JPH03164192A - Bi-specific antibody - Google Patents

Bi-specific antibody

Info

Publication number
JPH03164192A
JPH03164192A JP30614589A JP30614589A JPH03164192A JP H03164192 A JPH03164192 A JP H03164192A JP 30614589 A JP30614589 A JP 30614589A JP 30614589 A JP30614589 A JP 30614589A JP H03164192 A JPH03164192 A JP H03164192A
Authority
JP
Japan
Prior art keywords
antibody
bispecific antibody
specific antibody
antithrombotic
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30614589A
Other languages
Japanese (ja)
Inventor
Fumitsugu Hino
文嗣 日野
Masahiko Katayama
政彦 片山
Ikunoshin Katou
郁之進 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Shuzo Co Ltd
Original Assignee
Takara Shuzo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Shuzo Co Ltd filed Critical Takara Shuzo Co Ltd
Priority to JP30614589A priority Critical patent/JPH03164192A/en
Publication of JPH03164192A publication Critical patent/JPH03164192A/en
Pending legal-status Critical Current

Links

Abstract

NEW MATERIAL:A bi-specific antibody having different antigenic specificities, i.e., activated platelet antigen specificity and antithrombogenic substance specificity, on one antibody molecule. USE:An antithrombogenic agent and a remedy for thrombosis. PREPARATION:The objective bi-specific antibody can be produced e.g. by using an activated platelet specific antibody (e.g. anti-GMP-140 monoclonal antibody) and an antithrombogenic substance specific antibody (e.g. anti-tissue plasminogen activator antibody) as raw materials, digesting the materials with a protease such as pepsin to form F(ab')2 fragments, reducing a disulfide bond bonding H chains of the F(ab')2 fragments to split the F(ab')2 into two half molecules Fab', mixing the Fab' originated from each antibody, oxidizing again under a bonding condition to produce a bi-specific antibody and purifying the antibody with an affinity column containing each antigen in immobilized state.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は一抗体分子上に異なる抗原特異性を持った双特
異性抗体並びにその製法、その適用及び該抗体を含有す
る薬剤に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a bispecific antibody having different antigen specificities on one antibody molecule, a method for producing the same, an application thereof, and a drug containing the antibody.

〔従来の技術〕[Conventional technology]

従来、血栓症の治療には線溶療法が用いられてきた。こ
れは主に、血栓中の主要な夕冫パクであるフイプリンを
溶解させるもので、フィブリン溶解酵素であるプラスミ
ンを生成するブラスミノーゲン7クチベーターが用いら
れている。
Fibrinolytic therapy has traditionally been used to treat thrombosis. This mainly dissolves fibrin, which is the main stimulant in blood clots, and uses blasminogen 7 activator, which produces plasmin, a fibrinolytic enzyme.

最近では、プラスミノーゲンアクチベーターの中にもフ
イブリン親和性の高いものと低いものかあることがわか
り、フィブリン親和性の高い組織型プラスミノーゲンア
クチベーターやプロウロ午ナーゼ等が用いられるように
なった。そして更に、フィブリン親和性を高めるため、
フイフリン特異抗体にブラスミノーゲン7クチペーター
を化学的に共有結合した複合体が作成されている(ラン
ゲM. S. ( Runge K S. )らPro
c.Nsh   A+−J   P−!   t+  
 +   H   +−    −一方、血小板の活性
化は血栓形成の重要な引金であり、血小板が活性化され
ている状態は、血栓準備段階又は血栓傾向にあるとみな
すことができる。そして最近、活性化血小板の膜表面に
特異的に出現し、休止血小板上には出現しない分子量1
4万の糖夕冫パク質が同定され、その特異抗体を用いた
血栓部位の像映診断の可能性が示された(バラグリカT
. K ( ParabricaT. K )らE’r
oc. Nat1、 Acad. Sci. U. S
. A. 8 61036(1989))。
Recently, it has been discovered that some plasminogen activators have a high affinity for fibrin, while others have a low affinity for fibrin, and tissue-type plasminogen activators and prouronase, which have a high affinity for fibrin, have come to be used. Ta. Furthermore, to increase fibrin affinity,
A complex has been created in which plasminogen 7 cutipator is chemically and covalently bonded to a fifurin-specific antibody (Runge M.S. et al.
c. Nsh A+-J P-! t+
+ H +- - On the other hand, activation of platelets is an important trigger for thrombus formation, and a state in which platelets are activated can be considered to be in a stage of preparation for thrombus or a tendency to thrombus. Recently, molecular weight 1, which specifically appears on the membrane surface of activated platelets and does not appear on resting platelets, has been reported.
40,000 glycoproteins were identified, and the possibility of image diagnosis of thrombus sites using their specific antibodies was demonstrated (Balagrica T.
.. K (Parabrica T. K) et al.
oc. Nat1, Acad. Sci. U. S
.. A. 8 61036 (1989)).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般に動脈内で形成される血栓は血小板か主体となり、
静脈内血栓は血小板及びフイブリンが主体となるとされ
ている。したかって、従来のように単にフイブリンをタ
ーゲットとする線溶療法では血栓溶解剤のフイブリンに
対する親和性をいくら高めても、あくまでも形成された
血栓のフイブリンに対する溶解力の増強にしかならず、
血栓形成の非常に初期段階での阻害効果、そして血栓形
或予防効果を希望することばむずかしかった。また上記
のごとき血栓溶解剤と抗体を化学的に結合した場合、そ
の複合体は安定性に欠け、更に血栓溶解剤の活性自身が
化学的結合工程(こより低下してしまう危険があった。
Generally, blood clots that form in arteries are mainly platelets,
It is said that intravenous thrombi are mainly composed of platelets and fibrin. Therefore, in conventional fibrinolytic therapy that simply targets fibrin, no matter how much the affinity of the thrombolytic agent for fibrin is increased, it only increases the ability of the formed thrombus to dissolve fibrin.
It was difficult to hope for an inhibitory effect on the very early stages of thrombus formation, and an effect on preventing thrombus formation. Furthermore, when a thrombolytic agent and an antibody as described above are chemically bonded, the complex lacks stability, and there is a risk that the activity of the thrombolytic agent itself may be reduced due to the chemical bonding process.

本発明は上記従来技術の血栓溶解剤の問題点を克服する
ためになされたものであり、血栓形成部位、更には血栓
形成準備段階の部位へ、抗血栓性物質を特異的に、安定
に、更には活性化した状態で輸送、トラツブする化合物
を提供することにある。
The present invention has been made in order to overcome the problems of the prior art thrombolytic agents, and specifically and stably delivers an antithrombotic substance to the site of thrombus formation, and further to the site in the preparation stage of thrombus formation. Another object of the present invention is to provide a compound that is transported and trapped in an activated state.

〔課題を解決するための手段〕[Means to solve the problem]

本発明を概説すれば、本発明の第1の発明は、一抗体分
子上に活性化血小板抗原特異性と抗血栓性物質特異性と
いう異なる抗原特異性を持つことを特徴とする双特異性
抗体に関し、本発明の第2の発明は、活性化血小板抗原
特異抗体及び抗血栓性物質特異抗体を原料とし、これら
を酵素消化し、各抗体のH鎖間のジスルフィド結合を還
元した後、両抗体断片の各々のH鎖同志を再酸化する工
程を含むことを特徴とする上記双特異性抗体の製造方法
に関し、本発明の第3の発明は、上記双特異性抗体を単
独、又はあらかじめ抗血栓性物質と混合し、これらを血
液循環器系中に注入することを特徴とする血栓部位への
抗血栓性物質の輸送方法に関し、更に本発明の第4の発
明は、上記双特異性抗体、又は双特異性抗体と抗血栓性
物質の混合物を有効成分とすることを特徴と丁る抗血栓
性薬剤に関する。
To summarize the present invention, the first invention of the present invention is a bispecific antibody characterized by having different antigen specificities of activated platelet antigen specificity and antithrombotic substance specificity on one antibody molecule. Regarding this, the second invention of the present invention uses an activated platelet antigen-specific antibody and an antithrombotic substance-specific antibody as raw materials, enzymatically digests these, reduces the disulfide bonds between the H chains of each antibody, and then produces both antibodies. Regarding the method for producing the above-mentioned bispecific antibody, which is characterized by including a step of reoxidizing the H chains of each of the fragments, the third invention of the present invention provides the method for producing the above-mentioned bispecific antibody alone or in advance with an antithrombotic antibody. A fourth aspect of the present invention relates to a method for transporting an antithrombotic substance to a thrombotic site, which is characterized by mixing the antithrombotic substance with an antithrombotic substance and injecting the substance into the blood circulatory system. Alternatively, the present invention relates to an antithrombotic drug characterized by containing a mixture of a bispecific antibody and an antithrombotic substance as an active ingredient.

前記課題は、活性化血小板抗原特異性と抗血栓性物質特
異性という異なる抗原特異性を待った双特異性抗体によ
って解決される。双特異性抗体はニソノフ( Niso
noff)らによる2種類のウサギ抗体から化学的方法
によって調製されたことに代表される種々の公知の方法
が報告されている( Nisonoff A. ,  
Arch. Biocherw Biophys.,−
旦−2  460(1961).ハンマーり冫グU(H
ammerling U) ,  J. Exp. M
ed.,  1 2 8  1461(l968), 
 ラソV. ( Rago V. ), Fed. P
roc.Brennan K ),Science ,
  2 2 9   8 1  (1985))。
The above problem is solved by a bispecific antibody that has different antigen specificities: activated platelet antigen specificity and antithrombotic substance specificity. Bispecific antibodies are produced by Nisonov (Niso
Various known methods have been reported, such as the one prepared by chemical methods from two types of rabbit antibodies by Nisonoff et al. (Nisonoff A.,
Arch. Biocherw Biophys. ,−
Dan-2 460 (1961). Hammer rig U(H)
ammerling U), J. Exp. M
ed. , 1 2 8 1461 (l968),
Laso V. (Rago V.), Fed. P
roc. Brennan K), Science,
2 2 9 8 1 (1985)).

すなわち、これらの方法の基本工程は以下のごとくであ
る。この分野でよく知られた方法で2種の抗原に対する
抗体を各々作成する。続いて、各抗体をペブシンのよう
な適当なプロテアーゼで消化し、F(abつ,断片を生
成させる。次いで各F(ab’),断片を■鎖同志を結
合しているジスルフィド結合を還元するのに充分な条件
にかけて、F(ab’),を二つの半分子(Fab’)
に開裂させる。次いで一方の抗体由来のF a b’を
他の抗体由来のFab’と混合し、結合させうる条件下
で再酸化し、双特異性抗体を作成する。次いで、この双
特異性抗体を混合物から分離する。一つの分離方法は混
合物を双特異性抗体の両半分のいずれかに特異的に結合
しうる抗原を含有したアフィニテイーマトリックスと接
触させ、次いで結合した画分を溶出させ、これを他の半
分子を特異的に結合しうる抗原を含有するアフイニテイ
ーマトリックスと接触させることである。この第2の一
 L  n  +’+  h −v  rw  を七 
ム l   J− mオ Lk A! 亡H  Jk 
 J−+  −f’  1  .  1  7ク特異性
抗体である。
That is, the basic steps of these methods are as follows. Antibodies to each of the two antigens are generated by methods well known in the art. Each antibody is then digested with a suitable protease, such as pevcin, to generate F(ab') fragments. Each F(ab') fragment is then digested by reducing the disulfide bonds connecting the chains. By subjecting F(ab') to two half molecules (Fab'),
cleaved into. Fab' derived from one antibody is then mixed with Fab' derived from the other antibody and reoxidized under conditions that allow binding, creating a bispecific antibody. This bispecific antibody is then separated from the mixture. One separation method involves contacting the mixture with an affinity matrix containing an antigen that can specifically bind to either half of the bispecific antibody, and then eluting the bound fraction, which is combined with the other half of the bispecific antibody. The second step is to contact the child with an affinity matrix containing an antigen to which it can specifically bind. This second one L n +'+ h −v rw is seven
M l J- m o Lk A! Death H Jk
J−+ −f′ 1 . 17-specific antibody.

活性化直小板特異抗体としては、活性化血小板の膜表面
に特異的に出現し、休止血小板には出現しない抗原を認
識する抗体が望ましく、例えば本発明者らが作成したG
MP − 1 4 0抗原を認識するモノクローナル抗
体PL7 − 6が挙げられる。抗GMP − 1 4
 0モノクローナル抗体は、ケーラー( K8hler
)らの方法(ネーチャ(Naeure) ,  2 5
 6 ,  4 7 6 ( 1 9 7 5 ) )
を用い調製することかできる。例えばB a l b/
cマウスの腹腔内にGNP − 1 4 0または洗浄
血小板を免疫し、4週間後に追加免疫を行い、その3日
後にマウスより牌臓を摘出する。牌臓細胞とマウスミエ
ローマ細胞とを、ポリエチレングリコールの作用により
融合させ、そして常法により96穴プレート中にて培養
する。各培養液の上清を採取し、ELISA法により特
異的抗体を産生じている細胞を選択し、更に限界希釈法
によりクローニングを行い、抗GMP − 1 4 0
モノクロナール抗体産生細胞(ハイプリドーマ)を取得
する。
The activated platelet-specific antibody is preferably an antibody that recognizes an antigen that specifically appears on the membrane surface of activated platelets and does not appear on resting platelets.
The monoclonal antibody PL7-6 which recognizes MP-140 antigen is mentioned. Anti-GMP-1 4
0 monoclonal antibody was prepared by K8hler (K8hler).
) et al.'s method (Naeure, 25
6, 4 7 6 (1 9 7 5))
It can be prepared using For example, B a l b/
c Mice are intraperitoneally immunized with GNP-140 or washed platelets, booster immunized 4 weeks later, and spleens are removed from the mice 3 days later. Spleen cells and mouse myeloma cells are fused by the action of polyethylene glycol and cultured in a 96-well plate by a conventional method. The supernatant of each culture was collected, cells producing specific antibodies were selected by ELISA, and further cloned by limiting dilution method to obtain anti-GMP-140.
Obtain monoclonal antibody producing cells (hyperidoma).

取得されたハイプリドーマとしては例えばハイプリドー
マPL7−6  ( Hybridoma PL7− 
6 (FERMP−11073))があり、このハイプ
リドーマは培養液中に抗GMP − 1 4 0モノク
ロナール抗体PL7−6を分泌し、市販の無血清培地な
どを用いてハイグリドーマを培養しその上清から硫安塩
折などの操作により抗体画分を得ることができる。また
同系のマウス体内にて、ハイプリドーマを培養し、その
動物の体液より同様の操作により抗体画分を得ることも
できる。
The obtained hybridoma is, for example, Hybridoma PL7-6 (Hybridoma PL7-6).
6 (FERMP-11073)), this hybridoma secretes anti-GMP-140 monoclonal antibody PL7-6 into the culture medium, and the supernatant is cultured using a commercially available serum-free medium. Antibody fractions can be obtained by operations such as ammonium sulfate precipitation. Alternatively, a hybridoma can be cultured in a syngeneic mouse and an antibody fraction can be obtained from the animal's body fluid by the same procedure.

一方、抗血栓性物質特異抗体としては、血栓及び血小板
活性化、凝集の予防、治療に用いられる化合物に対する
抗体であり、例えば抗tPAモノクローナル抗体があり
、中でも山本らの報告( Thrombosis Re
search , 5 0 , 6 3 7 −646
(1988))にあるモノクロナーノレ抗体C9−5,
K8−2等はtPAと結合することでePAの活性を増
大する抗体であり、このような抗血栓性物質の活性化能
力を伴った抗体の利用は更に適している。
On the other hand, antithrombotic substance-specific antibodies are antibodies against compounds used for the prevention and treatment of thrombosis and platelet activation and aggregation, such as anti-tPA monoclonal antibodies, among which there is a report by Yamamoto et al. (Thrombosis Re
search, 50, 637-646
(1988)) monoclonal antibody C9-5,
K8-2 and the like are antibodies that increase the activity of ePA by binding to tPA, and the use of antibodies with the ability to activate such antithrombotic substances is more suitable.

またこれら抗体としては各種動物由来のポリクローナノ
レ抗体はもちろん利用可能であるが、モノクローナル抗
体が更番こ適している。特にインビボ( in viv
o )での応用においてはキメラ抗体の利用が最適であ
り、キメラ抗体の作成はウインターG. ( Wint
er G.  )ら( Nature 332323(
1988))の方法により広く一般化されてきた方法が
利用できる。
Although polyclonal antibodies derived from various animals can of course be used as these antibodies, monoclonal antibodies are more suitable. Especially in vivo
o), the use of chimeric antibodies is optimal, and the production of chimeric antibodies is described by Winter G. (Wint
erG. ) et al ( Nature 332323 (
1988)) can be used.

更に本発明による双特異性抗体は相応する抗血栓性物質
を本抗体とあらかじめ反応させておくことにより、血栓
部位を溶解したり、血小板の活性化、凝集を抑制するこ
とのできる抗血栓性物質を血栓形成部位に特異的に導く
ために使用することができる。このような抗血栓性物質
としては例えばtPA ,ウロキナーゼ、ストレブトキ
ナーゼ、プロウロキナーゼ、抗血小板剤等を使用できる
。また、本抗体そのものを血液循環器系中に注入するこ
とによっても、生体由来の抗血栓性物質を血栓部位にト
ラツブさせ濃縮本発明の双特異性抗体の有効量を含む抗
血栓性薬剤を臨床において投与する場合、経口又は非経
口経路により投与される。その剤形は錠剤、糖衣錠、丸
剤、カプセル剤、散剤、トローチ剤、液剤、坐剤、注射
剤などを包含し、これらは医薬上許容される賦形剤、崩
壊剤、結合剤、展着剤、滑沢剤、色素、剤皮剤、希釈剤
を配合して製造される。例えば、注射用蒸留水又は緩衝
液1〜5M当り、この双特異性抗体1〜5×10〜10
1gを溶解して調製し、また必要に応じて、例えばヒト
血清アノレプミン、乳糖、グルコース、サツカロース、
デキストリン、マンニット、イノシット、シクロデキス
トリン等の糖類、グルタミン、グノレタミン酸、アスパ
ラギン、アスパラギン酸、グリシン、アラニン等のアミ
ノ酸類を0.1%以上、好ましくは0. 2〜10%濃
度として添加調製し、凍結乾燥又は真空乾燥等の通常の
乾燥手段によって調製でき、用時溶解用注射剤として製
剤化すればよい。また前述の抗血し、用時、双特異性抗
体と混合してもよく、あらかじめ混合した後、注射剤型
としておいてもよい。この際、用いる双特異性抗体の量
に比較して、抗血栓性物質は等モル以上使用するのが好
ましい。
Furthermore, the bispecific antibody according to the present invention can be used as an antithrombotic substance that can dissolve thrombus sites and suppress platelet activation and aggregation by reacting the corresponding antithrombotic substance with the antibody in advance. can be used to specifically direct blood to the site of thrombus formation. As such antithrombotic substances, for example, tPA, urokinase, strebtokinase, prourokinase, antiplatelet agents, etc. can be used. In addition, by injecting the present antibody itself into the blood circulatory system, biologically derived antithrombotic substances can be transported to the thrombotic site and the antithrombotic drug containing an effective amount of the bispecific antibody of the present invention can be concentrated. When administered, it is administered by oral or parenteral route. Its dosage forms include tablets, sugar-coated tablets, pills, capsules, powders, troches, solutions, suppositories, injections, etc., which may contain pharmaceutically acceptable excipients, disintegrants, binders, spreading agents, etc. It is manufactured by blending agents, lubricants, pigments, coating agents, and diluents. For example, 1-5 x 10-10 of this bispecific antibody per 1-5 M of distilled water for injection or buffer solution.
Prepared by dissolving 1 g, and adding as necessary, for example, human serum anorepmin, lactose, glucose, sutucarose,
Saccharides such as dextrin, mannitol, inosit, and cyclodextrin, and amino acids such as glutamine, gnoretamic acid, asparagine, aspartic acid, glycine, and alanine are contained at least 0.1%, preferably at least 0.1%. It can be added at a concentration of 2 to 10%, prepared by ordinary drying means such as freeze drying or vacuum drying, and formulated as an injection to be dissolved before use. In addition, the above-mentioned anti-blood serum may be mixed with the bispecific antibody at the time of use, or may be mixed in advance and then prepared in the form of an injection. At this time, it is preferable to use the antithrombotic substance in an amount equal to or more than the amount of the bispecific antibody used.

本発明の双特異性抗体を含む抗血栓性薬剤の人体投与量
は通常1日当り、双特異性抗体として1〜5 0 0 
0Tn9であるが、症状の軽重、性別、年令等に応じて
適宜増減して差支えない。
The human dosage of the antithrombotic agent containing the bispecific antibody of the present invention is usually 1 to 500 ml of bispecific antibody per day.
The dose is 0Tn9, but the dose may be increased or decreased as appropriate depending on the severity of symptoms, gender, age, etc.

〔作用〕[Effect]

次に本発明の双特異性抗体の生理活性を実験例により示
す。
Next, the physiological activity of the bispecific antibody of the present invention will be illustrated by experimental examples.

実験例1 ウサギ頚静脈モデルにおける抗血栓作用 コレン( Collen)ら( J. Clin. I
nvest.  7 1369(1983))の方法に
準じて行った。
Experimental Example 1 Antithrombotic effect in rabbit jugular vein model Collen et al. (J. Clin. I
nvest. 7 1369 (1983)).

家兎(2.4±0. 2 6 k9 )を7セトブロタ
ミンとケタミンにより麻酔する。頚部に正中線切開を行
い、ここから頚静脈を露出させ、単離する。
A rabbit (2.4±0.26k9) is anesthetized with 7cetobrotamine and ketamine. A midline incision is made in the neck through which the jugular vein is exposed and isolated.

外頚静脈を切断し出血が収まった後血管タランプで該頚
静脈を閉鎖する。該頚静脈中に約5 0 0 0 0 
0 cpmの1′工一標識ヒト●フイプリノーゲン10
μl1濃縮ヒト赤血球100μl1新鮮ヒト多血小板血
漿1 0 0 μ110. 5 M CaCL*を10
μj1トロンピン( 8 NIBユニット)10μlを
注入する。30分後、クランブをはずし、血流を再開す
る。次に各種濃度のtPAと双特異性抗体の混合物又は
対照薬物液をハーバード(Harvard )注入ポン
プを使用し耳の末梢静脈より4時間注入する。4時間後
上記外頚静脈部を単離、取除き、該頚静脈内に形成され
た血栓中に取込まれた放射能活性を測定した。
After the external jugular vein is cut and bleeding has subsided, the jugular vein is closed with a vascular ramp. Approximately 50000 in the jugular vein
0 cpm of 1'-labeled human fibrinogen 10
μl1 concentrated human red blood cells 100 μl1 fresh human platelet-rich plasma 1 0 0 μ110. 5M CaCL*10
Inject 10 μl of μj1 trompin (8 NIB units). After 30 minutes, remove the clamp and resume blood flow. A mixture of tPA and bispecific antibody at various concentrations or a control drug solution is then injected into the peripheral ear vein for 4 hours using a Harvard infusion pump. After 4 hours, the external jugular vein was isolated and removed, and the radioactivity incorporated into the thrombus formed in the jugular vein was measured.

血栓溶解率は次式により求めた。Thrombolysis rate was calculated using the following formula.

血栓溶解率(%)=ユニ立 × 100D ここでDは、生理食塩水を添加した時の血栓中に取込ま
れた放射能活性を示し、Cは薬剤添加時の血栓中に取込
まれた放射能活性を示す。
Thrombolytic rate (%) = UNIT × 100D Here, D represents the radioactivity incorporated into the thrombus when physiological saline was added, and C represents the radioactivity incorporated into the thrombus when the drug was added. Shows radioactivity.

その結果を第1表に示す。The results are shown in Table 1.

tPAと双特異性抗体混合物を用いた場合、対照薬剤と
してのtPA単独又は正常マウスIgGとLPAの混合
物に比べ明らかに高い血栓溶解率を示した。
When the mixture of tPA and bispecific antibody was used, the rate of thrombolysis was clearly higher than that of tPA alone or a mixture of normal mouse IgG and LPA as a control drug.

第  1  表 双特異性抗体(200ln9) tPA     ( 10万単位)58双特異性抗体(
20019)42 マウスIgG(200!n9) 仁PA     (10万単位)18 仁PA     (10万単位)20 実験例2 急性毒性試験 家兎(2.4±0. 2 6 k9 )一群5匹に仁P
A一双特異性抗体混合物の生理食塩水溶液をtPA活性
として100000ユニット/匹、双特異性抗体量とし
て200rn9/匹静脈内投与を行い、週間経過を観察
した。いずれの家兎も生存し、異常は認められなかった
Table 1 Bispecific antibody (200ln9) tPA (100,000 units) 58 bispecific antibody (
20019) 42 Mouse IgG (200!n9) Ren PA (100,000 units) 18 Ren PA (100,000 units) 20 Experimental example 2 Acute toxicity test Rabbits (2.4 ± 0.26 k9) were administered to 5 animals per group. P
A saline solution of the A-bispecific antibody mixture was intravenously administered at 100,000 units/mouse as tPA activity and 200 rn9/mouse as bispecific antibody amount, and the weekly progress was observed. All rabbits survived and no abnormalities were observed.

以上の実験から明らかなように、本発明の薬めて有用で
ある。
As is clear from the above experiments, the drug of the present invention is useful.

〔実施例〕〔Example〕

次に本発明の実施例を挙げて具体的に述べるが、本発明
はこれによって何ら限定されるものではない。
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.

実施例 1 双特異性抗体の製造 GMP − 1 4 0に対するモノクローナノレ抗体
PL7−6、及びjPAに対するモノクローナル抗体K
8−2のそれぞれをイムノピュア( ImmunoPu
re)(登録商標) F(ab’)tブレパレーション
キット( Preparation Kit ) (ピ
アス社製)を用いベプシンで処理しF(ab’)t断片
を作成した。次いで、2種のF ( a b’).断片
を下記のごとく還元し、再酸化し双特異性抗体を生成し
た。まず20m9の各々のF ( a b’).断片を
混合し、0.OIMメルカブトエチルアミンにより37
℃、pH5で1時間還元して、これら断片をH鎖とL鎖
との間の結合を破壊することなしに半分子Fab’に分
断した。
Example 1 Production of bispecific antibodies Monoclonal antibody PL7-6 against GMP-140 and monoclonal antibody K against jPA
8-2 each with ImmunoPu
re) (registered trademark) F(ab')t Preparation Kit (manufactured by Pierce) and treated with vepsin to create an F(ab')t fragment. Next, two types of F (a b'). The fragments were reduced and reoxidized to generate bispecific antibodies as described below. First, each F (a b') of 20m9. Mix the pieces and add 0. 37 by OIM mercabutethylamine
C. and pH 5 for 1 hour to cleave these fragments into half molecules Fab' without disrupting the bond between the H and L chains.

この混合物をホウ酸生理食塩バッファ一( pHを行っ
た。
This mixture was pH-tested in boric saline buffer.

実施例 2 双特異性抗体の精製 正常人からクエン酸添加採直した血液より700gl5
分間遠心分離処理にて血小板画分を得たのち、RCD溶
液(36mMクエン酸、5 mMグルコース、l mM
 MgCL 、5 mM  KCL , 1 0 3m
M  NaC1 , 2 0 ng / 1714!プ
ロスタグランジンE, )で2回遠心洗浄しγこ血小板
を、更にアルプミンデンシティグラジエント( alb
umin densitygradient)法で洗浄
し、cat+を含まないヘペスータイロード( HEP
ES − Tyrode)緩衝液で再浮遊して洗浄血小
板を得た。次にこの洗浄血小板に終濃度1%となる様に
トリトンX−100界面活性剤を添加し、その可溶性画
分を小麦胚凝集素( wheat germ aggl
uヒinin )固定化アガロース力ラムに通じて、カ
ラムに吸着した両分を0.1阿グリシンーHCI緩衝液
(pH2.2)にて溶出させ、精!l!cMp−14o
を調製した。このGMP − 1 4 0をCNBr活
性化セファロース(Sepharose ) 4 B 
(ファルマシア社製)に共有結合し、GNP − 1 
4 07フィニティー担体を作成した。一方epA(コ
スモバイオ社製) t CNBr活性化セファロース4
Bに共有結合させ、tPAアフイニティー担体を作戒し
た。実施例1の混合物を0.1Mトリスー}ICLバッ
ファ一( pH7.5)で平衡化させたGNP − 1
 4 0セファロース4Bカラムに通し、次いで0.1
Mトリスー11Cl(pH7.5)で洗浄し、更に0.
1Mグリシン(pH2.5)で抗GMP特異性含有画分
を溶出させ、次いでトリスにて中和した。更に、これを
平衡化したtPA−セファロース4Bカラムに通し、O
、1MトリスーHCIで洗い、次いでO.1Mグリシン
(pH2.5)で抗tPA特異性含有画分を溶出させ、
トリスにて中和した。以上のようにして、抗GMP −
 1 4 0特異性と抗tPA特異性を同一抗体分子上
に有する双特異性抗体を得た。
Example 2 Purification of bispecific antibodies 700gl5 from blood re-collected with citrate from a normal person
After obtaining the platelet fraction by centrifugation for 1 minute, RCD solution (36mM citric acid, 5mM glucose, 1mM
MgCL, 5mM KCL, 103m
MNaCl, 20 ng/1714! Gamma platelets were centrifugally washed twice with prostaglandin E,
Washed using the umin density gradient method and CAT+-free Hepes Tyrode (HEP)
Washed platelets were obtained by resuspending them in ES-Tyrode buffer. Next, Triton
(Uhiinin) Passed through an immobilized agarose column, and eluted both fractions adsorbed on the column with 0.1glycine-HCI buffer (pH 2.2), and purified! l! cMp-14o
was prepared. This GMP-140 was converted into CNBr-activated Sepharose (Sepharose)4B.
(manufactured by Pharmacia), GNP-1
A 407 affinity carrier was prepared. On the other hand, epA (manufactured by Cosmo Bio) t CNBr-activated Sepharose 4
B was covalently attached to the tPA affinity carrier. GNP-1 was prepared by equilibrating the mixture of Example 1 with 0.1M Tris}ICL buffer (pH 7.5).
40 Sepharose 4B column, then 0.1
Washed with M Tris-11Cl (pH 7.5) and further washed with 0.
The anti-GMP specificity-containing fraction was eluted with 1M glycine (pH 2.5) and then neutralized with Tris. Furthermore, this was passed through an equilibrated tPA-Sepharose 4B column and O
, 1M Tris-HCI, then O. The anti-tPA specificity-containing fraction was eluted with 1M glycine (pH 2.5),
Neutralized with Tris. As described above, anti-GMP-
A bispecific antibody having 140 specificity and anti-tPA specificity on the same antibody molecule was obtained.

丈施例 3  tPAのGMP − 1 4 0抗原へ
のターゲツテイング GMP − 1 4 0抗原を担体としてのポリスチレ
ンマイクロプレート上に固定し、1%BSAでプロック
後洗浄したのち、実施例2で得られた双特異性抗体(2
0nM)とtPA ( 2 0 0nM)をあらかじめ
混合した液を加えインキユベートする。
Example 3: Targeting of tPA to GMP-140 antigen GMP-140 antigen was immobilized on a polystyrene microplate as a carrier, blocked with 1% BSA, washed, and then treated with tPA obtained in Example 2. bispecific antibody (2
A pre-mixed solution of 0 nM) and tPA (200 nM) is added and incubated.

次いで洗浄後、tPAの発色基質である0. 8 mM
S−2288(第一化学社製)を加え、405nmの発
色を測定した。比較のために、双特異性抗体の代りに正
常マウスIgG ( K 8 − 2、PL7−6)を
用いた場合、又はGNP − 1 4 0抗原を固定し
なかった場合について上記と同様に行った。405nm
の発色の比較は、本発明による双特異性抗体が活性化血
小板膜上に特異的に出現丁るGMP − 1 4 0抗
原に特異的にtPAをターゲツテイングすることを示し
、一方、対照抗体又は対照抗原ではtPAのターグッテ
ィングが全く行われないことを示した。
Next, after washing, 0.0%, which is a coloring substrate for tPA, 8mM
S-2288 (manufactured by Daiichi Kagaku Co., Ltd.) was added, and color development at 405 nm was measured. For comparison, the same procedure as above was performed when normal mouse IgG (K8-2, PL7-6) was used instead of the bispecific antibody or when the GNP-140 antigen was not immobilized. . 405nm
Comparison of color development shows that the bispecific antibody according to the invention targets tPA specifically to the GMP-140 antigen that specifically appears on activated platelet membranes, whereas the control antibody Alternatively, the control antigen showed no targeting of tPA at all.

実施例 4 双特異性抗体製剤 双特異性抗体40重量部(以下部と略す)、ヒトアルプ
ミン20部、サッカロース20部に対し、生理的食塩水
を加え、全量を2000部イプを用いて除菌ろ過する。
Example 4 Bispecific antibody preparation Physiological saline was added to 40 parts by weight of bispecific antibody (hereinafter abbreviated as "parts"), 20 parts of human albumin, and 20 parts of sucrose, and the total amount was sterilized using 2000 parts by iip. Filter.

このろ液2gを1 0 .nlのバイアル瓶にとり凍結
乾燥し、lバイアルに該双特異性抗体40’%lを含む
凍結乾燥注射剤を得た。
10.2g of this filtrate. The mixture was placed in a nl vial and lyophilized to obtain a lyophilized injection containing 40% l of the bispecific antibody in a l vial.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、本発明により、一抗体分子
上に活性化血小板抗原特異性と抗血栓性物質特異性を持
った双特異性抗体が提供され、これを用いた血栓形成部
位への抗血栓性物質の輸送(ターゲッティング)方法及
び抗血栓性薬剤が提供された。
As explained in detail above, the present invention provides a bispecific antibody that has activated platelet antigen specificity and antithrombotic substance specificity on one antibody molecule, and uses this to target the site of thrombus formation. Methods for the delivery (targeting) of antithrombotic substances and antithrombotic agents have been provided.

Claims (1)

【特許請求の範囲】 1、一抗体分子上に活性化血小板抗原特異性と抗血栓性
物質特異性という異なる抗原特異性を持つことを特徴と
する双特異性抗体。 2、活性化血小板抗原特異抗体及び抗血栓性物質特異抗
体を原料とし、これらを酵素消化し、各抗体のH鎖間の
ジスルフィド結合を還元した後、両抗体断片の各々のH
鎖同志を再酸化する工程を含むことを特徴とする請求項
1記載の双特異性抗体の製造方法。 3、請求項1記載の双特異性抗体を単独、又はあらかじ
め抗血栓性物質と混合し、これらを血液循環器系中に注
入することを特徴とする血栓形成部位への抗血栓性物質
の輸送方法。 4、請求項1記載の双特異性抗体、又は該双特異性抗体
と抗血栓性物質の混合物を有効成分とすることを特徴と
する抗血栓性薬剤。
[Scope of Claims] 1. A bispecific antibody characterized by having different antigen specificities, namely activated platelet antigen specificity and antithrombotic substance specificity, on one antibody molecule. 2. Using an activated platelet antigen-specific antibody and an antithrombotic substance-specific antibody as raw materials, they are enzymatically digested to reduce the disulfide bonds between the H chains of each antibody, and then each H chain of both antibody fragments is
2. The method for producing a bispecific antibody according to claim 1, which comprises a step of reoxidizing the chains. 3. Transport of an antithrombotic substance to a site of thrombus formation, characterized by injecting the bispecific antibody according to claim 1 alone or in advance with an antithrombotic substance and injecting the mixture into the blood circulatory system. Method. 4. An antithrombotic drug comprising the bispecific antibody according to claim 1 or a mixture of the bispecific antibody and an antithrombotic substance as an active ingredient.
JP30614589A 1989-11-24 1989-11-24 Bi-specific antibody Pending JPH03164192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30614589A JPH03164192A (en) 1989-11-24 1989-11-24 Bi-specific antibody

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30614589A JPH03164192A (en) 1989-11-24 1989-11-24 Bi-specific antibody

Publications (1)

Publication Number Publication Date
JPH03164192A true JPH03164192A (en) 1991-07-16

Family

ID=17953597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30614589A Pending JPH03164192A (en) 1989-11-24 1989-11-24 Bi-specific antibody

Country Status (1)

Country Link
JP (1) JPH03164192A (en)

Similar Documents

Publication Publication Date Title
US8333973B2 (en) Targeting recombinant therapeutics to circulating red blood cells
US5120537A (en) Factor xa based anticoagulant compositions
US5580962A (en) Parenterally administrable drug having thrombolytic activity and containing protein C
JP2002247996A (en) Anticoagulant protein
JPH10509436A (en) Method of producing an inhibited form of an activated blood factor
JP2635343B2 (en) Heterobifunctional antibodies and methods of use
JP2824430B2 (en) Method for preparing blood coagulation factor VII or activated blood coagulation factor VII
AU658881B2 (en) Use of protein C or activated protein C
JP3436270B2 (en) Platelet-specific immune complex
US5811265A (en) Hybrid immunoglobulin-thrombolytic enzyme molecules which specifically bind a thrombus, and methods of their production and use
EP0159025B1 (en) Monoclonal antibody specific to human alpha2-plasmin
JPH03164192A (en) Bi-specific antibody
US5225540A (en) Monoclonal antibodies to tissue plasminogen activator (t-pa) which prolong its functional half-life
EP0478366A2 (en) Recombinant hybrid immunoglobulin molecules and method of use
US6403556B1 (en) Pharmaceutical preparation containing protein C and a thrombolytically active substance
JPH03504717A (en) Compositions and methods for promoting blood clot lysis
Hanaoka et al. A novel and potent thrombolytic fusion protein consisting of anti-insoluble fibrin antibody and mutated urokinase
JP3177776B2 (en) Hybrid monoclonal antibodies, antibody-producing polydomas and antibody-containing drugs
US5453269A (en) Heterobifunctional antibodies having dual specificity for fibrin and thrombolylic agents and methods of use
US5609869A (en) Hybrid immunoglobulin-thrombolytic enzyme molecules which specifically bind a thrombus, and methods of their production and use
Kurokawa et al. Enhancement of fibrinolysis by bispecific monoclonal antibodies reactive to fibrin and plasminogen activators
Haber Can plasminogen activators be improved?
Lubin et al. Strategies for the design of novel thrombolytic and antithrombolytic agents
JPH03130231A (en) Pharmaceutical preparation
Charpie Monoclonal antibodies specific for single-chain urokinase: applications in targeted thrombolysis