JPH03164166A - 5-keto-d-gluconic acid metabolism deficient variant - Google Patents

5-keto-d-gluconic acid metabolism deficient variant

Info

Publication number
JPH03164166A
JPH03164166A JP30914290A JP30914290A JPH03164166A JP H03164166 A JPH03164166 A JP H03164166A JP 30914290 A JP30914290 A JP 30914290A JP 30914290 A JP30914290 A JP 30914290A JP H03164166 A JPH03164166 A JP H03164166A
Authority
JP
Japan
Prior art keywords
keto
gluconic acid
acid
medium
diketo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30914290A
Other languages
Japanese (ja)
Other versions
JPH0460633B2 (en
Inventor
Takayasu Sonoyama
園山 高康
Bunji Kageyama
蔭山 文次
Shigeo Yagi
八木 滋雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shionogi and Co Ltd
Original Assignee
Shionogi and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi and Co Ltd filed Critical Shionogi and Co Ltd
Priority to JP30914290A priority Critical patent/JPH03164166A/en
Publication of JPH03164166A publication Critical patent/JPH03164166A/en
Publication of JPH0460633B2 publication Critical patent/JPH0460633B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

NEW MATERIAL:A 5-keto-D-gluconic acid metabolism deficient variant by inducing the variant from a strain belonging to the genus Corynebacterium, capable of producing 2 keto-L-gulonic acid. EXAMPLE:Corynebacterium sp. (FERM BP-1079). USE:Producing 2-keto-L-glonic acid from 2,5-diketo-D-gluconic acid without accu mulating 2-keto-D-gluconic acid in a medium. PREPARATION:A strain [e.g. Corynebacterium sp. (FERM P-2770)] belonging to the genus Corynebacterium, capable of producing 2-keto-L-gulonic acid, is varied by ultraviolet irradiation, etc., and a bacterium not growing in a medium of 5-ketc-D-gluconic acid is selected.

Description

【発明の詳細な説明】 本発明は2−ケト−L−グロン酸の生産に関し特に2−
ケト−D−グルコン酸を培地中に蓄積することな<,2
.5−ジケトーD−グルコン酸より2一ケトーL−グロ
ン酸を微生物的に得る製造方法実施のために使用する変
異微生物に係る.本発明者らは、さきに2.5−ジケト
ーp−グルコン酸より2一ケトーL−グロン酸を生或し
得る多くの微生物(2−ケト−L−グロン酸生産菌株(
I)と称する)を見い出し之を使用する2−ケト−L−
グロン酸の製造方法を発明した.(特公昭50−215
59号、特公昭53−25033号、および特公昭5 
6 − 1 5 87 7号公報参照).(I)はいず
れも原料2,5−ジケトーD一グルコン酸より主生成物
2−ケト−L−グロン酸を生或するほか副生成物として
2−ケト−Dーグルフン酸を生戒する.この不所望な2
−ケト−D−グルコン酸を培地中に蓄積させない為に混
合培養法を発明した.(特公昭54−19468号公報
参照) 今回、本発明者らはコリネバクテリウム属に属する2−
ケト−L−グロン酸生産菌株(I)を通常の方法で変異
処理し、変異した(I)の中より5一ケトーD−グルコ
ン酸に生育せずD−グルコン酸に生育する変異株(この
変異株を5一ケトーD−グルコン酸代謝欠損変異株(n
)と称する)を誘導し、この変異株(n)が2.5−ジ
ケトーD − ’;fル−2 ’/酸ヨI) 2−ケト
−D−グルコン酸ヲ生成しない性質を有することを見い
出した.また(n)を培養し2.5−ジケトーD−グル
コン酸と接触させると不所望な2−ケト−D−グルコン
酸を培地中に実質的に蓄積することなく2−ケト−L−
グロン酸が蓄積することを見い出し、この知見にもとづ
いて冒頭の特許請求の範囲にその要旨を記載した通りの
発明を完成した. すなわち、本発明によれば2−ケト−L−グロン酸生産
菌株(I)より誘導した5−ケト−Dーグルコン酸代謝
欠損変異株(II)が提供される.この(I[)または
その処理物に、2.5−ジケトーD−グルコン酸または
その塩類を含む培地と接触させて培地中に2一ケトーL
−グロン酸を蓄積させ、これを採取することにより2−
ケト−L−グロン酸を製造することができる. (I)より(I[)を効率よく得るには、紫外線照射、
X線照射などの処理を施すか、N−メチル−N’一二ト
ローN−ニトロングアニジン(N.T.G.)、アクリ
フラピン、エチルメタンスルフオン酸などの変異誘導剤
に接触させる方法が採られる.変異処理を施した(I)
を適当な濃度に希釈するか、再度培養後適当な濃度に希
釈し、希釈液の1部(0.5〜1ml)を0.5〜2%
のD−グルコン酸を含む最少寒天培地(生育に必要なビ
タミン、微量元素を含む)に塗布し生育させる.生育し
た菌の集落を0.5〜2%の5一ケトーD一グルフン酸
を含む最少寒天培地に転写し(レプノカ法)、5−ケト
−D−グルコン酸培地に生育しない集落を選択する.選
択された変異株は5ーケトーD−グルコン酸の代謝活性
を失っているかもしくは親株(I)のI/,。以下に低
下している(この様にして得られた変異株を5一ケトー
Dーグルフン酸代謝欠損変異株(I)と称する).(n
)を培養し2.5−ジケトーD−グルコン酸と接触させ
たところ得られたすべての(If)は2一ケトーD−グ
ルコン酸を実質的に生成することなく2−ケト−L−グ
ロン酸を生成することが確認された.上記の方法で得ら
れた(II)の例として、(I)であるコリネバクテリ
ウム・スピーシーズ( Corynebacteriu
m sp.  F E R M − P  2770、
ATCC  No.31090)の変異株(微工研条寄
FERM−BP−108)や、(I)であるコリネバク
テリウム・スピーシーズ( Corynabact.e
rium sp.  F E RM − P  2 6
 87、ATCC  No.31081)の変異株(微
工研条寄FERM−BP−107)などがあげられる. (以下余白) 上記の事実、すなわち、5−ケト−D−グルコン酸代謝
能を欠損させることによって2一ケトーD−グルコン酸
産生能を欠損あるいは著しく弱化させ得た事実は、フリ
ネフォーム.グループ(パージーズ●マニュアル●才プ
●デタミナティブ・バクテリ才ロジー 第8版の定義に
よる)に属するすべての2一ケトーL−グロン酸生産菌
に関して共通のことである. (I[)の培養にあたって使用される培地としては特別
な制限はない.たとえば、炭素源としてはグルフース、
シュークロース、グリセリン、廃糖蜜など糖類や多価ア
ルコールを使用し、窒素源としては一般的に用いられる
窒素化合物、たとえば、コーン・スティーブ・リカー、
ペブトン、肉エキスやアンモニウム塩、硝酸塩などが使
用される.無機塩類(たとえばカルシウム、マグネシウ
ム、カリウム、亜鉛、マンガン、鉄などの塩II)や目
的物質の生成を促進する因子などを添加してもよい.培
地組或は、用いる菌株の特性や原料2,5−ジケトーD
−グルコン酸の使用量やその他の条件により異なる. 原料の2.5−ジケトーD−グルコン酸としては、2.
5−ジケトーD−グルコン酸塩の水溶液を用いることも
出来るし、あるいは、エルウイニア属、グルフノバクタ
ー属(ここに言うグルコノバクター属とは、バージーズ
・マニュアル・才ブ・デタミナテイブ・バクテリオロジ
ー 第8版に準拠するもので同第7版に於けるアセトバ
クター属、アセトモナス属、グルフノバクター属を含む
)に属する、D−グルコースより2.5−ジケト−D−
グルコン酸を生産する能力を有する微生物を培養して得
られる発酵液の濾過除菌液あるいは、薬剤(例えばドデ
シル硫酸ナトリウム)による殺菌処理液を用いることも
出来る. 2.5−ジケトーD−グルコン酸の添加条件は、菌株や
培地条件により異なるが、普通1〜10%の2.5−ジ
ケトーD−グルコン酸を1度にあるいは、少量ずつ間欠
的に添加する.2.5−ジケトーD−グルコン酸の添加
時期は、培養開始時に添加するかもしくは、菌の生育が
終了する前後10時間以内に添加することが望ましい. 培養時間は、原料の2.5−ジケトーD−グルコン酸の
添加条件により異なるが、普通2,5一ジケトーD−グ
ルコン酸添加後24時間〜96時間培養し、2.5−ジ
ケトーD−グルコン酸が消失した時点を培養の終点とす
る. 発酵液中の2一ケトーL−グロン酸、2−ケト−D−グ
ルコン酸や2.5−ジケトーD−グルコン酸は、一般的
な糖類及びその関連物質を分析する手段により分離、定
量し得る.たとえば、ガスクロマトグラフィー、ペーパ
ークロマトグラフイー、薄層クロマトグラフイ一などが
用いられる.これらは、その目的に応じて種々使い分け
られる. 以下に実施例を用いて本発明をより詳細に説明する. 束』1腹一」2(2−ケト−L−グロン酸の製造)互一
里亙迩 D−グルフース            1.0%バク
ト・イーストエキストラクト(Difco) 0.5%
バクト・ベプトン(Difco)        0.
 5%第1リン酸カリウム(KH.PO.)     
  0.1%硫酸マグネシウム(MgSOv7H10)
     0. 02%(I0%NaOHにてpH7 
〜7.2に調整し500ml容三角フラスコに50ml
宛分注し115℃、20分間滅菌する.) 且一生亙1亙1 D−グルフース            1,0%フー
ン・スティープ・リカ−(CSL)    3.0%x
u*poa                 O.1
%MgSOv7H*O              O
. 02%(I0%NaOHにてpH7 〜7.2に調
整し500ml容三角フラスコに50ml宛分注し11
5℃、20分間滅菌する.) 粉末の2.5−ジケトーD−グルコン酸カルシウムを5
.0%の水溶液にし、この水溶液を予め滅菌された濾過
器で濾過除菌する. (旬 2,5−ジケトーD−グルコン エルウィニア・ブンクタータ(FERM−P5452、
ATCC  No.31626)を、種培地(I%D−
グルフース、5%CSL,0.1%KH.POい0.0
2%MgSOa 4H*O− 0 . 5%炭酸カルシ
ウム( CaCOs )、pH6.8 〜7.0、50
0ml三角フラスコに50m1分注、115℃、20分
間滅菌)に1白金耳植菌し28℃で8〜11時間振盪培
養する.(振幅7 1 mIII, 2 7 0 r.
p.m.、以下同じ).この種培養液45mlを455
mlの2.5−ジケトーD−グルコン酸発酵培地(20
%D−グルコース、3%CSL,0.1%KHmPO.
、6.3%(acos、pH6.8 〜7.0、115
℃、20分間滅菌)に加えて予め滅菌された12発酵檀
で28℃、17〜30時間、6 0 0 Nml/分の
通気下で1 7 4 Or.p.m.の攪拌を行ないな
がら発酵する.(2.5−ジケトーD−グルコン酸19
w/v%).この発酵液を遠心分離機で菌体を除去し、
その上清を予め滅菌された濾過器で濾過除菌する.これ
を2,5−ジケトーD−グルコン酸発酵液とする. 畳一j目L友迭 2−ケト−L−グロン酸、2−ケト−D−グルコン酸の
定量は、ガスクロマトグラフィー及びペーパークロマト
グラフィーを使用する.ガスクロマトグラフィーの実施
条件 カラム:シリコンガム SE52(5%)キャリアーガ
ス:ヘリウム カラムの温度=160℃〜210℃ サンプル:トリメチルシリル化 ペーパークロマトグラフィーの実施条件担体:東洋濾紙
No.50 展開液:フェノール:ギ酸二水−75:4:2S 発色:AHF#液(7二’Jン0.93gと:yタール
酸1.6 6 gを水飽和n−ブタノール100mlに
溶解したもの)を噴霧、105℃で2分間想理して発色
さ せる. (6)2−ケト−L−グロン の 造 第1表に掲げる2−ケト−L−グロン酸生産菌株あるい
は、5−ケト−D−グルコン酸代謝欠損変異株を■の種
培地に1白金耳植菌し、28゜Cで24時間振盪培養し
たのち、この種培養液、5mlを(力の本発酵培地に植
菌し振盪培養した.この本発酵培地に対し2.5−ジケ
トーD−グルコン酸液(a3)あるいは(ω)を培養開
始時又は培養開始後16時間で最終濃度が2%になるよ
うに添加し、4.8時間培養した.得られた培養液を(
勃のガスクロマトグラフィーで2一ケトーL−グロン酸
及び2−ケト−D−グルコン酸を定量し、第2表の結果
を得た.5−ケト−p−グルコン酸代謝欠損変異株(I
)の培養液からは、2−ケト−D−グルコン酸は検出さ
れなかった.さらにフェノール:ギ酸:水−75:4:
25を使用して、ペーパークロマトグラフィーを行ない
、2一ケトーD−グルコン酸の検出を行なったが、5−
ケト−D−グルコン酸代謝欠損変異株(I[)の培養液
から2−ケト−D−グルコン酸は検出されなかった. (Qt下余白) 家』聖4  2(変異微生物(I[)の誘導)竺一鬼生
亙羞 バクト・ビーフエキストラクト(Difco)  1.
0%バクト・ペブトン(Difco)        
1.0%NaC1                 
0. 5%(pH7.2、5 oat/ 5 0 0m
l容三角フラスコ、115℃、20分間滅菌) 且一豆之患工亙l N}I.CL                 O.
5%NH,No.                 
0.1%Na*soa               
  0.2%11gSO4・7H,O        
      O.L%CaCO.          
     0. 0001%KH.P0.      
           0.3%Lupoa     
           0.IN微量元素液(注1) 
         0.L角ビタミン液(注2)   
        0.1角寒天           
      2. 0511(pH7.2,1 1 5
℃、15分間滅菌)(注l)微量元素液(IN中次の成
分を含む:NaJaOy’lOH10        
        88mg(NHa ’)*MOtOs
 14}1to            37■FaC
116HaO                 97
0ml<ZnSO44H*0            
     8.8a@CuSOv5H.0      
           270gMtlC114HsO
                  72■(注2)
ビタミン液(IN中次の成分を含む)チアミン    
         1.0@バントテン酸      
      10mgニコチン酸アミド       
  LOmgビ才チン             0.
 1+I@p−グルコン酸ナトリウム、5−ケト−D−
グルコン酸ナトリウムを各々10%水溶液にしpHを6
.8〜7.2であることを確認後、濾過滅菌して調製し
た. 生−1』りL盈迭 コリネバクテリウム・スピーシーズ( Coryne−
bactarium sp. F E RM − P 
 2 7 7 0 )あるいは、コリネバクテリウム・
スピーシーズ( Corynabacterium s
p. F E RM − P  2 6 8 7 )を
各々(I)の液体培地に1白金耳植菌し、28℃、8時
間振盪培養した.之に予め無菌濾過された0.2%のN
−メチルーN゛−ニトローN−ニトロングアニジン溶液
を最終濃度0.02%になるように加え30分間培養を
amし、遠心分1!!( 1 0.0 0O r.p.
m. 1 5分)したのち菌体を集め、3回無菌生理食
塩水で洗菌し、無菌生理食塩水10mlに懸濁させた.
この懸濁液1mlを(I)の培地に植菌し15時間、2
8°Cで振盪培養した.この培養液を無菌生理食塩水で
生菌が101〜10”個/mlになるように希釈した.
次にこの希釈液を■のD−グルコン酸水溶液と■の最少
寒天培地を1:9に加えた平板培地に0.5〜lml塗
布し3〜5日間28℃で培養した. 生育した菌(第3表のD−グルコン酸培地に生育する株
■)の集落を■の5一ケトーD−グルコン酸水溶液と■
の最少培地をl:9に加えた平板培地にビロード布等で
レプリカした.これを3〜5日間培養したのち先のD−
グルコン酸培地に生育するが5−ケト−D−グルコン酸
培地に生育しない菌の集落をD−グルコン酸培地に釣菌
したうえ生育させた. この選択された変異株(第3表の5一ケトーDーグルコ
ン酸培地に非生育の株■)を5一ケトーD−グルコン酸
1%を含む■の培地に植菌し24時間28℃で振盪培養
した.この培養液を実施例1で記載したペーパークロマ
トグラフィーにて5一ケトーD−グルコン酸を定量しこ
の菌株■が5−ケト−D−グルコン酸を資化していない
ことを確認した. この5−ケト−D−グルコン酸を資化していないことを
確認された変異株(第3表の5一ケトーD−グルコン酸
非資化株■)を、実施例1、(つ記載の培地に1白金耳
植菌し20時間培養後、実施例1、(3)記載の2.5
−ジケトーD−グルコン酸カルシウム水溶液を最終濃度
1.0%になるように加え、さらに24時間培養した.
この培養液をペーパークロマトグラフィーによって含有
2−ケト−D−グルコン酸および2−ケト−L−グロン
酸を定量し第3表の結果を得た.このようにしてコリネ
バクテリウム・スピーシーズ(FERM一P  277
0)を変異処理し生育させた84520株より5−ケト
−D−グルコン酸代謝欠損変異株308株、コリネバク
テリウム・スピーシーズ(FERM−P  2887)
の変異処理株29100株より11株の5一ケトーD−
グルコン酸代謝欠損変異株を得た. (以下余白) 東』4匹』−(菌体懸濁液および抽出液による2−ケト
−L−グロン酸の生成) 且里亙1: 実施例1、■の種培地に、コリネバクテリウムsp.F
ERM−P  2770(I)あるいは、その菌株より
誘導した変異株FERM−BP  108(It)をそ
れぞれ、1白金耳ずつ植菌し、28゜Cで24時間振盪
培養した. 屯生亙1: 実施例1、■の培地(ただし、消泡剤としてポリプロピ
レングリコールP−2000を0.0 1%含有する)
500mlを滅菌済12容発酵檀に入れ、(I)で得た
種培養液50mlを植菌し、1740r. p. m.
の攬拌、6 0 0 Nml/分の通気下に、28℃、
16時間の培養を行なった. O〉菌  .   の   : (ので得た培養液を遠心分離( 1 5.0 0 O 
r.p.m..20分)して菌体をあつめ、生理食塩水
で2回洗浄した. この洗菌済菌体を、0.05Mトリス・バッツ?一(p
H7.5)にOD.■.−12となるように懸濁した. 蜆(I1ロ■動ユ脛型: 上記■で得た洗菌済菌体を、0.05Mトリス●バッフ
ァ一(pH7.8)に、OD.●@..− 1 0 0
となるように懸濁し、これをフレンチ・プレス(圧力:
 1 0 0 0kg/am″)にかけ菌体を破砕した
.この破砕から遠心分離(20,OOOG、30分間)
によって菌体(菌体および破片)を除去したのち、上澄
液を,0.05Mトリス・バツファ−(pH7.5)に
対して透析(I5時間)し、これを菌体抽出液とした. ■   ■による2−ケト−L−グロン の感 懸濁液■8mlを2.5−ジケトーp−グルコン酸カル
シウム溶液(実施例10)によって調製したもの)2m
lと混合し、この混合物を30℃で15時間振盪反応さ
せた.反応完了後、遠心分離(Is.oooc、15分
間)によって、菌体を除去し、上澄液中の2一ケトーL
−グロン酸および2−ケト−D−グルコン酸を実施例1
(El項に記載のガスクロマトグラフィによって定量し
、次の第4表に示す結果を得た. 第4表 感 抽出液(4) 0 . 5 mlを、7 5 μmol
esの2.5−ジケトーD−グルコン酸カルシウムおよ
び15μ船lasのNADPH(還元型二フチンアミド
 アデニン ジヌクレ才チド燐酸)を含む2 . 5 
mlの0.1Mトリスバッファ−(pH7.5)に加え
、これを30℃で16時間反応させた.この反応液の定
量結果を次の第5表に示す. 第5表 上記第4および第5表に示した結果から、菌体懸瀾液■
および菌体抽出液(勾を用いた反応によって2一ケトー
L−グロン酸が生或することが確認された.
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the production of 2-keto-L-gulonic acid.
Keto-D-gluconic acid does not accumulate in the medium <,2
.. This invention relates to a mutant microorganism used for carrying out a production method for microbially obtaining 21-keto L-gulonic acid from 5-diketo D-gluconic acid. The present inventors first investigated a number of microorganisms (2-keto-L-gulonic acid producing strains) that can produce 21-keto L-gulonic acid from 2,5-diketo p-gluconic acid.
2-keto-L- using the heading I)
Invented a method for producing gulonic acid. (Tokuko Showa 50-215
No. 59, Special Publication No. 53-25033, and Special Publication No. 59
(Refer to Publication No. 6-15877). In both cases (I), the main product 2-keto-L-gulonic acid is produced from the raw material 2,5-diketo-D-mono-gluconic acid, and 2-keto-D-glunic acid is produced as a by-product. this unwanted 2
-A mixed culture method was invented to prevent keto-D-gluconic acid from accumulating in the medium. (Refer to Japanese Patent Publication No. 54-19468) This time, the present inventors have discovered that 2-
Keto-L-gulonic acid producing strain (I) was subjected to mutation treatment using a conventional method, and among the mutated strains (I), a mutant strain that did not grow on 5-keto D-gluconic acid but grew on D-gluconic acid (this The mutant strain was 5-keto D-gluconate metabolism deficient mutant strain (n
), and this mutant strain (n) was shown to have the property of not producing 2-keto-D-gluconic acid. I found it. Furthermore, when (n) is cultured and brought into contact with 2,5-diketo-D-gluconic acid, 2-keto-L-
We discovered that gulonic acid accumulates, and based on this knowledge, we completed the invention as described in the claims at the beginning. That is, according to the present invention, a 5-keto-D-gluconic acid metabolism-deficient mutant strain (II) derived from a 2-keto-L-gulonic acid producing strain (I) is provided. This (I[) or its treated product was brought into contact with a medium containing 2,5-diketo D-gluconic acid or its salts, and 21-keto L was added to the medium.
- By accumulating gulonic acid and collecting it, 2-
Keto-L-gulonic acid can be produced. In order to obtain (I[) more efficiently than (I), ultraviolet irradiation,
Treatments such as X-ray irradiation or contact with mutagenic agents such as N-methyl-N'12-N-nitrogueanidine (NTG), acrifurpine, and ethylmethane sulfonic acid are adopted. It will be done. Mutation treated (I)
Dilute to an appropriate concentration, or re-incubate and dilute to an appropriate concentration, and add a portion (0.5 to 1 ml) of the diluted solution to 0.5 to 2%
Grow on a minimal agar medium containing D-gluconic acid (contains vitamins and trace elements necessary for growth). The grown bacterial colonies are transferred to a minimal agar medium containing 0.5 to 2% of 5-keto-D-gluconic acid (Repnoka method), and colonies that do not grow on the 5-keto-D-gluconate medium are selected. The selected mutant strain has lost the metabolic activity of 5-keto D-gluconic acid or I/, of the parent strain (I). (The mutant strain obtained in this way is referred to as the 51-keto D-glufonic acid metabolism-defective mutant strain (I)). (n
) was cultured and brought into contact with 2.5-diketo D-gluconic acid. It was confirmed that it generates . As an example of (II) obtained by the above method, (I) is Corynebacterium sp.
m sp. FERM-P 2770,
ATCC No. 31090) (FERM-BP-108) and Corynebacterium sp.
rium sp. FERM-P26
87, ATCC No. 31081) (FeRM-BP-107). (Margins below) The above fact, that is, the fact that the ability to produce 21-keto D-gluconic acid could be lost or significantly weakened by deleting the ability to metabolize 5-keto-D-gluconic acid, is the fact that Phrineform. This is common to all 21-keto L-gulonic acid producing bacteria belonging to the group (according to the definition in Pursey's Manual Determinative Bacteria 8th Edition). There are no particular restrictions on the medium used for culturing (I[). For example, as a carbon source, glufus,
Sugars and polyhydric alcohols such as sucrose, glycerin, and blackstrap molasses are used, and commonly used nitrogen compounds as nitrogen sources, such as corn stew liquor,
Pebtone, meat extract, ammonium salts, nitrates, etc. are used. Inorganic salts (for example, salts II of calcium, magnesium, potassium, zinc, manganese, iron, etc.) and factors that promote the production of the target substance may be added. Culture medium composition, characteristics of the strain used, and raw material 2,5-diketo D
-Varies depending on the amount of gluconic acid used and other conditions. As the raw material 2.5-diketo D-gluconic acid, 2.
An aqueous solution of 5-diketo D-gluconate can be used, or an aqueous solution of 5-diketo D-gluconate can be used. 2.5-diketo-D- from D-glucose, which belongs to the genus Acetobacter, Acetomonas, and Gruffnobacter according to the 7th edition of the same edition.
It is also possible to use a filtered and sterilized solution of the fermentation liquor obtained by culturing microorganisms capable of producing gluconic acid, or a solution treated with sterilization using chemicals (for example, sodium dodecyl sulfate). The conditions for adding 2.5-diketo D-gluconic acid vary depending on the strain and culture conditions, but usually 1 to 10% of 2.5-diketo D-gluconic acid is added at once or intermittently in small amounts. .. It is preferable to add 2.5-diketo D-gluconic acid at the start of culture, or within 10 hours before and after the end of bacterial growth. The culture time varies depending on the addition conditions of the raw material 2,5-diketo D-gluconic acid, but it is usually cultured for 24 to 96 hours after addition of 2,5-diketo D-gluconic acid. The end point of the culture is the point at which the acid disappears. 2-keto L-gulonic acid, 2-keto-D-gluconic acid, and 2,5-diketo D-gluconic acid in the fermentation liquid can be separated and quantified by common means for analyzing sugars and related substances. .. For example, gas chromatography, paper chromatography, thin layer chromatography, etc. are used. These can be used in various ways depending on the purpose. The present invention will be explained in more detail using Examples below. 1 bunch 1 batch 2 (manufacturing of 2-keto-L-gulonic acid) D-Gulfus 1.0% Bacto Yeast Extract (Difco) 0.5%
Bact Bepton (Difco) 0.
5% potassium monophosphate (KH.PO.)
0.1% magnesium sulfate (MgSOv7H10)
0. 02% (pH 7 with I0% NaOH)
Adjust to ~7.2 and add 50ml to a 500ml Erlenmeyer flask.
Dispense into recipients and sterilize at 115℃ for 20 minutes. ) and 1.0% D-Gulfus 1.0% CSL 3.0%x
u*poa O. 1
%MgSOv7H*O O
.. 11
Sterilize at 5°C for 20 minutes. ) Powdered calcium 2,5-diketo D-gluconate
.. Make a 0% aqueous solution, and filter and sterilize this aqueous solution using a pre-sterilized filter. (2,5-diketo D-glucon Erwinia bunctata (FERM-P5452,
ATCC No. 31626) and seed medium (I%D-
Gurufus, 5% CSL, 0.1% KH. Poi 0.0
2%MgSOa 4H*O-0. 5% calcium carbonate (CaCOs), pH 6.8-7.0, 50
Dispense 50 ml into a 0 ml Erlenmeyer flask, sterilize at 115°C for 20 minutes), inoculate one platinum loop, and culture with shaking at 28°C for 8 to 11 hours. (Amplitude 7 1 mIII, 2 7 0 r.
p. m. ,same as below). 45ml of this seed culture
ml of 2.5-diketo D-gluconic acid fermentation medium (20
% D-glucose, 3% CSL, 0.1% KHmPO.
, 6.3% (acos, pH 6.8 ~ 7.0, 115
℃, sterilized for 20 minutes) and then sterilized in a pre-sterilized 12 fermenter at 28℃ for 17 to 30 hours under aeration of 600 Nml/min to 174 Or. p. m. Ferment while stirring. (2,5-diketo D-gluconic acid 19
w/v%). This fermentation liquid is centrifuged to remove bacterial cells,
The supernatant is filtered and sterilized using a pre-sterilized filter. This is called the 2,5-diketo D-gluconic acid fermentation liquid. Gas chromatography and paper chromatography are used to quantify 2-keto-L-gulonic acid and 2-keto-D-gluconic acid. Gas chromatography conditions Column: Silicon gum SE52 (5%) Carrier gas: Helium Column temperature = 160°C to 210°C Sample: Trimethylsilylated paper Chromatography conditions Support: Toyo Roshi No. 50 Developing solution: Phenol: Formic acid dihydrate - 75:4:2S Color development: AHF # solution (0.93 g of 72'J and 1.66 g of tar acid dissolved in 100 ml of water-saturated n-butanol) ) and let it develop color at 105℃ for 2 minutes. (6) Preparation of 2-keto-L-gulonic acid Add 1 platinum loop of the 2-keto-L-gulonic acid producing strains listed in Table 1 or the 5-keto-D-gluconic acid metabolism deficient mutant strain to the seed medium of ■. After inoculating and culturing with shaking at 28°C for 24 hours, 5 ml of this seed culture was inoculated into the main fermentation medium and cultured with shaking. Acid solution (a3) or (ω) was added to the final concentration of 2% at the start of culture or 16 hours after the start of culture, and cultured for 4.8 hours.
2-Keto-L-gulonic acid and 2-keto-D-gluconic acid were determined by gas chromatography, and the results shown in Table 2 were obtained. 5-keto-p-gluconic acid metabolism defective mutant strain (I
) 2-keto-D-gluconic acid was not detected in the culture solution. Furthermore, phenol: formic acid: water -75:4:
Paper chromatography was performed using 25 to detect 2-keto D-gluconic acid, but 5-
2-Keto-D-gluconic acid was not detected in the culture solution of the keto-D-gluconic acid metabolism-deficient mutant strain (I[). (Qt bottom margin) House'sei 4 2 (Induction of mutated microorganisms (I[)) Chikuichi Kisei Bakuto Beef Extract (Difco) 1.
0% Bact Pebton (Difco)
1.0%NaCl
0. 5% (pH 7.2, 5 oat/500 m
(L Erlenmeyer flask, sterilized at 115°C for 20 minutes) C.L.O.
5%NH, No.
0.1%Na*soa
0.2%11gSO4・7H,O
O. L%CaCO.
0. 0001%KH. P0.
0.3% Lupoa
0. IN trace element liquid (Note 1)
0. L-horn vitamin liquid (Note 2)
0.1 square agar
2. 0511 (pH 7.2, 1 1 5
℃, sterilized for 15 minutes) (Note 1) Trace element solution (IN containing the following ingredients: NaJaOy'lOH10
88mg(NHa')*MOtOs
14}1to 37■FaC
116HaO 97
0ml<ZnSO44H*0
8.8a@CuSOv5H. 0
270g MtlC114HsO
72■ (Note 2)
Vitamin liquid (IN contains the following ingredients) Thiamine
1.0@bantothenic acid
10mg nicotinamide
LOmg bisaichin 0.
1+I@p-sodium gluconate, 5-keto-D-
Make each sodium gluconate into a 10% aqueous solution and adjust the pH to 6.
.. After confirming that it was 8 to 7.2, it was sterilized by filtration and prepared. Corynebacterium sp.
bactarium sp. FERM-P
2 7 7 0) or Corynebacterium
Species ( Corynabacterium s
p. One platinum loop of each of FERM-P2687) was inoculated into the liquid medium (I), and cultured with shaking at 28°C for 8 hours. 0.2% N, pre-sterile filtered
-Methyl-N-nitro-N-nitroguanidine solution was added to a final concentration of 0.02%, incubated for 30 minutes, and centrifuged for 1 minute. ! (1 0.00O r.p.
m. After 15 minutes), the bacterial cells were collected, washed three times with sterile physiological saline, and suspended in 10 ml of sterile physiological saline.
1 ml of this suspension was inoculated into the medium (I) and incubated for 15 hours for 2 hours.
Cultured with shaking at 8°C. This culture solution was diluted with sterile physiological saline to a concentration of 101 to 10" viable bacteria/ml.
Next, 0.5 to 1 ml of this diluted solution was applied to a plate medium containing a 1:9 ratio of D-gluconic acid aqueous solution (1) and minimal agar medium (2), and cultured at 28°C for 3 to 5 days. A colony of grown bacteria (strain ■ growing on D-gluconic acid medium in Table 3) was mixed with the 5-keto D-gluconic acid aqueous solution of ■■.
A replica was made using velvet cloth, etc. on a plate culture medium containing 1:9 of the minimal medium. After culturing this for 3 to 5 days, the above D-
A colony of bacteria that grows on gluconic acid medium but not on 5-keto-D-gluconic acid medium was added to D-gluconic acid medium and allowed to grow. This selected mutant strain (strain ■ that does not grow on the 51-keto D-gluconic acid medium in Table 3) was inoculated into the medium (■) containing 1% of 51-keto D-gluconic acid and shaken at 28°C for 24 hours. Cultivated. This culture solution was subjected to paper chromatography as described in Example 1 to quantify 5-keto-D-gluconic acid, and it was confirmed that this strain (2) did not assimilate 5-keto-D-gluconic acid. A mutant strain confirmed not to assimilate 5-keto-D-gluconic acid (51-keto D-gluconic acid non-assimilating strain ■ in Table 3) was cultured in the medium described in Example 1. After inoculating one platinum loopful of bacteria into a cell and culturing for 20 hours, 2.5 described in Example 1, (3)
-Diketo D-calcium gluconate aqueous solution was added to the final concentration of 1.0%, and cultured for an additional 24 hours.
The 2-keto-D-gluconic acid and 2-keto-L-gulonic acid contained in this culture solution were quantified by paper chromatography, and the results shown in Table 3 were obtained. In this way, Corynebacterium sp.
Corynebacterium sp.
11 strains of 51-keto D- from 29,100 mutant-treated strains of
A mutant strain defective in gluconate metabolism was obtained. (Margins below) - (Production of 2-keto-L-gulonic acid from bacterial cell suspension and extract) 1: In the seed medium of Example 1, Corynebacterium sp. .. F
One loopful of ERM-P 2770 (I) or the mutant strain FERM-BP 108 (It) derived from the strain was inoculated, and cultured with shaking at 28°C for 24 hours. Tonsheng 1: Medium of Example 1, ■ (However, it contains 0.01% polypropylene glycol P-2000 as an antifoaming agent)
Pour 500 ml into a sterilized 12-volume fermentation bowl, inoculate with 50 ml of the seed culture obtained in (I), and incubate at 1740 r. p. m.
stirring at 28°C under aeration of 600 Nml/min.
Culture was performed for 16 hours. O> Bacteria. (The culture solution obtained was centrifuged (15.00 O
r. p. m. .. After 20 minutes), the bacterial cells were collected and washed twice with physiological saline. This washed bacterial body is 0.05M Tris Butts? One (p
H7.5) OD. ■. -12. Muciloid (I1): The washed bacterial cells obtained in the above (■) were added to 0.05M Tris● buffer (pH 7.8) at OD.●@..- 1 0 0
Suspend it so that it becomes
1000 kg/am") to disrupt the bacterial cells. From this disruption, centrifugation (20,000 kg/am", 30 minutes)
After removing the bacterial cells (bacterial cells and debris), the supernatant was dialyzed (15 hours) against 0.05M Tris buffer (pH 7.5), and this was used as a bacterial cell extract. ■ Sensitive suspension of 2-keto-L-gulone prepared by ■■ 8 ml of 2.5-diketo p-gluconate calcium solution (Example 10)) 2 m
This mixture was reacted with shaking at 30°C for 15 hours. After the reaction was completed, the bacterial cells were removed by centrifugation (Is.oooc, 15 minutes), and the 21-ketoL in the supernatant was removed.
-Gulonic acid and 2-keto-D-gluconic acid in Example 1
(It was quantified by gas chromatography as described in Section El, and the results shown in the following Table 4 were obtained. 0.5 ml of the fourth surface extract (4) was 75 μmol
2. Containing 2.5-diketo D-calcium gluconate and 15 μl of NADPH (reduced diphthinamide adenine dinucleotide phosphate). 5
The mixture was added to 0.1M Tris buffer (pH 7.5) and reacted at 30°C for 16 hours. The quantitative results of this reaction solution are shown in Table 5 below. Table 5 From the results shown in Tables 4 and 5 above, the bacterial suspension solution ■
It was confirmed that 21-keto L-gulonic acid was produced by reaction using a bacterial cell extract (gradient).

Claims (1)

【特許請求の範囲】 1)コリネバクテリウム属に属する2−ケトL−グロン
酸生産菌株( I )を親株として、これより誘導したこ
とを特徴とする5−ケト−D−グルコン酸代謝欠損変異
株(II)。2)2−ケト−D−グルコン酸を実質上生産
しない特許請求の範囲1)に記載の変異株(II)。 3)特許請求の範囲1)に記載のコリネバクテリウム・
スピーシーズFERMBP−107。 4)特許請求の範囲1)に記載のコリネバクテリウム・
スピーシーズFERMBP−108。
[Scope of Claims] 1) A 5-keto-D-gluconate metabolism-deficient mutant derived from a 2-keto L-gulonic acid producing strain (I) belonging to the genus Corynebacterium as a parent strain. Stock (II). 2) The mutant strain (II) according to claim 1, which substantially does not produce 2-keto-D-gluconic acid. 3) Corynebacterium as described in claim 1)
Species FERMBP-107. 4) Corynebacterium as described in claim 1)
Species FERMBP-108.
JP30914290A 1990-11-14 1990-11-14 5-keto-d-gluconic acid metabolism deficient variant Granted JPH03164166A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30914290A JPH03164166A (en) 1990-11-14 1990-11-14 5-keto-d-gluconic acid metabolism deficient variant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30914290A JPH03164166A (en) 1990-11-14 1990-11-14 5-keto-d-gluconic acid metabolism deficient variant

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57035452A Division JPS58162296A (en) 1982-03-05 1982-03-05 Preparation of 2-keto-l-gulonic acid

Publications (2)

Publication Number Publication Date
JPH03164166A true JPH03164166A (en) 1991-07-16
JPH0460633B2 JPH0460633B2 (en) 1992-09-28

Family

ID=17989415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30914290A Granted JPH03164166A (en) 1990-11-14 1990-11-14 5-keto-d-gluconic acid metabolism deficient variant

Country Status (1)

Country Link
JP (1) JPH03164166A (en)

Also Published As

Publication number Publication date
JPH0460633B2 (en) 1992-09-28

Similar Documents

Publication Publication Date Title
RU2102481C1 (en) Method of 2-keto-l-gulonic acid or its salt preparing
JPH078235B2 (en) Pseudogluconobacter oxidizer
DE2530861C3 (en) Process for the production of 2-keto-L-gulonic acid and its salts
CA1168999A (en) Method for preparing 2,5-diketo-d-gluconic acid
DE2413963A1 (en) PROCESS FOR THE PRODUCTION OF 2-KETOL-GULONIC ACID AND THEIR SALTS BY MICROBIOLOGICAL WAYS
US3959076A (en) Process for producing 2-keto-L-gulonic acid
JPH0738796B2 (en) Method for producing 2-keto-D-glucaric acid by fermentation method
US4543331A (en) Fermentative or enzymatic production of 2-keto-L-gulonic acid
US3963574A (en) Process for producing 2-keto-L-gulonic acid
US3912592A (en) Method for producing L-sorbosone
US3970522A (en) Method for the production of D-ribose
EP0498316A1 (en) Microbiological process for the production of 6-hydroxypicolinic acid
JPH03164166A (en) 5-keto-d-gluconic acid metabolism deficient variant
JPS5937076B2 (en) Fermentation method Vitamin B↓1↓2 manufacturing method
US3776815A (en) Process for the manufacture of cephalosporin c
US3759789A (en) Process for the microbial production of lysine and isoleucine
US4322498A (en) Citric acid producing mutant yeast strains
JP2518218B2 (en) Method for producing microbial cell
US4430429A (en) Production of vitamin B12 -activity substances
KR900009051B1 (en) Process for preparing 2-keto -l-gulonic acid
JP2676741B2 (en) New microorganism
US3923601A (en) Process for the manufacture of cephalosphorin C
JPH012592A (en) Production method of pyrroloquinoline quinone
JPS6142559B2 (en)
JPS5860995A (en) Preparation of l-proline by fermentation