JPH03164035A - Solar generation system - Google Patents

Solar generation system

Info

Publication number
JPH03164035A
JPH03164035A JP1301490A JP30149089A JPH03164035A JP H03164035 A JPH03164035 A JP H03164035A JP 1301490 A JP1301490 A JP 1301490A JP 30149089 A JP30149089 A JP 30149089A JP H03164035 A JPH03164035 A JP H03164035A
Authority
JP
Japan
Prior art keywords
power
power storage
storage battery
battery
equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1301490A
Other languages
Japanese (ja)
Other versions
JP2844748B2 (en
Inventor
Kotaro Noda
野田 廣太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP1301490A priority Critical patent/JP2844748B2/en
Publication of JPH03164035A publication Critical patent/JPH03164035A/en
Application granted granted Critical
Publication of JP2844748B2 publication Critical patent/JP2844748B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To expand the battery lives of battery facilities for power storage and to supply stable power without deteriorating the battery capacity by changing over plural battery facilities for power storage in order after completely discharging said battery facilities when the power supply from the solar generation facility is insufficient. CONSTITUTION:While it is judged not duration of sunshine T1, the power is supplied from a battery facility 5 for power storage to power receiving load, and while it is judged duration of sunshine T1, close instructions are issued from a switch controller 9 to switches 7 and 8. At this time, surplus power is stored in the battery facilities 5 and 6 for power storage, and the facilities 5 and 6 for power storage are charged 100%. When the duration of sunshine T1 at the first day passes, close instructions are output successively to the switch 7, and also a close instruction is output to the switch 8. The power stored in the battery facility 5 for power storage is discharged completely at night.

Description

【発明の詳細な説明】 A 産業上の利用分野 本発明は太陽電池と電力貯蔵用電池設備との間で電力融
通を行なう太陽光発電システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a solar power generation system that performs power interchange between solar cells and power storage battery equipment.

B.発明の概要 本発明は、太陽光発電設備と電力貯蔵用電池設備との間
で電力を融通して受電負荷に交流電力を供給する太陽光
発電システムにおいて、完全放電を必要とする電力貯蔵
用電池設備を複数備えて、これらを完全放電させた状態
で順番に切換えることにより、各電力貯蔵用電池設備の
電池寿命を向上させ、かつ受電負荷へ安定した電力を供
給できるようにしたものである。
B. Summary of the Invention The present invention provides a power storage battery that requires complete discharge in a solar power generation system that provides alternating current power to a receiving load by accommodating power between a solar power generation facility and a power storage battery facility. By providing multiple pieces of equipment and switching them in order after they are fully discharged, the battery life of each power storage battery equipment can be improved and stable power can be supplied to the receiving load.

C,従来の技術 省エネルギーの観点から太陽光,風力等の自然エネルギ
ーを有効利用する発電技術が考えられている。この自然
エネルギーは天候等の自然現象により供給量が左右され
るという欠点はあるが、無限でクリーンなエネルギー源
を供給できることから有望視されている。
C. Conventional technology From the perspective of energy conservation, power generation technologies that effectively utilize natural energy such as sunlight and wind power are being considered. Although this natural energy has the disadvantage that the supply amount is affected by natural phenomena such as weather, it is seen as promising because it can provide an unlimited and clean energy source.

これらの自然エネルギーのうち太陽光を利用した太陽電
池は、ある値以上のエネルギーをもつ光を受けると半導
体の光起電力効果によって光エネルギーが電子に与えら
れ、PN接合部付近に電子と正孔が生じる。PN接合部
付近の電子と正孔は、内部電界により電子はN型領域へ
、正孔はP型領域へ引き寄せられ、N型領域は負に、P
型領域は正に帯電して起電力が発生する。この太陽電池
を用いれば、光の照射が続くかぎり、光エネルギーを電
気工不ルギーに変換し電力として取り出すことができる
Among these natural energy sources, solar cells that utilize sunlight generate light energy that is given to electrons by the photovoltaic effect of the semiconductor when it receives light with energy above a certain value, creating electrons and holes near the PN junction. occurs. Electrons and holes near the PN junction are attracted by the internal electric field, electrons are attracted to the N-type region, holes are attracted to the P-type region, the N-type region becomes negative, and the hole is attracted to the P-type region.
The mold region is positively charged and an electromotive force is generated. If this solar cell is used, as long as the irradiation of light continues, it is possible to convert light energy into electrical energy and extract it as electricity.

ところが、太陽電池を用いた太陽光発電設備では、太陽
電池の出力が日照の強さにより大きく変動するために、
太陽光が充分に強い日照時間帯では余剰電力が生じ、ま
た太陽光が弱いときとか夜間は受電負荷に対して電力が
不足し、電力を安定に供給することができない。そこで
、受電負荷に安定した電力を供給するために、日照時間
帯に発生する余剰電力を電力貯蔵用電池設備に貯蔵し、
受電負荷への供給電力が低下したときに電力貯蔵用電池
設備から貯蔵電力を放出することで太陽光発電設備の出
力をより有効に活用する太陽光発電システムが考えださ
れた。
However, in solar power generation equipment using solar cells, the output of the solar cells varies greatly depending on the intensity of sunlight, so
Surplus electricity occurs during sunny hours when sunlight is sufficiently strong, and when sunlight is weak or at night, there is insufficient electricity for the receiving load, making it impossible to stably supply electricity. Therefore, in order to supply stable power to the receiving load, surplus power generated during sunshine hours is stored in power storage battery equipment.
A solar power generation system has been devised that more effectively utilizes the output of solar power generation equipment by releasing stored power from power storage battery equipment when the power supplied to the receiving load decreases.

従来、この種の太陽光発電システムとして第5図に示す
ように構成したものがある。この太陽光発電システムに
よれば、太陽電池を用いた太陽光発電設備51で発電し
た直流電力は充放電制御装置52を介して直交変換装置
53に供給され、ここで交流電力に変換され昇圧変圧器
54で昇圧されて受電負荷へ送電される。このとき、太
陽光が充分に強く余剰電力が生ずると、余剰電力は充放
電制御装置52にて制御され電力貯蔵用電池設備55に
充電される。また、太陽光が弱いときとか夜間には、電
力貯蔵用電池設備55から貯蔵電力が充放電制御装置5
2を介して上述と同様に受電負荷へ供給される。
Conventionally, there is a solar power generation system of this type configured as shown in FIG. According to this solar power generation system, DC power generated by a solar power generation facility 51 using solar cells is supplied to an orthogonal conversion device 53 via a charge/discharge control device 52, where it is converted to AC power and step-up and transformed. The voltage is boosted by the power converter 54 and transmitted to the receiving load. At this time, if the sunlight is strong enough and surplus power is generated, the surplus power is controlled by the charge/discharge control device 52 and charged into the power storage battery equipment 55. In addition, when sunlight is weak or at night, stored power is transferred from the power storage battery equipment 55 to the charge/discharge control device 5.
2 to the receiving load in the same manner as described above.

現在、太陽光発電システムの電力貯蔵用電池設備55に
は鉛蓄電地が主に使用されているが、この鉛蓄電地は過
放電による電池電圧が低下し過ぎると電池寿命を著しく
縮めるため、呼称容量の60〜65%程度の実用容量で
しか使用することができなかった。
Currently, lead-acid batteries are mainly used in the power storage battery equipment 55 of solar power generation systems, but lead-acid batteries are called so because they significantly shorten the battery life if the battery voltage drops too much due to over-discharge. It could only be used at a practical capacity of about 60 to 65% of its capacity.

そこで、太陽光発電システムを効率的に利用するために
は大電力を貯蔵できる新型の電力貯蔵用電池設備が必要
となる。この種の新型電力貯蔵用′16池設備として、
例えば陰極の活物質に亜鉛を用いた亜鉛一臭素電池があ
る。この亜鉛一臭素電池は過放電に強く、呼称容量の1
00%の実用容量で使用できる特長を有し、lOO%放
電させても一向に差し支えのない事が、従来の鉛電池に
比して大きな利点である。この亜鉛一臭素電t也を太陽
光発電システムに適用した場合、貯蔵電力をほぼ100
%有効利用することが可能となり、太陽光が弱いときと
か夜間時に貯蔵電力を受電負荷へ安定して供給すること
ができる。
Therefore, in order to utilize solar power generation systems efficiently, a new type of power storage battery equipment that can store large amounts of power is required. As this type of new power storage '16 pond facility,
For example, there is a zinc monobromine battery that uses zinc as the active material of the cathode. This zinc-bromine battery is resistant to overdischarge and has a nominal capacity of 1
A major advantage over conventional lead-acid batteries is that they can be used at a practical capacity of 0.00% and can be discharged by 100% without any problem. When this zinc-bromine electricity is applied to a solar power generation system, the stored power can be reduced to approximately 100%.
% effective use, and the stored power can be stably supplied to the power receiving load when sunlight is weak or at night.

ところが、この亜鉛一臭素電池は放電に際して完全に放
電を完了させないと、次の放電で亜鉛の電析が適正にな
されなくなり電池性能が劣化するおそれがある。このた
め、亜鉛一臭素電池のように完全放電を必要とする二次
電池では、そのつど完全に放電を完了させることが望ま
れる。
However, in this zinc monobromine battery, if discharging is not completely completed during discharging, there is a risk that zinc will not be properly deposited in the next discharge, resulting in deterioration of battery performance. For this reason, in a secondary battery that requires complete discharge, such as a zinc-bromine battery, it is desirable to complete the discharge each time.

D.発明が解決しようとする課題 従来技術に述べた太陽光発電システムでは、太陽光発電
設備5lと1つの電力貯蔵用電池設備55の連系により
、受電負荷への電力の安定供給を図る方法がとられてい
る。この電力貯蔵用電准設備55に完全放電を必要とす
る亜鉛一臭素電池を採用すると、1つの亜鉛一臭素電池
で太陽電池発電設6i51の電力不足をバックアップし
なければならないため、太陽電池発電設備51の電力不
足に備えて電力貯蔵用電池設備(亜鉛一臭素電池)55
に電力を充分に貯蔵しておく必要がある。したがって、
亜鉛一臭素電池を完全に放電させることができず、この
状態で充放電を繰り返すことにより電池性能が劣化し、
放電最終期において受電負荷へ充分な電圧を供給するこ
とができなくなる問題がある。
D. Problems to be Solved by the Invention In the solar power generation system described in the prior art, there is a method for stably supplying power to the receiving load by interconnecting the solar power generation equipment 5l and one power storage battery equipment 55. It is being If a zinc monobromine battery that requires complete discharge is adopted as the electric power storage electrical equipment 55, one zinc monobromine battery will have to back up the power shortage of the solar battery power generation facility 6i51. 51 Power storage battery equipment (zinc monobromine battery) in preparation for power shortages 55
It is necessary to store sufficient electricity. therefore,
Zinc-bromine batteries cannot be completely discharged, and repeated charging and discharging in this state deteriorates battery performance.
There is a problem that sufficient voltage cannot be supplied to the receiving load in the final stage of discharge.

本発明は、上記問題点に着目してなされたちので、完全
放電を必要とする電力貯蔵用電池設備を順次定期的に完
全に放電させることで、電力貯蔵用電地設備の電池寿命
を延ばすことができ、かつ電池性能を劣化かせることな
く受電負荷に安定した電力を供給することができる太陽
光発電システムを提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and it is possible to extend the battery life of power storage battery equipment by sequentially and periodically completely discharging power storage battery equipment that requires complete discharge. The purpose of the present invention is to provide a solar power generation system that can stably supply power to a receiving load without deteriorating battery performance.

E.課題を解決するための手段 本発明は上記目的を達成するために、太陽光発電設備と
電力貯蔵用電池設備との間で電力融通を行ない、上記太
陽光発電設備および上記電力貯蔵用電池設備の直流電力
を交流電力に変換して受電負荷に供給する太陽光発電シ
ステムにおいて、複数の完全放電を必要とする電力貯蔵
用電池設備を夫々開閉器を介して上記太陽光発電設備に
連系させ、上記複数の電力貯蔵用電池設備を完全放電さ
せた状態で順番に切換えるように上記開閉器を開閉4制
御部の開閉指令に基づいて開閉制御することを特徴とす
る。
E. Means for Solving the Problems In order to achieve the above object, the present invention performs power interchange between the solar power generation equipment and the power storage battery equipment, and improves the efficiency of the solar power generation equipment and the power storage battery equipment. In a solar power generation system that converts DC power into AC power and supplies it to a receiving load, a plurality of power storage battery facilities that require complete discharge are connected to the solar power generation facility through respective switches, The present invention is characterized in that the switch is controlled to open and close based on an opening/closing command from an opening/closing 4 control unit so as to sequentially switch the plurality of power storage battery facilities in a fully discharged state.

F.作用 本発明に係る構或によれば、開閉器制御部の開閉指令に
基づいて開閉藩を開閉制御し、太陽光発電設備からの供
給電力が不足しているときに複数の電力貯蔵用電池設備
を完全放電させた状態にした上で順番に切換えることに
より、 完全放電を必 要とする電力貯蔵用電池設備を定期的に完全放電させる
ことができる。
F. According to the structure according to the present invention, the opening/closing control is controlled based on the opening/closing command of the switch control unit, and when the power supplied from the solar power generation equipment is insufficient, the plurality of power storage battery equipment By keeping the batteries in a fully discharged state and switching them in order, power storage battery equipment that requires complete discharge can be completely discharged on a regular basis.

G.実施例 以下、本発明の第一実施例を第1図,第2図に基づいて
説明する。
G. Embodiment A first embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

第1図は本発明に係る太陽光発電システムの概略的な構
成を示すブロ/ク図であり、太陽電池を用いた太陽光発
電設備1で発電した直流電力は充放電制御装置2を介し
て直交変換装置3に供給され、ここで直流電力は商用周
波数の交流電力に変換され昇圧変圧器4で昇圧されて受
電負荷へ送電される。ここまでは従来例(第5図)の太
陽光発電システムの構成と同じである。
FIG. 1 is a block diagram showing a schematic configuration of a solar power generation system according to the present invention, in which DC power generated by a solar power generation facility 1 using solar cells is transmitted via a charge/discharge control device 2. The DC power is supplied to the orthogonal conversion device 3, where the DC power is converted to AC power at a commercial frequency, and the voltage is stepped up by the step-up transformer 4, and the power is transmitted to the receiving load. The configuration up to this point is the same as the configuration of the conventional solar power generation system (FIG. 5).

この太陽光発電システムでは、大電力を貯蔵できる新型
の電力貯蔵用電池設備が必要となる。この新型の電力貯
蔵用電池設備としては、例えば陰極の活物質に亜鉛を用
いた亜鉛一臭素電池等がある。亜鉛一臭素電池は従来技
術で述べたように、過放電に強く、かつ貯蔵電力を10
0%活用できる特長を有する。ところが、この亜鉛一臭
素電池を太陽光発電システムに採用する場合には完全に
放電させることが要望される。
This solar power generation system requires new power storage battery equipment that can store large amounts of electricity. Examples of this new type of power storage battery equipment include zinc monobromine batteries that use zinc as the active material of the cathode. As mentioned in the conventional technology, zinc-bromine batteries are resistant to overdischarge and have a storage power of 10%.
It has the feature that it can be used at 0%. However, when this zinc monobromine battery is used in a solar power generation system, it is required to completely discharge the battery.

そこで、本実施例では、亜鉛一臭素電池を用いた電力貯
蔵用電池設備5.6を2個備え、これらの電力貯蔵用電
池設備5,6を開閉器7,8を介して充放電制御装置2
に接続し、開閉器7.8を開閉器制御部9の開閉指令に
基づいて各電力貯蔵用電池設備5,6を開閉制御し順番
に完全放電させるようにした。また、亜鉛一臭素電池は
放電時に定格電流の2倍強の電流を発生せしめることが
可能なことから、2個の電力貯蔵用電池設@5.6を1
00%の電力貯蔵容量に対して塊の呼称容量に設定し、
放電の際に一方の電力貯蔵用電池設備5または6を定格
電流で放電させるようにした。
Therefore, in this embodiment, two power storage battery facilities 5 and 6 using zinc-bromine batteries are provided, and a charge/discharge control device is connected to these power storage battery facilities 5 and 6 via switches 7 and 8. 2
The power storage battery equipment 5, 6 is controlled to open and close based on the opening/closing command from the switch control section 9 of the switch 7.8, so that the power storage battery equipment 5, 6 is completely discharged in order. In addition, since zinc-bromine batteries can generate a current that is more than twice the rated current during discharge, two power storage battery installations @ 5.6
Set to the nominal capacity of the block for 00% power storage capacity,
During discharging, one of the power storage battery equipment 5 or 6 was discharged at the rated current.

上述の開閉器7.8を開閉器制御部9の開閉指令に基づ
いて開閉制御することにより、太陽光発電設@lの余剰
電力は充放電制御装置を介して各電力貯蔵用電池設備5
.6に貯蔵され、また太陽光発電設備1からの供給電力
が不足したときには各電力貯蔵用電池設備5,6を順番
に完全放電させ、この貯蔵電力を充放電制御装置2を介
して受電負荷へ供給する。
By controlling the opening and closing of the above-mentioned switches 7.8 and 8 based on the opening and closing commands from the switch control unit 9, the surplus power of the solar power generation facility is transferred to each power storage battery facility 5 via the charge/discharge control device.
.. 6, and when the power supplied from the solar power generation equipment 1 is insufficient, each power storage battery equipment 5, 6 is completely discharged in turn, and this stored power is sent to the power receiving load via the charge/discharge control device 2. supply

ここに用いられる開閉器制御部9は、受光量に比例した
アナログ出力が得られる光センサ10からのアナログ量
に基づいて余剰電力が発生する日照時間帯か否かの判定
を行うとともに、電圧検出器11.12により検出され
た各電力貯蔵用電池設備5,6の電池電圧に基づいて完
全放電状態か否かの判定を行ない、これらの判定結果か
ら開閉器7,8に開閉指令を与える。
The switch control unit 9 used here determines whether or not it is the sunshine hours when surplus power is generated based on the analog amount from the optical sensor 10 that provides an analog output proportional to the amount of received light, and also performs voltage detection. Based on the battery voltage of each power storage battery equipment 5, 6 detected by the device 11, 12, it is determined whether or not it is in a fully discharged state, and based on these determination results, opening/closing commands are given to the switches 7, 8.

このように構成した太陽光発電システムの動作を第2図
のタイムチャートに従って説明する。第1日目のO時に
おいて、一方の電力貯蔵用電池設備5は充分に充電され
、他方の電力貯蔵用電池設備6は充電されていないもの
とする。まず、第1日目の0時の時点では、開閉器制御
部9から開閉器7に閉指令が出力され、充電された電力
貯蔵用電池設備5だけが充放電制御装置2に接続される
The operation of the solar power generation system configured as described above will be explained according to the time chart shown in FIG. 2. At time O on the first day, it is assumed that one power storage battery equipment 5 is fully charged and the other power storage battery equipment 6 is not charged. First, at 0:00 on the first day, a close command is output from the switch control unit 9 to the switch 7, and only the charged power storage battery equipment 5 is connected to the charge/discharge control device 2.

これと同時に、開閉器制御部9で設定値と光センサ10
のアナログ出力が比較され余剰電力が発生する日照時間
帯TIか否かの判定が行われる。ここで、日照時間帯T
1でないと判定されている間は太陽発電設#iIの供給
電力が不足している状態にあるので、電力貯蔵用電池設
備5から貯蔵電力が開閉藩7,充放電制御装置2を介し
て受電負荷に供給され、電力貯蔵用電池設備5の充電量
は低下する。そして、日照が強くなり、開閉器制御部9
で余剰電力が発生する日照時間帯T.であると判断され
ている間は、開閉器制御部9から開閉器7,8に閉指令
が出力される。この閉指令に基づいて開閉落7,8の接
点が閉じて、充放電制御装置2に両方の電力貯蔵用電池
設備5,6が接続される。このとき、太陽光発電設備■
に余剰電力が発生するため、その余剰電力は充放電制御
装置2,開閉器7,8を介して各電力貯蔵用電池設備5
,6に貯蔵され、各電力貯蔵用電池設@5,6はlOO
%まで充電される。その後、第1日目の日照時間帯T1
が過ぎると、開閉器制御部9から開閉器7に閉指令が継
続して出力されるとともに、開閉器8に開指令が出力さ
れる。これにより、前回完全に放電動作しなかった電力
貯蔵用電池設備5だけが充放電制御装置2に接続される
。この電力貯蔵用電池設OW5の貯蔵電力は充放電制御
装置2を介して受電負荷に送電され、夜間に完全放電す
る。
At the same time, the switch control unit 9 changes the setting value to the optical sensor 10.
The analog outputs of the two are compared and it is determined whether it is the sunshine time period TI in which surplus power is generated. Here, sunshine period T
While it is determined that it is not 1, the power supplied to the solar power generation facility #iI is insufficient, so the stored power is received from the power storage battery facility 5 via the switch 7 and the charge/discharge control device 2. The amount of charge in the power storage battery equipment 5 decreases as the power is supplied to the load. Then, the sunlight becomes stronger and the switch control unit 9
Sunshine time period T. when surplus power is generated. While it is determined that this is the case, the switch control unit 9 outputs a closing command to the switches 7 and 8. Based on this closing command, the contacts of the open/close contacts 7 and 8 are closed, and both of the power storage battery equipment 5 and 6 are connected to the charge/discharge control device 2 . At this time, solar power generation equipment ■
Since surplus power is generated in
, 6, and each power storage battery device @ 5, 6 is lOO
charged to %. After that, the sunshine period T1 on the first day
When the time has passed, the switch control unit 9 continues to output a close command to the switch 7 and outputs an open command to the switch 8. Thereby, only the power storage battery equipment 5 that did not perform a complete discharging operation last time is connected to the charge/discharge control device 2. The power stored in this power storage battery installation OW5 is transmitted to the power receiving load via the charge/discharge control device 2, and is completely discharged during the night.

このとき、開閉器制御部9で電圧検出器1lにより検出
された電力貯蔵用電池設@5の電池電圧に基づいて完全
放電状態であると判定されると、開閉器7に開指令が出
力されるとともに開閉器8に閉指令が出力される。この
開閉指令に基づいて各開閉益7,8が切換えられ、充電
が完了している電力貯蔵用電池設@6が充放電制御装置
2に接続される。その後、開閉器制御部9により第2日
目の余剰電力が発生する日照時間帯T,を判定するまで
の間は、電力貯蔵用電准設Is6から貯蔵電力が開閉器
8,充放電制御装置2を介して受電負荷に送電され、電
力貯蔵用電池設+7f6の充電量は低下する。そして、
開閉器制御部9により第2日目の日照時間帯T,が判定
されると、開閉2X7,8に閉指令が出力され、両方の
電力貯蔵用電池設備5,6が充放電制御装置2に接続さ
れる。この日照時間帯T,の間は、太陽光発電設備1の
余剰電力が充放電制御装置2,開閉器7,8を介して各
電力貯蔵用電池設備5,6に貯蔵される。
At this time, if the switch control unit 9 determines that the battery is in a fully discharged state based on the battery voltage of the power storage battery device @5 detected by the voltage detector 1l, an opening command is output to the switch 7. At the same time, a close command is output to the switch 8. Each switching gain 7, 8 is switched based on this opening/closing command, and the fully charged power storage battery device @6 is connected to the charging/discharging control device 2. Thereafter, until the switch control unit 9 determines the sunshine hours T during which surplus power will be generated on the second day, the stored power is transferred from the power storage electrical installation Is6 to the switch 8 and the charging/discharging control device. 2 to the receiving load, and the amount of charge in the power storage battery device +7f6 decreases. and,
When the sunshine hours T on the second day are determined by the switch control unit 9, a close command is output to the open/close 2Xs 7 and 8, and both power storage battery equipment 5 and 6 are connected to the charge/discharge control device 2. Connected. During this sunshine time period T, surplus power from the solar power generation equipment 1 is stored in each power storage battery equipment 5, 6 via the charge/discharge control device 2, switches 7, 8.

以後、上述と同様の制御パターンを繰り返すことにより
、太陽光発電設備1の余剰電力を各電力貯蔵用電池設備
5,6に貯蔵し、かつ太陽光発電設(@1の供給電力が
不足したときには各電力貯蔵用電池設備5,6の一方を
完全放電させた状態で切換接続することができる。
Thereafter, by repeating the same control pattern as described above, the surplus power of the solar power generation facility 1 is stored in each power storage battery facility 5, 6, and when the power supply of the solar power generation facility (@1 is insufficient), It is possible to switch and connect one of each power storage battery equipment 5, 6 in a completely discharged state.

したがって、このような構戒によれば、複数の完全放電
を必要とする電力貯蔵用電池設備5,6を開閉器7,8
を介して太陽光発電設備■に連系し、開閉器7,8を開
閉器制御部9の開閉指令に基づいて開閉制御することに
より、複数の電力貯蔵用電池設備5,6を完全放電させ
た状態で順番に切換えることができるため、各電力貯蔵
用電池設備5,6を定期的に完全放電させることができ
る。その結果、電力貯蔵用電池設備5,6に完全族電を
必要とする亜鉛一臭素電他等の二次電池を用いた場合に
は、定期的に完全放電させることによって電池性能の劣
化を防止することができるため、電池の寿命を著しく延
ばすことができ、かつ呼称容徹のほぼ100%の実用容
量で使用することが可能となり放電最終期において受電
負荷へ充分な電力を安定して供給することができる。
Therefore, according to such a structure, the power storage battery equipment 5, 6 which requires multiple complete discharges, the switches 7, 8
The plurality of power storage battery facilities 5, 6 are completely discharged by connecting them to the solar power generation facility (1) via the solar power generation facility (1) and controlling the opening and closing of the switches 7, 8 based on the opening and closing commands from the switch control unit 9. Since it is possible to switch in order in the same state, it is possible to completely discharge each power storage battery equipment 5, 6 on a regular basis. As a result, when a secondary battery such as a zinc-bromine battery that requires a complete battery is used in the power storage battery equipment 5, 6, deterioration of battery performance can be prevented by completely discharging it periodically. As a result, the life of the battery can be significantly extended, and it can be used at almost 100% of its nominal capacity, allowing it to stably supply sufficient power to the receiving load in the final stage of discharge. be able to.

また、亜鉛一臭素電池は放電時に定格電流の2倍強の電
流を発生せしめても全く問題が無いという特長を有する
。この特長を生かして、2個の電力貯蔵用電准設備5,
6を従来技術の電力貯蔵用電池設備と同程度の電力貯蔵
容量に対して塊の呼称容量に設定することができるため
、本来、従来技術に比して小容積な電力貯蔵用電池設備
5.6を一層コンパクト化することが可能となる。
Furthermore, the zinc monobromine battery has the feature that there is no problem even if a current more than twice the rated current is generated during discharge. Taking advantage of this feature, two electric power storage electrical equipment 5,
Since 5.6 can be set to the nominal capacity of the block for the same power storage capacity as the power storage battery equipment of the prior art, the power storage battery equipment 5.6 originally has a smaller volume than the prior art. 6 can be made even more compact.

次に、本発明の第二実施例を第3図,第4図に基づいて
説明する。
Next, a second embodiment of the present invention will be described based on FIGS. 3 and 4.

この実施例は、第3図に示すように各電力貯蔵用電池設
備5,6の同極同士を開閉器3lを介して接続し、放電
の最終時期に他方の電力貯蔵用電池設備5または6から
逆電圧を課して放電を強制するようにしたもので、他の
構成は上述の第一実施例と同様なので省略してある。こ
の開閉器3lは開閉器制御部9の開閉指令に基づいて開
閉制御される。この場合、電圧検出器11.12により
検出された放電状態にある電力貯蔵用電池設備5または
6の電池電圧がある値まで下ったときに、開閉器制御部
9から開閉器3Iに対して所定の時間だけ閉指令が与え
られる。例えば、第4図のタイムチャートに示すように
一方の電力貯蔵用電池設備5が放電最終時期になると、
第一実施例と同様に開閉器制御部からの開閉指令により
開閉器7,8が切換えられ、充電が完了している他方の
電力貯蔵用電池設備6が充放電制御装置に接続される。
In this embodiment, as shown in FIG. 3, the same polarity of each power storage battery equipment 5, 6 is connected via a switch 3l, and at the final stage of discharging, the other power storage battery equipment 5 or 6 is connected to each other through a switch 3l. The configuration is such that a reverse voltage is applied to force the discharge, and the other configurations are the same as those of the first embodiment described above, so they are omitted. This switch 3l is controlled to open and close based on an opening and closing command from the switch control section 9. In this case, when the battery voltage of the power storage battery equipment 5 or 6 in the discharge state detected by the voltage detector 11.12 drops to a certain value, the switch control unit 9 sends a predetermined signal to the switch 3I. A close command is given for a period of time. For example, as shown in the time chart of FIG. 4, when one of the power storage battery equipment 5 reaches the final discharge period,
As in the first embodiment, the switches 7 and 8 are switched by an opening/closing command from the switch control section, and the other fully charged power storage battery equipment 6 is connected to the charge/discharge control device.

このとき、開閉器3lは開閉器制御部9の閉指令によっ
て所定時間Δtだけ閉じ、放電最終時期に至った電力貯
蔵用電池設備5に他方の電力貯蔵用電池設備6から逆電
圧が印加される。この場合、第3図に示すように抵抗3
2を設けて、放電促進電流の値を制限することも可能で
ある。
At this time, the switch 3l is closed for a predetermined time Δt by the closing command from the switch control unit 9, and a reverse voltage is applied from the other power storage battery equipment 6 to the power storage battery equipment 5 that has reached the final discharge period. . In this case, as shown in Figure 3, the resistor 3
2, it is also possible to limit the value of the discharge promoting current.

したがって、このような構成によれば、一方の電力貯蔵
用電池設備5または6が放電最終時期に至ったときに充
電が完了した他方の電力貯蔵用電池設備6または5から
逆電圧を課して放電を強制することができるため、上述
の第一実施例に比べて各電力貯蔵用電池設備5,6の完
全放電をより一層促すことができる。
Therefore, according to such a configuration, when one power storage battery equipment 5 or 6 reaches the final discharge period, a reverse voltage is applied from the other power storage battery equipment 6 or 5 that has completed charging. Since discharging can be forced, complete discharging of each power storage battery equipment 5, 6 can be further promoted compared to the first embodiment described above.

なお、本発明は上記実施例に限定されるものではなく、
要旨を変更しない範囲において種々変形して実施するこ
とができる。
Note that the present invention is not limited to the above embodiments,
Various modifications can be made without changing the gist.

例えば、上記実施例では余剰電力が発生する日照時間帯
を特定する手段として受光量に比例したアナログ出力が
得られる光センサを用いたが、設定タイマを用いて余剰
電力が発生する日照時間帯を特定することもできる。
For example, in the above embodiment, an optical sensor that can obtain an analog output proportional to the amount of received light is used as a means to identify the sunshine hours when surplus power is generated, but a set timer is used to identify the sunshine hours when surplus electricity is generated. It can also be specified.

H.発明の効果 以」二に述べたように、本発明によれば、完全放電を必
要とする電力貯蔵用電池設備を複数備えることで、各電
力貯蔵用電池設備を順に切換えて完全放電させることが
できるため、電池の寿命を著しく延ばすことができ、か
つ電池性能を劣化させることなく受電負荷に安定した電
力を供給することができる。
H. Effects of the Invention As described in Section 2, according to the present invention, by providing a plurality of power storage battery equipment that requires complete discharge, it is possible to switch each power storage battery equipment in turn to completely discharge the power storage battery equipment. Therefore, the life of the battery can be significantly extended, and stable power can be supplied to the power receiving load without deteriorating the battery performance.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明の第一実施例の概略的な構成を示すブロ
ノク図、第2図は同実施例を説明するためのタイムチャ
ート、第3図は本発明の第二実施例の要部を示す結線図
、第4図は同実施例を説明するためのタイムチャート、
第5図は従来の太陽光発電システムの概略的な構戊を示
すブロック図である。 1・・・太陽光発電設備、2・・・充放電制御装置、3
・・・直交変換装置、4・・・昇圧変圧酉、5,6・・
・電力貯蔵用電池設備、 7,8・・・開閉器、 9・・・開閉器制 御部、10・・・光センサ、11.12・・・電圧検出
器、31・・・開閉器、32・・・抵抗。 第2図 グイAザk一ト(項◇一@1潤辷イ列)メ1口 キ2E] 第5図
Fig. 1 is a Bronnock diagram showing a schematic configuration of the first embodiment of the present invention, Fig. 2 is a time chart for explaining the same embodiment, and Fig. 3 is a main part of the second embodiment of the present invention. FIG. 4 is a time chart for explaining the same embodiment.
FIG. 5 is a block diagram showing the schematic structure of a conventional solar power generation system. 1... Solar power generation equipment, 2... Charge/discharge control device, 3
...Orthogonal transformer, 4...Step-up transformer, 5,6...
・Power storage battery equipment, 7, 8... Switch, 9... Switch control unit, 10... Optical sensor, 11.12... Voltage detector, 31... Switch, 32 ···resistance. Fig. 2 Gui A the k one (item ◇ 1 @ 1 Jun 辷 I column) me 1 mouth key 2 E] Fig. 5

Claims (1)

【特許請求の範囲】[Claims] (1)太陽光発電設備と電力貯蔵用電池設備との間で電
力融通を行ない、上記太陽光発電設備および上記電力貯
蔵用電池設備の直流電力を交流電力に変換して受電負荷
に供給する太陽光発電システムにおいて、複数の完全放
電を必要とする電力貯蔵用電池設備を夫々開閉器を介し
て上記太陽光発電設備に連系させ、上記複数の電力貯蔵
用電池設備を完全放電させた状態で順番に切換えるよう
に上記開閉器を開閉器制御部の開閉指令に基づいて開閉
制御することを特徴とする太陽光発電システム。
(1) A solar power system that performs power interchange between the solar power generation equipment and the power storage battery equipment, converts the DC power of the solar power generation equipment and the power storage battery equipment into AC power, and supplies the AC power to the receiving load. In a photovoltaic power generation system, a plurality of power storage battery facilities that require complete discharge are connected to the solar power generation facility through respective switches, and the plurality of power storage battery facilities are fully discharged. A solar power generation system characterized in that the opening/closing of the switch is controlled based on an opening/closing command from a switch control unit so as to switch the switches in sequence.
JP1301490A 1989-11-20 1989-11-20 Solar power system Expired - Fee Related JP2844748B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1301490A JP2844748B2 (en) 1989-11-20 1989-11-20 Solar power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301490A JP2844748B2 (en) 1989-11-20 1989-11-20 Solar power system

Publications (2)

Publication Number Publication Date
JPH03164035A true JPH03164035A (en) 1991-07-16
JP2844748B2 JP2844748B2 (en) 1999-01-06

Family

ID=17897540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301490A Expired - Fee Related JP2844748B2 (en) 1989-11-20 1989-11-20 Solar power system

Country Status (1)

Country Link
JP (1) JP2844748B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201877A (en) * 2016-05-03 2017-11-09 エルエス産電株式会社Lsis Co., Ltd. Battery control circuit for renewable energy power generation system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393738A (en) * 1986-10-09 1988-04-25 Toray Ind Inc Isomerization method for dichlorotoluene
JPS63294222A (en) * 1987-05-25 1988-11-30 Sharp Corp Composite type optical power generating system
JPS6450723A (en) * 1987-08-20 1989-02-27 Mitsubishi Electric Corp Solar power generator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393738A (en) * 1986-10-09 1988-04-25 Toray Ind Inc Isomerization method for dichlorotoluene
JPS63294222A (en) * 1987-05-25 1988-11-30 Sharp Corp Composite type optical power generating system
JPS6450723A (en) * 1987-08-20 1989-02-27 Mitsubishi Electric Corp Solar power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201877A (en) * 2016-05-03 2017-11-09 エルエス産電株式会社Lsis Co., Ltd. Battery control circuit for renewable energy power generation system
US10263446B2 (en) 2016-05-03 2019-04-16 Lsis Co., Ltd. Battery control circuit for power generation system using renewable energy

Also Published As

Publication number Publication date
JP2844748B2 (en) 1999-01-06

Similar Documents

Publication Publication Date Title
KR101277185B1 (en) Dc microgrid system and ac/dc hybrid microgrid system using it
US8970179B2 (en) Method, device and circuit for charging multiple battery packs of an energy storage system
JP4641507B2 (en) Power supply system
JPH06178461A (en) System-linked power supply system
KR20070050044A (en) Power extractor circuit
JPH11127546A (en) Photovoltaic power generating system
JP2009247108A (en) Electric storage device and charging/discharging control method therefor
JP3581699B2 (en) Power supply system and control method thereof
EP1803203B1 (en) Apparatus and method for charging an accumulator
JP2001069688A (en) Stand-alone photovoltaic power generation system and method for power generation
JPH1169659A (en) Solar power generation and charging system
JPH08223816A (en) Switching method of commercial-system power in inverter system of solar-light power generation
JP2001177995A (en) Hybrid power supply system
JP3578911B2 (en) Portable solar power generator
JPH03164035A (en) Solar generation system
JP7300088B2 (en) storage system
JP3530519B2 (en) Voltage equalizing device for power storage device and power storage system provided with the device
Reynaud et al. A novel distributed photovoltaic power architecture using advanced Li-ion batteries
JP2000166124A (en) Auxiliary power unit
JPH01318519A (en) Method of supplying power for controlling solar photovoltaic power generation system
JP2002315224A (en) Fuel battery power source system and method for charging secondary cell in the fuel battery power source system
JP2003219578A (en) Uninterruptible power source system
KR200485327Y1 (en) Stand-alone and grid-connected type photovoltaic power generator using low-voltage battery
TWI692172B (en) Energy conversion module architecture using active current inner loop adjustment
TWI690129B (en) Regenerative power generation and energy storage system using current inner loop adjustment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees