11.
11' Second gas flow 12 Fiber I1t flow S1 Distance between the central axes of the opening surface of the swirling gas jet nozzle S2 Spacing between the second nozzles

Claims (7)

【特許請求の範囲】[Claims] (1)白金族金属材料で構成されたノズルブロックに流
出オリフィスおよび気体噴出ノズルを互いに近接して穿
設し、熱軟化性物質を加熱溶融してなる高温の粘稠物質
を前記流出オリフィスから流出させ、前記気体噴出ノズ
ルから加熱高速気体流を吹き出させて前記高温粘稠物質
を繊維状にして引き伸す熱軟化性物質の繊維の製造方法
において、酸素含有率の低い高温度気体を前記ノズルブ
ロックの表面を覆うように供給することにより、前記高
速気体流に伴って流出オリフィスの下方の領域にその外
周から流入しようとする大気と前記ノズルブロック表面
との接触を防止することを特徴とする熱軟化性物質の繊
維の製造方法。
(1) An outflow orifice and a gas jet nozzle are bored in close proximity to each other in a nozzle block made of a platinum group metal material, and a high-temperature viscous substance made by heating and melting a thermosoftening substance flows out from the outflow orifice. In the method for producing fibers of a heat-softening substance, the high-temperature viscous substance is made into a fiber and drawn by blowing out a heated high-speed gas stream from the gas injection nozzle, the high-temperature gas having a low oxygen content is ejected from the nozzle. By supplying the nozzle block so as to cover the surface of the block, the air which tends to flow into the region below the outflow orifice from the outer periphery along with the high-speed gas flow is prevented from coming into contact with the surface of the nozzle block. A method for producing fibers of a thermosoftening substance.
(2)前記酸素含有率の低い高温度気体は不活性気体ま
たは0〜2容量%の酸素含有率を有する燃焼ガスである
特許請求の範囲第1項に記載の熱軟化性物質の繊維の製
造方法。
(2) Production of fibers of thermosoftening material according to claim 1, wherein the high temperature gas with a low oxygen content is an inert gas or a combustion gas with an oxygen content of 0 to 2% by volume. Method.
(3)前記酸素含有率の低い高温度気体を、前記ノズル
ブロックの下面又は外壁面付近の酸素濃度が0〜5容量
%に維持されるように、前記ノズルブロックの表面部分
に向けて供給する特許請求の範囲第1項に記載の熱軟化
性物質の繊維の製造方法。
(3) The high temperature gas with a low oxygen content is supplied toward the surface portion of the nozzle block so that the oxygen concentration near the bottom surface or outer wall surface of the nozzle block is maintained at 0 to 5% by volume. A method for producing fibers of a heat-softening substance according to claim 1.
(4)前記酸素含有率の低い高温度気体は800〜16
00℃好ましくは1000〜1400℃の高温加熱気体
である特許請求の範囲第1項記載の熱軟化性物質の繊維
の製造方法。
(4) The high temperature gas with low oxygen content is 800 to 16
The method for producing fibers of a heat-softening material according to claim 1, wherein the gas is heated at a high temperature of 00°C, preferably 1000 to 1400°C.
(5)前記酸素含有率の低い高温度気体の流量が前記加
熱高速気体流の流量の10〜150%好ましくは30〜
100%の範囲であり、かつ前記酸素含有率の低い高温
度気体の気体ノズル出口速度が2〜60m/s好ましく
は10〜40m/sの範囲である特許請求の範囲第1項
に記載の熱軟化性物質の繊維の製造方法。
(5) The flow rate of the high temperature gas with a low oxygen content is 10 to 150% of the flow rate of the heated high speed gas flow, preferably 30 to 150%.
100% and the gas nozzle exit velocity of the high temperature gas with low oxygen content is in the range 2 to 60 m/s, preferably in the range 10 to 40 m/s. Method for producing fibers of softenable substances.
(6)前記気体噴出ノズルは前記流出オリフィスの周り
に周方向に間隔を置いて配置した、少なくとも3本のノ
ズルであり、ここから直線状に加熱高速気体流を吹き出
させ、ここにおいて前記気体流の各々は、前記物質の中
心軸線を横断する断面の外周に沿う接線方向の成分と、
前記物質の流出方向に向かつてまず前記物質の中心軸線
に徐々に接近し、次に前記中心軸線から徐々に離れてい
く成分とを有しており、それにより前記物質の流出流れ
はその中心軸線の周りに自転しながら、その流出方向に
向かって断面が徐々に減少する実質上円錐形状にせしめ
、円錐形状の先端から繊維状にせしめて、半径方向外方
に渦巻き上に飛び出させ、引き延ばしを行う特許請求の
範囲第1項〜第5項記載の熱軟化性物質の繊維の製造方
法。
(6) The gas ejection nozzle is at least three nozzles arranged at intervals in the circumferential direction around the outflow orifice, from which a heated high-velocity gas stream is blown out in a straight line, where the gas stream is a tangential component along the outer periphery of a cross section that crosses the central axis of the substance;
The outflow flow of the substance has a component that first gradually approaches the central axis of the substance and then gradually moves away from the central axis, so that the outflow flow of the substance is directed toward the central axis of the substance. While rotating on its own axis, the fiber is formed into a substantially conical shape whose cross section gradually decreases in the direction of its outflow, and from the tip of the conical shape, it is formed into a fiber-like shape, which spirals outward in the radial direction and protrudes into a spiral shape to prevent stretching. A method for producing fibers of a heat-softening material according to claims 1 to 5.
(7)流出オリフィスおよび気体噴出ノズルを互いに近
接して穿設してある、白金族金属材料で構成されたノズ
ルブロックと、 前記流出オリフィスおよび前記気体噴出ノズルが開口し
ている側の前記ノズルブロックの表面に対向する位置で
、かつ前記流出オリフィスから流出する熱軟化性物質を
加熱溶融してなる高温の粘稠物質の進行および前記気体
噴出ノズルから吹き出される加熱高速気体の流れを妨げ
ない位置に設けた遮蔽壁と、 前記遮蔽壁と前記ノズルブロック表面との間の空間に酸
素含有率の低い高温度気体を供給する手段とを有する熱
軟化性物質の繊維の製造装置。
(7) A nozzle block made of a platinum group metal material, in which an outflow orifice and a gas ejection nozzle are bored close to each other, and the nozzle block on the side where the outflow orifice and the gas ejection nozzle are open. at a position facing the surface of the outflow orifice and not interfering with the flow of the high-temperature viscous material formed by heating and melting the heat-softening material flowing out from the outflow orifice and the flow of the heated high-speed gas blown out from the gas jetting nozzle. 1. An apparatus for producing fibers of a thermosoftening material, comprising: a shielding wall provided in the shielding wall; and means for supplying high-temperature gas with a low oxygen content into a space between the shielding wall and the nozzle block surface.
JP1285563A 1989-11-01 1989-11-01 Method and apparatus for producing fiber of thermally softening material Pending JPH03164443A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1285563A JPH03164443A (en) 1989-11-01 1989-11-01 Method and apparatus for producing fiber of thermally softening material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1285563A JPH03164443A (en) 1989-11-01 1989-11-01 Method and apparatus for producing fiber of thermally softening material

Publications (1)

Publication Number Publication Date
JPH03164443A true JPH03164443A (en) 1991-07-16

Family

ID=17693173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1285563A Pending JPH03164443A (en) 1989-11-01 1989-11-01 Method and apparatus for producing fiber of thermally softening material

Country Status (1)

Country Link
JP (1) JPH03164443A (en)

Similar Documents

Publication Publication Date Title
CA1194310A (en) Method and apparatus for producing microfilaments
US4243400A (en) Apparatus for producing fibers from heat-softening materials
US4185981A (en) Method for producing fibers from heat-softening materials
US4123243A (en) Apparatus for forming fibers by toration
CA1092357A (en) Method of manufacturing fibres of inorganic material and apparatus for same
US4033742A (en) Method for producing glass fibers
JPH06503799A (en) Mineral wool and its manufacturing method and device
KR970006204A (en) Method of manufacturing quartz glass blank and apparatus therefor
JPH07503697A (en) Mineral wool manufacturing method and manufacturing device, and mineral wool manufactured thereby
KR900004382B1 (en) Process for producing fine fibers
US4015963A (en) Method and apparatus for forming fibers by toration
US3254977A (en) Process and apparatus for production of fibers from thermoplastic material, particularly glass fibers
US4227906A (en) Environmental control for mineral fiber-forming
JPS59156933A (en) Nozzle drawing process for cleaving melt and drawing nozzle
KR20050005419A (en) Method and Device for Producing Glass Fiber
JPS621335B2 (en)
JPH03164443A (en) Method and apparatus for producing fiber of thermally softening material
JP2796757B2 (en) Method and apparatus for producing glass fiber
US3811850A (en) High speed production of filaments from low viscosity melts
US5255854A (en) Burner head for gas burners
JPS62252336A (en) Production of fiber and device therefor
CA1274394A (en) Non-circular mineral fibers and method and apparatus for making
US4002447A (en) Glass bead forming nozzles and method
JPS62226835A (en) Method and apparatus for producing fiber
JPS5846458B2 (en) Equipment for manufacturing fibers made from thermosoftening substances