JPH0316392B2 - - Google Patents

Info

Publication number
JPH0316392B2
JPH0316392B2 JP61299565A JP29956586A JPH0316392B2 JP H0316392 B2 JPH0316392 B2 JP H0316392B2 JP 61299565 A JP61299565 A JP 61299565A JP 29956586 A JP29956586 A JP 29956586A JP H0316392 B2 JPH0316392 B2 JP H0316392B2
Authority
JP
Japan
Prior art keywords
dye
dyeing
dyed
fastness
monoazo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61299565A
Other languages
Japanese (ja)
Other versions
JPS63152669A (en
Inventor
Kyoshi Himeno
Junji Yoshihara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP61299565A priority Critical patent/JPS63152669A/en
Publication of JPS63152669A publication Critical patent/JPS63152669A/en
Publication of JPH0316392B2 publication Critical patent/JPH0316392B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coloring (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、ポリエステル繊維を諸堅牢度、特に
湿潤堅牢度に優れたルビン色に染色し、かつ、染
色性の良好なポリエステル繊維類用配合染料に関
する。 (従来の技術) 最近、ポリエステル布に、撥水加工、風合向上
加工、帯電防止加工、衛生加工等の種々の後加工
が実施されている。 上記のような後加工は、高温処理するため、す
でに染色されている繊維等から染料がブリード
し、該繊維等の諸堅牢度とくに湿潤堅牢度が低下
するという問題が生ずる。 又一方、最近染色法の合理化に伴い、とくに省
資現、省エネルギーの観点から、染浴の低浴比
化(例えば被染物対染色液の比率を1:30から
1:10に低下させる)、分散剤の使用割合の低
下(例えば染料ケーキ対分散剤の比率を1:3か
ら1:1に低下させる)、更に染色条件の一層
の短時間高温化(例えば130℃×1時間から135℃
×0.5時間へ高温短時間化する)などのように、
染色条件が苛酷なものへと移行しつつある。しか
も、かかる染色条件の苛酷化はいずれも、染料の
分散安定性には不利に働くため、従来の染色法に
よれば比較的分散安定性の良好であつた分散染料
であつても、従来よりも厳しい最近の合理化され
た染色法によると分散安定性の不良となるものが
少なくない。その結果、分散劣化し凝集した染料
が、被染物の表面に過残渣状に付着し染色物の
摩擦堅牢度を低下させ、又、何層にも重なつてい
る被染物では、外層部分と内層部分で染着濃度が
異なり、均一な濃度の染色物が得られない。 (発明が解決しようとする問題点) このような問題点を克服するための赤色系染料
として、本出願人は特定の結晶変態を有する下記
構造式〔〕 で示されるモノアゾ染料を提案した。(特願昭60
−298484号参照)このモノアゾ染料は苛酷な染色
条件においても、良好な染色ができ、耐摩擦堅牢
度及び耐光堅牢度が非常に優れている上、染色物
をポリウレタン加工、シリコン加工等の後加工を
施した後の湿潤堅牢度も優れた赤色系染料であ
る。 ところが、染料は一般的に単品で用いるだけで
なく、色合せのため種々配合して用いられるが、
この赤色系染料を他の染料と配合した場合には、
上記染料の有する優れた効果が発揮されない場合
がある。即ち、折角、上記染料が優れていても、
配合する染料によつて、その優立性が活かされな
くなるのである。特に、この傾向はオレンジ色系
の染料と配合する場合に大きい。 (問題点を解決するための手段) 本発明者等は上記実情に鑑み、上記モノアゾ染
料と配合しても、高い湿潤堅牢度、耐摩擦堅牢度
及び耐光堅牢度を発揮することのできるポリエス
テル繊維類用配合染料につき種々検討した結果、
ある特定のモノアゾ染料と混合するときに限り、
本発明の目的が達成されることを見い出し本発明
を完成した。 即ち、本発明は、下記一般式〔〕 で示され、且つ回折角(2θ)約14.2゜に1本の非
常に強いピーク、約24.5゜に1本の強いピーク、
更に約16.9゜、23.6゜、25.3゜及び26.8゜に4本の弱い
ピークを示すX線回折図(CuKα)により特徴づ
けられる結晶変態を有するモノアゾ染料を10〜90
重量%並びに下記一般式〔〕 (式中、X、Yはたがいに独立に水素原子または
塩素原子を表わす)で示されるモノアゾ染料を90
〜10重量%配合してなるポリエステル繊維類用配
合染料を要旨とする。 以下、本発明を詳細に説明する。 本発明では前示構造式〔〕のモノアゾ染料と
前示一般式〔〕のモノアゾ染料とを配合するこ
とを必須の要件とするものであるが、この両者の
配合比率は10:90〜90:10(重量比)、好ましくは
50:50〜90:10(重量比)である。 本発明で使用する前示構造式〔〕のモノアゾ
染料は、回折角(2θ)約14.2゜に1本の非常に強
いピーク、約24.5゜に1本の強いピーク、更に、
約16.9゜、23.6゜、25.3゜および26.8゜に4本の弱いピ
ークを示すX線回折図(CuKα)により特徴づけ
られる結晶変態(以下、「α型結晶」という)を
有するものである。この結晶型以外の場合には、
苛酷な染色条件において、良好な染色性を発揮す
ることができない。 このα型結晶の上記モノアゾ染料は、例えば、
下記構造式〔〕 で示される化合物を常法によりジアゾ化し、次い
で下記式〔〕 で示される化合物と水媒体中で0〜10℃の温度で
カツプリングさせることにより、前示構造式
〔〕のモノアゾ化合物を合成する。この合成で
得られるモノアゾ化合物のケーキはほぼ無定型に
近い結晶変態(以下、「β型結晶」という。)であ
る。これに対して本発明では、このケーキを更
に、特定条件で処理することによりα型結晶とす
る。この場合の特定条件下での処理方法として
は、β型結晶のケーキを、例えば水媒体中に分
散し、場合によりナフタレンスルホン酸のホルム
アルデヒド縮合物、リグニンスルホン酸ソーダが
主成分であるサルフアイトパルブ廃液の濃縮物等
の分散剤の存在下、60〜130℃、好ましくは80〜
100℃の温度で0.5〜30時間、好ましくは1〜10時
間撹拌処理する方法、又は、メタノール、エタ
ノール又はブタノールなどのアルコール類、ジオ
キサンなどのエーテル類、エチレングリコール、
グリコールエーテル等の有機溶媒中に分散し、15
〜100℃、好ましくは20〜80℃の温度で0.5〜10時
間程度撹拌処理する方法などが採用される。 また、前記式〔〕の化合物を例えば、メタノ
ールなどの有機溶媒中に溶解し、前記式〔〕の
化合物と有機溶媒中でカツプリング反応させるこ
とにより、直接、α型結晶のモノアゾ化合物を得
ることもできる。 前示構造式〔〕で示されるモノアゾ化合物に
おけるα型結晶とβ型結晶とについて図面により
説明する。第1図及び第2図は粉体X線回折法に
おけるCuKα線による回折状態をプロポーシヨナ
ルカウンターを使用して記録したX線回折図であ
り、横軸は回折角(2θ)縦軸は回折強度をそれぞ
れ示す。第1図は本発明の新規な結晶型であるα
型結晶を示すもので、特に、回折角(2θ)約
14.2゜に1本の非常に強いピーク、約24.5゜に1本
の強いピーク、約16.9゜、23.6゜、25.8゜及び26.8°に
4本の弱いピークを持つている。第2図は従来の
β型結晶を示すものであり、第1図のα型結晶と
明確に異なつている。X線回折法による回折角
は、同一結晶型のものであれば、±0.1゜程度の誤
差で常に一致するものであつて、これらの図面は
結晶変態の相違を明白に示している。この結晶型
の差異により染色時におけるモノアゾ化合物の挙
動が異なり、本発明の場合には、、高温度で、し
かも、苛酷な条件での染色法を採用しても、良好
な染色ができるのである。 一方、前示一般式〔〕のモノアゾ染料につい
ても、数種類の結晶型が存在するが、この染料の
場合には、いずれの結晶型のものでも良好な結果
を得ることができる。したがつて、この染料の場
合には結晶型は特に限定されない。 一般式〔〕で示される化合物はたとえば、下
記構造式〔〕 (式中、X、Yは前記定義に同じ) で示される化合物を常法によりジアゾ化し、次い
で下記式〔〕 で示される化合物とカツプリングさせることによ
り容易に製造することができる。 本発明のアゾ染料混合物により染色しうる繊維
としては、ポリエチレンテレフタレート、テレフ
タル酸と1,4−ビス−(ヒドロキシメチル)シ
クロヘキサンとの重縮合物などよりなるポリエス
テル繊維、あるいは木綿、絹、羊毛などの天然繊
維と上記ポリエステル繊維の混紡品、混織品が挙
げられる。 本発明の染料を用いてポリエステル繊維を染色
するには、前示一般式〔〕及び〔〕で示され
る染料が水に不溶ないし難溶であるので、常法に
より、分散剤としてナフタレンスルホン酸とホル
ムアルデヒドとの縮合物、高級アルコール硫酸エ
ステル、高級アルキルベンゼンスルホン酸塩など
を使用して水性媒質中に分散させた染色浴または
捺染糊を調製し、浸染または捺染を行なえばよ
い。例えば浸染の場合、高温染色法、キヤリヤー
染色法、サーモゾル染色法などの通常の染色処理
法を適用すれば、ポリエステル繊維ないしは、そ
の混紡品に堅牢度のすぐれた染色を施すことがで
きる。その際、場合により、染色浴にギ酸、酢
酸、リン酸あるいは硫酸アンモニウムなどのよう
な酸性物質を添加すれば、さらに好結果が得られ
る。 また、本発明の配合染料の場合には、苛酷な染
色条件においても、優れた効果を発揮することが
できるが、本発明では例えば、浸染法において
は、染色温度125〜140℃、染浴比(被染物に対す
る染色液量)15倍以下、更に、分散剤比(染料ケ
ーキに対する分散剤量)1倍以下の染色条件に適
用すると、特にその効果を十分に発揮することが
できる。 (実施例) 次に、本発明を実施例によつて更に具体的に説
明するが、本発明は以下の実施例に限定されるも
のではない。 〔前示一般式〔〕の染料結晶の製造例〕 N−エチル−N−ベンゾイルオキシエチルアニ
リン5.4gを2%硫酸300mlに0〜3℃で分散させ
カツプリング成分溶液とした。 6−ニトロ−2−アミノベンゾチアゾール5.1
gをリン酸/酢酸=1/1溶液60mlに溶解し、42
%ニトロシル硫酸を用い0℃にて2時間ジアゾ化
を行ないジアゾ液を調製した。このジアゾ液を前
記カツプリング成分溶液中に滴下し、3時間、0
℃にて反応後析出結晶をろ別、水洗乾燥して褐色
結晶9.6gを得た。この反応で得られたモノアゾ
染料の粉末をX線回折法により分析したところ、
β型結晶であり、そX線回折図を第2図に示す。 次いで、得られたβ型結晶を用い、20倍溶量の
水中に分散させ、90〜95℃で3時間撹拌し結晶の
転移を行なつた。結晶の転移終了後ろ過、乾燥を
行ない、得られた結晶をX線回折法により分析し
たところ、第1図のX線回折図を示すα型結晶で
あつた。 〔前示一般式〔〕の染料結晶の製造例〕 N−シアノエチル−N−ベンゾイルオキシエチ
ルアニリン5.8gを2%硫酸300mlに0〜3℃で分
散させカツプリング成分溶液とした。 p−ニトロアニリン2.8gを常法により10ml硫
酸中ニトロシル硫酸を用いジアゾ化し、0℃にて
2時間ジアゾ化を行ない、ジアゾ液を調整した。
このジアゾ液を前記カツプリング成分溶液中に滴
下し、3時間0℃にて反応後、析出結晶をろ別、
水洗乾燥して8.4gの下記構造式で示される橙色
結晶を得た。本品のλmax(アセトン中)は455n
mであつた。 実施例 1 上記各製造例で得たモノアゾ化合物を各々0.25
g、合計0.5gをナフタレンスルホン酸−ホルム
アルデヒド縮合物0.25gおよび高級アルコール硫
酸エステル0.25gを含む水1に分散させて染色
浴を調製した。この染色浴にポリエステル繊維
100gを浸漬し、135℃で30分間染色した後、ソー
ピング、水洗および乾燥を行なつたところ、染料
の分散性は良好であり、染布への均一な染色がな
された。また、得られた染布も青味赤色の耐光堅
牢度6級、耐摩擦堅牢度5級と良好なものであつ
た。また、これらのポリウレタン加工後の湿潤堅
牢度を第1表に示す。 なお、上記製造例の製造途中のβ型結晶のモノ
アゾ化合物を用いて、同様の染色試験をしたとこ
ろ、染浴中で染料の部分凝集が起り、不均染な染
布となり、かつ耐摩擦堅牢度は1級と大きく劣る
ものであつた。 実施例 2 実施例1において、ナフタレンスルホン酸−ホ
ルムアルデヒド縮合物および高級アルコール硫酸
エステルをそれぞれ3倍の0.75gに、水を3倍の
3とし、染色温度を130℃で60分間として、や
や温和な染色法にて実施した結果、本発明の
〔〕のα型結晶では、実施例1と同様に良好な
染色ができ、得られた染布も耐光堅牢度6級、耐
摩擦堅牢度5級と良好であつた。これに対して、
〔〕のβ型結晶を用いた際には、実施例1に比
べて僅かに向上が見られたが、やはり不均染な染
布が得られ、耐摩擦堅牢度は3級であつた。 実施例 3 上記製造例で得られた一般式〔〕のα型結晶
の染料0.35g及び一般式〔〕の染料0.15gの混
合物をナフタレンスルホン酸−ホルムアルデヒド
縮合物0.5gと混合し、ペイントシエーカーで微
粉砕し、微粒子化染料を得た。下記の組成からな
る元糊と充分混合し、色糊100gを得た。 元糊の組成 カルボキシメチルセルロース系糊剤 30g 酒石酸 0.2g 芳香族系キヤリヤー(サンフローレンSN、日華
化学工業株式会社製造、商品名) 0.3g 水 68.5g 計 99.0g この色糊をポリエステル繊維上に印捺し、100
℃にて中間乾燥を行ない、ついで170℃の過熱水
蒸気中にて7分間保持し発色させた後、ソーピン
グ、水洗および乾燥を行なつたところ、耐光堅牢
度、耐昇華堅牢度および湿潤堅牢度の良好な赤色
に捺染されたポリエステル布が得られた。 比較例 1〜7 実施例1の方法において、配合する染料の種類
を、代表的な市販染料であるCI−Disperse R−
145または同O−31に変更して、同様な方法で染
色し、ポリウレタン加工後の湿潤堅牢度を測定
し、第1表に示す結果を得た。
(Industrial Field of Application) The present invention relates to a blended dye for polyester fibers which dyes polyester fibers in a rubine color excellent in various fastnesses, particularly wet fastnesses, and has good dyeability. (Prior Art) Recently, polyester cloth has been subjected to various post-processing such as water-repellent finishing, hand-improving finishing, antistatic finishing, sanitary finishing, etc. Since the above-mentioned post-processing involves high-temperature treatment, dyes bleed from already dyed fibers, etc., resulting in a problem that various fastnesses, especially wet fastnesses, of the fibers, etc. are reduced. On the other hand, with the recent rationalization of dyeing methods, particularly from the viewpoint of saving capital and energy, lowering the dye bath ratio (for example, lowering the ratio of dyeing material to dyeing solution from 1:30 to 1:10), Reducing the proportion of dispersant used (e.g., reducing the dye cake to dispersant ratio from 1:3 to 1:1) and further increasing the dyeing conditions to higher temperatures for a short time (e.g., from 130°C for 1 hour to 135°C)
x 0.5 hours), etc.
Dyeing conditions are becoming increasingly harsh. Moreover, all of these harsher dyeing conditions have a disadvantageous effect on the dispersion stability of the dye, so even if the disperse dye has relatively good dispersion stability using conventional dyeing methods, However, the recent streamlined dyeing methods often result in poor dispersion stability. As a result, the dye that has deteriorated in dispersion and aggregated adheres to the surface of the dyed object in the form of an excessive residue, reducing the abrasion fastness of the dyed object.In addition, in the case of a dyed object that has many layers, the outer layer and inner layer The dyeing density varies in different parts, making it impossible to obtain a dyed product with uniform density. (Problems to be Solved by the Invention) As a red dye to overcome these problems, the present applicant has proposed the following structural formula [] having a specific crystal modification. We proposed a monoazo dye shown by (Special request 1986
(Refer to No. 298484) This monoazo dye can be dyed well even under harsh dyeing conditions, has excellent abrasion fastness and light fastness, and the dyed material can be subjected to post-processing such as polyurethane processing and silicone processing. It is a red dye with excellent wet fastness after being applied. However, dyes are generally not only used singly but also in various combinations for color matching.
When this red dye is combined with other dyes,
The excellent effects of the above dyes may not be exhibited. In other words, even if the above dyes are excellent,
Depending on the dye that is blended, its superiority cannot be utilized. This tendency is particularly strong when blending with orange dyes. (Means for Solving the Problems) In view of the above circumstances, the present inventors have developed a polyester fiber that can exhibit high wet fastness, abrasion fastness, and light fastness even when blended with the above monoazo dye. As a result of various studies on compounded dyes for similar use,
Only when mixed with certain monoazo dyes,
The present invention was completed after discovering that the object of the present invention can be achieved. That is, the present invention provides the following general formula [] and one very strong peak at a diffraction angle (2θ) of about 14.2°, one strong peak at about 24.5°,
Furthermore, a monoazo dye having a crystal modification characterized by an X-ray diffraction pattern (CuKα) showing four weak peaks at approximately 16.9°, 23.6°, 25.3° and 26.8° was added at 10 to 90°.
Weight% and general formula below [] (In the formula, X and Y each independently represent a hydrogen atom or a chlorine atom.)
The gist is a blended dye for polyester fibers containing ~10% by weight. The present invention will be explained in detail below. In the present invention, it is essential to blend the monoazo dye of the above structural formula [] with the monoazo dye of the above general formula [], and the blending ratio of both is 10:90 to 90: 10 (weight ratio), preferably
The ratio is 50:50 to 90:10 (weight ratio). The monoazo dye of the above structural formula [] used in the present invention has one very strong peak at a diffraction angle (2θ) of about 14.2°, one strong peak at about 24.5°, and
It has a crystal modification (hereinafter referred to as "α-type crystal") characterized by an X-ray diffraction pattern (CuKα) showing four weak peaks at approximately 16.9°, 23.6°, 25.3°, and 26.8°. In cases other than this crystal type,
Unable to exhibit good dyeing properties under severe dyeing conditions. The monoazo dye of the α-type crystal is, for example,
Structural formula below [] The compound represented by is diazotized by a conventional method, and then the following formula [] A monoazo compound of the above structural formula [] is synthesized by coupling with the compound shown in an aqueous medium at a temperature of 0 to 10°C. The cake of the monoazo compound obtained by this synthesis is a crystal modification that is almost amorphous (hereinafter referred to as "β-type crystal"). In contrast, in the present invention, this cake is further treated under specific conditions to form α-type crystals. In this case, a treatment method under specific conditions includes dispersing a cake of β-type crystals in, for example, an aqueous medium, and optionally dispersing sulfite parfum whose main component is a formaldehyde condensate of naphthalene sulfonic acid and sodium lignin sulfonate. In the presence of a dispersant such as a waste liquid concentrate, 60 to 130℃, preferably 80 to
A method of stirring at a temperature of 100°C for 0.5 to 30 hours, preferably 1 to 10 hours, or alcohols such as methanol, ethanol or butanol, ethers such as dioxane, ethylene glycol,
Dispersed in an organic solvent such as glycol ether, 15
A method of stirring at a temperature of ~100°C, preferably 20~80°C for about 0.5 to 10 hours is adopted. Alternatively, it is also possible to directly obtain a monoazo compound in the form of α-type crystal by dissolving the compound of the formula [] in an organic solvent such as methanol and coupling the compound with the compound of the formula [] in the organic solvent. can. The α-type crystal and β-type crystal in the monoazo compound represented by the above structural formula [] will be explained with reference to the drawings. Figures 1 and 2 are X-ray diffraction diagrams recorded using a proportionate counter to record the diffraction state of CuKα rays in powder X-ray diffraction method, where the horizontal axis is the diffraction angle (2θ) and the vertical axis is the diffraction angle. Indicates the strength of each. Figure 1 shows the new crystal form α of the present invention.
type crystal, especially the diffraction angle (2θ) of approx.
It has one very strong peak at 14.2°, one strong peak at about 24.5°, and four weak peaks at about 16.9°, 23.6°, 25.8°, and 26.8°. FIG. 2 shows a conventional β-type crystal, which is clearly different from the α-type crystal shown in FIG. The diffraction angles determined by X-ray diffraction always match with an error of about ±0.1° if they are of the same crystal type, and these drawings clearly show the difference in crystal modification. Due to this difference in crystal type, the behavior of the monoazo compound during dyeing differs, and in the case of the present invention, good dyeing can be achieved even if dyeing methods are employed at high temperatures and under harsh conditions. . On the other hand, although there are several types of crystal forms of the monoazo dye of the general formula [], good results can be obtained with any of the crystal forms of this dye. Therefore, the crystal type of this dye is not particularly limited. For example, the compound represented by the general formula [] is the following structural formula [] (In the formula, X and Y are the same as defined above.) A compound represented by the following formula is diazotized by a conventional method, and then the following formula [] It can be easily produced by coupling it with the compound shown below. Fibers that can be dyed with the azo dye mixture of the present invention include polyester fibers made of polyethylene terephthalate, polycondensates of terephthalic acid and 1,4-bis-(hydroxymethyl)cyclohexane, or fibers such as cotton, silk, and wool. Examples include blended products and blended woven products of natural fibers and the above-mentioned polyester fibers. In order to dye polyester fibers using the dye of the present invention, since the dyes represented by the general formulas [] and [] are insoluble or sparingly soluble in water, naphthalenesulfonic acid is used as a dispersant in a conventional manner. Dyeing or printing may be carried out by preparing a dye bath or printing paste in which a condensate with formaldehyde, a higher alcohol sulfate, a higher alkylbenzene sulfonate, etc. are dispersed in an aqueous medium. For example, in the case of dip dyeing, polyester fibers or their blends can be dyed with excellent fastness by applying ordinary dyeing methods such as high temperature dyeing, carrier dyeing, and thermosol dyeing. In this case, even better results can be obtained if an acidic substance such as formic acid, acetic acid, phosphoric acid or ammonium sulfate is added to the dyeing bath. Furthermore, in the case of the blended dye of the present invention, it is possible to exhibit excellent effects even under severe dyeing conditions. The effect can be particularly fully exhibited when applied to dyeing conditions where the amount of dyeing solution is 15 times or less (the amount of dyeing liquid relative to the object to be dyed), and furthermore, the dispersant ratio (the amount of dispersant relative to the dye cake) is 1 times or less. (Examples) Next, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to the following Examples. [Example of production of dye crystals of general formula []] 5.4 g of N-ethyl-N-benzoyloxyethylaniline was dispersed in 300 ml of 2% sulfuric acid at 0 to 3°C to prepare a coupling component solution. 6-Nitro-2-aminobenzothiazole 5.1
Dissolve g in 60 ml of phosphoric acid/acetic acid = 1/1 solution,
% nitrosyl sulfuric acid at 0° C. for 2 hours to prepare a diazo solution. This diazo solution was dropped into the coupling component solution for 3 hours, and then
After the reaction at °C, the precipitated crystals were filtered off, washed with water and dried to obtain 9.6 g of brown crystals. When the monoazo dye powder obtained in this reaction was analyzed by X-ray diffraction, it was found that
It is a β-type crystal, and its X-ray diffraction pattern is shown in Figure 2. Next, the obtained β-type crystals were dispersed in 20 times the amount of water and stirred at 90 to 95° C. for 3 hours to effect crystal transition. After completion of the crystal transition, the crystals were filtered and dried, and the resulting crystals were analyzed by X-ray diffraction, and were found to be α-type crystals as shown in the X-ray diffraction pattern shown in FIG. [Example of production of dye crystals of general formula []] 5.8 g of N-cyanoethyl-N-benzoyloxyethylaniline was dispersed in 300 ml of 2% sulfuric acid at 0 to 3°C to prepare a coupling component solution. 2.8 g of p-nitroaniline was diazotized using nitrosyl sulfuric acid in 10 ml of sulfuric acid in a conventional manner, and the diazotization was carried out at 0° C. for 2 hours to prepare a diazo solution.
This diazo solution was dropped into the coupling component solution, and after reacting at 0°C for 3 hours, the precipitated crystals were filtered off.
After washing with water and drying, 8.4 g of orange crystals represented by the following structural formula were obtained. The λmax (in acetone) of this product is 455n
It was m. Example 1 0.25% of each of the monoazo compounds obtained in the above production examples
A dyeing bath was prepared by dispersing a total of 0.5 g in water 1 containing 0.25 g of naphthalene sulfonic acid-formaldehyde condensate and 0.25 g of higher alcohol sulfate. Polyester fibers are dyed in this dye bath.
When 100 g of the dye was immersed and dyed at 135° C. for 30 minutes, soaping, washing with water, and drying were performed, the dispersibility of the dye was good, and the dyed fabric was uniformly dyed. The dyed fabric obtained also had good bluish-red color fastness to light, grade 6, and color fastness to abrasion, grade 5. Further, the wet fastness after polyurethane processing is shown in Table 1. In addition, when a similar dyeing test was carried out using the β-type crystal monoazo compound in the process of production in the above production example, partial aggregation of the dye occurred in the dye bath, resulting in an unevenly dyed fabric and poor abrasion resistance and fastness. The degree was significantly inferior to grade 1. Example 2 In Example 1, the naphthalene sulfonic acid-formaldehyde condensate and higher alcohol sulfuric ester were each tripled to 0.75 g, the water was tripled to 3, and the dyeing temperature was changed to 130°C for 60 minutes to produce a slightly milder dye. As a result of the dyeing method, the α-type crystal of the present invention [] can be dyed as well as in Example 1, and the obtained dyed fabric has a light fastness of class 6 and a rub fastness of class 5. It was good and warm. On the contrary,
When the β-type crystal of [ ] was used, a slight improvement was observed compared to Example 1, but unevenly dyed fabric was still obtained, and the abrasion fastness was grade 3. Example 3 A mixture of 0.35 g of α-type crystal dye of general formula [] obtained in the above production example and 0.15 g of dye of general formula [] was mixed with 0.5 g of naphthalene sulfonic acid-formaldehyde condensate, and a paint shaker was added. The dye was pulverized to obtain a finely divided dye. The mixture was thoroughly mixed with the base paste having the composition shown below to obtain 100 g of colored paste. Composition of base glue Carboxymethyl cellulose glue 30g Tartaric acid 0.2g Aromatic carrier (Sunfloren SN, manufactured by NICCA CHEMICAL CO., LTD., trade name) 0.3g Water 68.5g Total 99.0g This colored paste was printed on the polyester fiber. Stamped, 100
After intermediate drying at 170°C, the color was developed by holding in superheated steam at 170°C for 7 minutes, followed by soaping, washing with water, and drying. A polyester cloth printed in a good red color was obtained. Comparative Examples 1 to 7 In the method of Example 1, the type of dye to be blended was changed to CI-Disperse R-, which is a typical commercially available dye.
145 or the same O-31 and dyed in the same manner, and the wet fastness after polyurethane processing was measured, and the results shown in Table 1 were obtained.

【表】【table】

〔ポリウレタン加工後堅牢度評価法〕[Fastness evaluation method after polyurethane processing]

(1) ポリウレタン加工法 ハイドランF−24Kの1%溶液に浸した後、
160℃で2分間キユアリングする。 (2) 洗濯堅牢度 ポリウレタン加工を施した染色布にマルチフ
アイバーを添付し、AATCC法洗濯A号に準
じて洗濯試験を行ない、マルチフアイバーのナ
イロン繊維の汚染をグレースケールにて判定し
た。 (3) アルカリ汗堅牢度 ポリウレタン加工を施した染色布をJIS L−
0848A法に準じ、但し添付布はナイロン布とシ
ルク布を使用した方法により試験を行ない、シ
ルク布の汚染度をグレースケールにて判定し
た。 (4) 水堅牢度 ポリウレタン加工を施した染色布をJIS L−
0846A法に準じ、但しナイロン布の代わりにシ
ルク布を添付した方法により試験を行ない、シ
ルク布の汚染度をグレースケールにて判定し
た。 実施例 4 実施例1の方法に従つて前示一般式〔〕のα
型結晶よりなるモノアゾ染料と第2表に示した一
般式〔〕のモノアゾ染料の各種配合染料を用い
てポリエステル布を染色し、同表に示す色調の染
布を得た。 得られた染布をポリウレタン加工した後の湿潤
堅牢度(アルカリ汗堅牢度)を測定したところ、
第2表に示す結果を得た。
(1) Polyurethane processing method After soaking in a 1% solution of Hydran F-24K,
Cure for 2 minutes at 160℃. (2) Washing fastness A multi-fiber was attached to a dyed cloth treated with polyurethane, and a washing test was conducted according to AATCC washing method A, and the contamination of the nylon fibers of the multi-fiber was determined on a gray scale. (3) Alkaline sweat fastness JIS L-
Tests were conducted in accordance with the 0848A method, except that nylon cloth and silk cloth were used as the attached cloths, and the degree of contamination of the silk cloth was determined on a gray scale. (4) Water fastness JIS L-
The test was conducted according to the 0846A method except that a silk cloth was attached instead of the nylon cloth, and the degree of contamination of the silk cloth was determined on a gray scale. Example 4 α of the general formula [ ] according to the method of Example 1
Polyester fabrics were dyed using various blended dyes of monoazo dyes consisting of type crystals and monoazo dyes of the general formula [] shown in Table 2 to obtain dyed fabrics with the colors shown in Table 2. We measured the wet fastness (alkali sweat fastness) of the obtained dyed fabric after polyurethane processing.
The results shown in Table 2 were obtained.

【表】【table】

【表】 (発明の効果) 以上のように、本発明で特定する染料の組み合
わせにより、特に市場で要望の強い後加工後の湿
潤堅牢度の極めて良好な橙〜青味赤色、特にエン
ジ色、ルビン色色調の染布が得られる。これらは
主にスポーツ衣料分野で使用される湿潤堅牢度の
良好な染料の要望を満たすものである。 これに対し、代表市販染料同士ないしは、代表
市販染料を配合成分の1つとした染料の組合わせ
のいずれにおいても満足な後加工耐性を有するも
のが得られず、市場の要求を満たすことはできな
い。 又、比較例7に挙げたように、前示一般式
(〕のモノアゾ化合物のβ型結晶を使用した場
合には、モノアゾ化合物()との組合わせにお
いても染色液の分散劣化の為に不均染な染布しか
得られず、その後加工耐性も劣るものであつた。 以上のように、本発明の合理的な染色法に十分
適性を有しかつ後加工耐性の良好な染料混合物は
極めて有用なものである。
[Table] (Effects of the invention) As described above, the combination of dyes specified in the present invention produces orange to bluish reds, especially orange colors, with extremely good wet fastness after post-processing, which is particularly in demand in the market. A dyed fabric with a rubine tone is obtained. These primarily meet the need for dyes with good wet fastness for use in the sports clothing sector. On the other hand, none of the combinations of typical commercially available dyes or combinations of dyes in which typical commercially available dyes are one of the blending components have satisfactory post-processing resistance, making it impossible to meet market demands. In addition, as mentioned in Comparative Example 7, when the β-type crystal of the monoazo compound of the general formula () is used, even in combination with the monoazo compound (), dispersion of the dye solution deteriorates, resulting in failure. Only level dyed fabrics could be obtained, and the resistance to subsequent processing was poor.As described above, dye mixtures that are fully suitable for the rational dyeing method of the present invention and have good resistance to post-processing are extremely effective. It is useful.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造例において得られた一般
式〔〕のモノアゾ化合物のα型結晶のX線回折
図、第2図は同じくβ型結晶のX線回折図であ
り、図中、横軸は回折角(2θ)を表わし、縦軸は
回折強度を表わす。
Figure 1 is an X-ray diffraction diagram of an α-type crystal of a monoazo compound of the general formula [] obtained in a production example of the present invention, and Figure 2 is an X-ray diffraction diagram of a β-type crystal. The axis represents the diffraction angle (2θ), and the vertical axis represents the diffraction intensity.

Claims (1)

【特許請求の範囲】 1 下記一般式〔〕 で示され、かつ回折角(2θ)約14.2゜に1本の非
常に強いピーク、約24.5゜に1本の強いピーク、
更に約16.9゜、23.6゜、25.3゜及び26.8゜に4本の弱い
ピークを示すX線回折図(CuKα)により特徴づ
けられる結晶変態を有するモノアゾ染料を10〜90
重量%並びに下記一般式〔〕 (式中、X、Yはたがいに独立に水素原子または
塩素原子を表わす)で示されるモノアゾ染料を90
〜10重量%配合してなるポリエステル繊維類用配
合染料。
[Claims] 1. The following general formula [] and one very strong peak at a diffraction angle (2θ) of about 14.2°, one strong peak at about 24.5°,
Furthermore, a monoazo dye having a crystal modification characterized by an X-ray diffraction pattern (CuKα) showing four weak peaks at approximately 16.9°, 23.6°, 25.3° and 26.8° was added at 10 to 90°.
Weight% and general formula below [] (In the formula, X and Y each independently represent a hydrogen atom or a chlorine atom.)
A blended dye for polyester fibers containing ~10% by weight.
JP61299565A 1986-12-16 1986-12-16 Formulated dye for polyester fiber Granted JPS63152669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61299565A JPS63152669A (en) 1986-12-16 1986-12-16 Formulated dye for polyester fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61299565A JPS63152669A (en) 1986-12-16 1986-12-16 Formulated dye for polyester fiber

Publications (2)

Publication Number Publication Date
JPS63152669A JPS63152669A (en) 1988-06-25
JPH0316392B2 true JPH0316392B2 (en) 1991-03-05

Family

ID=17874271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61299565A Granted JPS63152669A (en) 1986-12-16 1986-12-16 Formulated dye for polyester fiber

Country Status (1)

Country Link
JP (1) JPS63152669A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950990B2 (en) 2006-07-06 2018-04-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3844067A1 (en) * 1988-12-28 1990-07-05 Bayer Ag MIXTURES OF DISPERSION AZO DYES
JPH0745636B2 (en) * 1991-06-18 1995-05-17 三菱化成ヘキスト株式会社 Disperse dye mixture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950990B2 (en) 2006-07-06 2018-04-24 Polnox Corporation Macromolecular antioxidants comprising differing antioxidant moieties: structures, methods of making and using the same

Also Published As

Publication number Publication date
JPS63152669A (en) 1988-06-25

Similar Documents

Publication Publication Date Title
US4734101A (en) Red benzothiazole monoazo dye for polyester fiber, mixed dye containing the same, and method of dyeing polyester fiber using the same
JPH0316392B2 (en)
JPH0665789B2 (en) Dyeing method of polyester / cellulose composite fiber
JPH0556388B2 (en)
JP3076651B2 (en) Water-insoluble monoazo dye
JPS6232148A (en) Monoazo dye
JP2506594B2 (en) Water insoluble monoazo dye
JPS5940851B2 (en) How do I know what to do?
JP3318109B2 (en) Water-insoluble monoazo dye
JP3638306B2 (en) Monoazo dye compound
JP3212778B2 (en) Water-insoluble monoazo dye
JP3212761B2 (en) Water-insoluble monoazo dye
JP3725595B2 (en) Water-insoluble monoazo dye and method for producing the same
JPS61207467A (en) Monoazo dye
JPH0372103B2 (en)
JPH03162463A (en) Water-insoluble monoazo dye
JPH0662881B2 (en) Monoazo dye
JPS63132969A (en) Benzothiazole-based monoazo dye
JPH03131664A (en) Water-insoluble monoazo dye
JPH0349939B2 (en)
JPS58171450A (en) Monoazo dye for polyester fiber
JPH07252425A (en) Monoazo dye
JPH0376348B2 (en)
JPH078960B2 (en) Monoazo dye mixture
JPH0315945B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term