JPH03163560A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH03163560A
JPH03163560A JP30222889A JP30222889A JPH03163560A JP H03163560 A JPH03163560 A JP H03163560A JP 30222889 A JP30222889 A JP 30222889A JP 30222889 A JP30222889 A JP 30222889A JP H03163560 A JPH03163560 A JP H03163560A
Authority
JP
Japan
Prior art keywords
polyamide
graft
intermediate layer
layer
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30222889A
Other languages
Japanese (ja)
Inventor
Noriko Hirayama
典子 平山
Takashi Koyama
隆 小山
Hideki Anayama
秀樹 穴山
Yuichi Hashimoto
雄一 橋本
Katsumi Aoki
活水 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP30222889A priority Critical patent/JPH03163560A/en
Publication of JPH03163560A publication Critical patent/JPH03163560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain stable potential characteristics and stable images against every environmental conditions from low temperature and low humidity to high temperature and high humidity by incorporating a grafted polyamide converted into N-hydroxyalkylate and/or N-polyalkyleneoxide in an interlayer. CONSTITUTION:The photosensitive layer is formed on the interlayer containing the grafted polyamide converted into N-hydroxyalkylate and/or N- polyalkyleneoxide, and this interlayer is formed on a conductive substrate, thus permitting rise of residual potential under low temperature and low humidity deterioration of dark potential due to drop of barrier function under high temperature and high humidity to be prevented by adding said grafted polyamide, and therefore stable potential characteristics and stable images to be obtained against every environmental conditions from low temperature and low humidity to high temperature and high humidity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,電子写真感光体に関し、詳しくは導電性支持
体と感光層との間に設けられた中間層の改良に関する. [従来の技術] 一般に、カールソンタイプの電子写真感光体においては
、帯電一露光を繰り返したときに一定の画像濃度とカブ
リのない画像を形成する上で,暗部電位と明部電位の安
定性が重要になっている.このため、支持体から感光層
への電荷注入性改良、支持体と感光層との接着性改良,
感光層の塗工性向上,支持体上の欠陥の被覆などの機能
を宥する中間層を支持体と感光層との中間に設けること
が提案されている. また,感光層を電荷発生層と電荷輸送層に機能分離した
積層描造を有するものが提案されているが,一般に電荷
発生層は極めて薄い層として、例えば0.5gm程度で
設けられているため,支持体表面の欠陥,汚れ,付着物
または傷などが電荷発生層の膜厚を不均一とする原因と
なる.電荷発生層の膜厚が不均一であると感光体に感度
ムラを生じるので、電荷発生層をできるだけ均一なもの
とすることが要求されている.このようなことから,電
荷発生層と支持体との間にパリャー層としての機能,接
着層としての機能および支持体上の欠陥を被覆する機能
を有する中間層を設けることが提案されている.これま
で感光層と支持体との間に設ける暦とレて、ボリアミド
(特開昭46−47344号公報、特開昭52−256
38号公報)、ポリエステル(特開昭52−20836
号公報、特開昭54−28738号公報)、ポリウレタ
ン(特開昭49−10044号公報、特開昭53−89
435号公報)、カゼイン(特開昭55−103556
号公報),ポリペプチド(特開昭53−48523号公
報),ポリビニールアルコール(特開昭52−1002
40号公報)、ポリビニルピロリドン(特開昭48−3
0936号公報)、酢酸ビニルーエチレン共重合体(特
開昭48−26141号公報),無水マレイン酸エステ
ル重合体(特開昭52−10138号公報),ポリビニ
ルブチラ〜ル(特開昭57−90639号公報、特開昭
58−106549号公報),第四級アンモニウム塩含
有重合体(特開昭51−126149号公報,特開昭5
6−60448号公報)、エチルセルロース(特開昭5
5−143564号公報)などを用いることが知られて
いる. しかしながら,前述の材料を中間層として用いた電子写
真感光体では、温湿度変化により中間層の抵抗が変化す
るために,低温低湿下から高温高湿下の全環境に対して
常に安定した電位特性,画質を得ることが困難であった
. 例えば、中間層の抵抗が高くなる低温低湿下では感光体
を繰り返し使用した場合,中間層に電荷が残留するため
明部電位、残留電位が上昇し、コピーした画像にカブリ
を生じたり,反転現像を行なう電子写真方式のプリンタ
ーにこのような感光体を用いた場合には画像の濃度が薄
くなったり、一定の画質を有するコピーが得られない問
題があった. また、高温高湿下になると中間層の低抵抗化によりバリ
ャー機能が低下し、支持体側からのキャリアー注入が増
え暗部電位が低下してしまう.このため,高温高湿下で
はコピーした画像の濃度が薄くなったり、反転現像を行
なう電子写真方式のプリンターにこのような感光体を用
いた場合には、画像に黒点状の欠陥(黒ポチ),および
カブリを生じ易くなるといった問題があった.[発明が
解決しようとする課題] 本発明のロ的は,低温低湿下から高温高湿下にわたる全
環境に対して安定した電位特性と画像の得られる電子写
真感光体を提供することにある.また、本発明の別の目
的は、支持体上の欠陥を充分に被覆できる中間層を形成
して,欠陥のない良好な画像の得られる電子写真感光体
を提供することにある. [課題を解決するための手段、作用] 本発明は、導電性支持体上に中間層を介して感光層を設
けた電子写真感光体において、該中間層がN−ヒドロキ
シアルキル化および/またはN−ポリアルキレンオキシ
ド化されたグラフト化ポリアミドを含有することを特徴
とする電子写真感光体から構或される. さらに本発明の電子写真感光体は,導電性支持体が,支
持体基体と,その上に設けられた導電性物質を含有する
導電層とから構成される場合、さらに本発明の電子写真
感光体は,中間層がN−ヒドロキシアルキル化および/
またはN−ポリアルキレンオキシド化されたグラフト化
ボリアミドを含有し、かつ、中間層と感光層との間に樹
脂を主成分とする第二の中間層を設けている場合を特徴
としている. 本発明に用いられるグラフト化ボリアミドの主鎖を構成
する−ポリアミドとしては6ナイロン,l1ナイロン,
12−J−1ロン%8 6−J−イロン,610ナイロ
ンなどのナイロンおよび上記威分を含む共重合ナイロン
,N−アルコキシメチル化.N−アルキル化されたナイ
ロン、芳香族威分を含むナイロンなどが挙げられる. 一方、グラフト側鎖を構或する部分がボリアルキレンオ
キシドの場合,一種類のポリアルキレンオキシドのみで
なく、二種類以上のポリアルキレ?オキシドの共重合体
でもよい. グラフト部分の含有率は5〜70重量%,好ましくは1
0〜50重量%である. また,本発明において用いられるグラフト化ポリアミド
は、感光層用塗料に対する酎溶剤性を考慮して架橋して
用いることができる.架橋は、通常エポキシ化合物、メ
ラミン化合物などの架橋剤を■用いて塗膜形成後の加熱
処理によって行なわれる. ポリアミド或分にN−アルコキシメチル化ナイロンを用
いた場合は、架橋剤を用いずにクエン酸アジピン酸、酒
石酸,マレイン酸,次亜リン酸などの酸触媒を用いて、
加熱による自己架橋により,架橋体を形或することもで
きる. ここで本発明において用いられるグラフト化ポリアミド
の例を示す. グラフト化ボリアミドは主鎖に用いるポリアミドを高分
子反応によってグラフト化するものである. 以下に主鎖となるポリアミド部分を例示する.グラフト
重合体に用いるポリアミド或分例樹脂名       
重量平均分子量 ( I )  + イ0 7         105
,000(II) 8,813,810共重合ナイロy
    180,000組成比 8/8B/810−1
/1/1(IO) 6,12.88,810共重合ナイ
o y  140,000組戊比 8/ 12/8B/
8 10−2/1/2/2(IV)N−メトキシメチル
化6ナイロン2110.000 メトキシメチル置換率 28モル% 以下に本発明において用いられるN−ヒドロキシアルキ
ル化および/またはN−ボリアルキレンオキシド化され
たグラフト化ポリアミドの例を示す. 樹脂例(1) 主鎖:ポリアミド戒分例(I) 側鎖:グラ7ト部分戒分 −CHユOHユO}l グラフト部分含有率:12wt% 樹脂例(2) 主鎖:ボリアミド或分例( II ) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 10wt% 樹脂例(3) 主鎖:ボリアミド或分例(m) 側鎖:グラフト部分成分 同上 グラフト部分含有率: 9wt% 樹脂例(4) 主鎖:ポリアミド戊分例(rV) 側鎖:グラフト部分戒分 同上 グラフト部分含肴率:10wt% 樹脂例(5) 主鎖:ポリアミド戒分例(I) 側鎖:グラフト部分或分 −CHzCHsCHJLOH グラフト部分含肴率: 15wt% 樹脂例(6) 主鎖:ポリアミド或分例(■) 側鎖:グラフト部分戒分 同上 グラフト部分含宥率:14wt% 樹脂例(7) 主鎖:ポリアミド或分例(m) 側鎖:グラフト部分或分 同上 グラフト部分含有率:10wt% 樹脂例(8) 主鎖:ポリアミド或分例(IV) 側鎖:グラフト部分成分 同上 グラフト部分含有率:8wt% 樹脂例(9) 主鎖:ポリアミド成分例CI) 側鎖:グラフト部分威分 CH3 −CH20HOH グラフト部分含右率:l4wt% 樹脂例(10) 主鎖:ボリアミド戒分例( II ) 側M4:グラフト部分或分 同上 グラフト部分含宥率:15wt% 樹脂例(1 1) 主鎖:ポリアミド威分例(m) 側鎖:グラフト部分戒分 −CH上CHシCHコCH.OH グラフト部分含宥率: 18wt% 樹脂例(12) 主鎖:ポリアミド威分例(rV) 側鎖:グラフト部分或分 同上 グラフト部分含肴率:15wt% 樹脂例(13) 主鎖:ポリアミド成分例(I) 側鎖:グラフト部分或分 ?H3 +C H a C H C HユOHエOHユ0胎=H
平均重合度 n=3.2 グラフト部分含有率: 23wt% 樹脂例(l4) 主鎖:ポリアミド或分例( II ) 側鎖:グラフト部分或分 同上 グラフト部分含有−l:20wt% 樹脂例(15) 主鎖:ポリアミド或分例(m) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 18wt% 樹脂例(16) 主鎖:ポリアミド戒分例(rV) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 17wt% 樹脂例(l7) 主鎖:ポリアミド戒分例CI) 側鎖:グラフト部分戒分 ÷C}I工CH.0+−H n=2.8 グラフト部分含有率:21wt% 樹脂例(l8) 主鎖:ポリアミド或分例(■) 側鎖:グラフト部分威分 同上 グラフト部分含有率: 26wt% 樹脂例(19) 主鎖:ポリアミド成分例(m) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 18wt% 樹脂例(20) 主鎖:ボリアミド或分例(rV) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 25wt% 樹脂例(21) 主鎖:ポリアミド或分例(I) 側鎖:グラフト部分或分 ?H] 十G H z C H O % H nw2.3 グラフト部分含有率: 25wt% 樹脂例(22) 主鎖=ポリアミド或分例([I[) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 23wt% 樹脂例(23) 主鎖:ポリアミド成分例(■) 側鎖:グラフト部分或分 十CHy−CH zCHz CH.0入Hn=3.7 グラフト部分含有率: 35wt% 樹脂例(24) 主鎖:ポリアミド或分例(17) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 30wt% 樹脂例(25) 主鎖:ポリアミド威分例(1) 側鎖:グラフト部分成分 ÷CHエCHjLCHエ0坩H n=2.5 グラフト部分含有率: 28wt% 樹脂例(26) 主鎖:ポリアミド戒分例( II ) 側鎖:グラフト部分或分 同上 グラフト部分含有率: 25wt% 樹脂例(27) 主鎖二ボリアミド戊分例(I) 側鎖:グラフト部分威分 CH3 +C H 2 C H C H LO姫Hn=4.3 グラフト部分含有率: 32wt% 樹脂例(28) 主鎖:ポリアミド戊分例(■!) 側鎖:グラフト部分戒分 同上 グラフト部分含*率: 34wt% 樹脂例(29) 主鎖:ポリアミド戊分例(I) 側鎖:グラフト部分或分 CH3 十〇}lλCHユ0珊→CH扛HO反Hm:n=6:4 グラフト部分含有率: 35wt% 樹脂例(30) 主鎖:ポリアミド或分例(Il7) 側鎖:グラフト部分或分 + C HλCHλCH九CHユ0墳−{OHλCHユ
0慶Hm: n=5 : 5 グラフト部分含有率: 30wt% 樹脂例(31) 主釦:ポリアミド戊分例( II ) 側鎖:グラフト部分戊分 (モル比) (モル比) 9H3 十CHλC}IλCI{0−C’H>CH2 CHλ0
+−Hm:n=7:3 (モル比) グラフト部分含有率: 30wt% 樹脂例(32) 主鎖:ポリアミド戒分例(m) 側鎖:グラフト部分威分 ÷OHエCHzO墳→CHλCH五〇Hユ0せHm:n
=8:2(モル比) グラフト部分含有率、: 34wt% 本発明の電子写真感光体は,前述のグラフト化されたポ
リアミドを中間層に含有することにより、発明の目的を
達或することができる.即ち、グラフト化されたポリア
ミドを中間層に用いることにより、低温低湿下における
残留電位の上昇および高温高湿下におけるバリャー機能
の低下による暗部電位の低下などの環境変動を防止する
ことができる. グラフト化されたポリ7ミドは低温低湿、高温高温など
各環境下において体積抵抗の変動があまり起こらず、こ
の樹脂を中間層とした場合,環境変動のない電子写真感
光体を得ることができる.通常のポリアミドは、常温常
湿下より高温高湿下にすると抵抗が3桁ほど低くなった
りするが,グラフト化されたポリアミドはほとんど変化
がない. グラフト化されたポリアミドの環境変動が少ない理由は
定かではないが,次のような構造要因が考えられる. ■グラフト釦をつけることにより塗工膜形成時に直線ポ
リマーよりアモルファス化、網目化し易く内部に保留し
た水またはイオンなどの導電物質を保持し易い. ■グラフト部分の極性基により水,イオン物質などが吸
着され易い. 上記2点から,低温低湿下でも抵抗が上昇せずまたアモ
ルファスに形威された網目構造が塗膜内部への過剰の水
分子などの取り込みを防止することにもなり、高温高湿
下でも抵抗の急激な低下がないものと考えられる. 本発明において用いられるグラフト化されたポリアミド
は、主鎖であるポリアミドに前記単位或分に相当するモ
ノマーを高分子反応によりグラフト化させることにより
合威される. 主鎖であるボリアミドは特に限定されるものではないが
、一般的にアミド結合の窒素原子の接するメチン基また
はメチレン基は活性度合がかなり強く、ラジカル化を起
こし易く、この部分からグラフト鎖が戒長ずることが知
られている.このため,本発明において用いるポリアミ
ドも7ミド結合の窒素原子に接する主鎖上の炭素原子に
プロトンを有するものが好ましい. 未発明において用いられるグラフト化ポリアミドは,ポ
リアミド樹脂に7ルキレンオキシドなどをグラフト重合
させることによって合成される.ポリアミド樹脂のアミ
ド基をアルカリ金属の液体アンモニア溶液中でメタル化
してメタル化ポリアミド化ポリアミドとし、このメタル
化ポリアミドにアルキレンオキシドを加えてグラフト重
合させることにより、N−ヒドロキシアルキル化または
N−ポリアルキレンオキシド化されたグラフト化ポリア
ミドを合威できる. 合成後の上記グラフト化ポリアミドは,再沈、洗浄など
の精製を行なうことが好ましい.合或例(樹脂例(3)
の合戊) 6,12,66,610共重合ナイロン(重量組威比:
 6/ l 2/6 6,/6 1 0=2/L/2/
2,重量平均分子量140,000)をナトリウムー液
体アンモニウム溶液と反応させた後,.真空下で残留ア
ンモニアを除去し、メタル化ボリアミドを合威した. このメタル化ポリアミド10.2gをTHF120g中
に加え.−40’C!以下に冷却し、4.3gのエチレ
ンオキシドを蒸留によって加えた.次いで,攪拌しなが
ら恒温槽中でグラフト重合を行なった.ホモポリマーを
含むテトラヒドロフラン(THF)層を濾過した後,不
溶物として得られたポリマーを室温下でメタノールに溶
解し,不溶物を分離してグラフトポリマーを得た.得ら
れたグラフトボリマーをメチルエチルケトン(MEK)
600gを用いて3回洗浄、濾別し,35゜Cで6時間
減圧蒸留を行ない13gの目的樹脂を得た. 本発明における中間層は,前述のグラフト化ポリアミド
のみで構威されていても,必要に応じて他の樹脂、添加
剤,導電性物質を加えた系で構戊されていてもよい.こ
こで加える他の樹脂の例としては共重合ナイロン,N−
アルコキシメチル化ナイロンなどのポリアミド、ポリエ
ステル9ポリウレタン,ボリウレ7,フェノール樹脂な
どが挙げられる.添加剤の例としては酸化チタン、アル
ミナ、シリコーン樹脂などの粉体類,界面活性剤シリコ
ーンレベリング剤、シランカップリング剤、チタネート
カップリング剤などが挙げられる.また、導電性物質と
してはアルミニウム.vA.ニッケル、銀などの金属粉
体,鱗片状金属粉体および金属短m難,酸化7ンチモン
,酸化インジウム,酸化スズなどの導電性金属酸化物,
ポリピロール,ポリアニリン、高分子電解質などの高分
子導電材、カーボンファイバー,カーポンブラックグラ
ファイト粉体、有機および無機の電解質またはこれらの
導電性物質で表面を被覆した導電性粉体などが挙げられ
る. 本発明における中間層の厚さは、電子写真特性および支
持体上の欠陥を考慮して設定されるものであり,o.i
〜50gm程度まで設定し得るが、通常は0.5〜5g
m,導電性物質を添加したときは1〜30pmが好適で
ある. 中間層の塗工は、浸漬コーティング、スプレーコーティ
ング.ロールコーティングなどの方法で行なうことがで
きる. また、本発明においては,バリャー性のコントロールな
ど必要に応じて、中間層上に樹脂を主成分とする第二の
中間層を設けることができる.この第二の中間層に用い
られる樹脂材料としてはポリアミド、ポリエステル,ポ
リウレタン,ポリウレア,フェノール樹脂などが挙げら
れる.この第二の中間層の厚さは50.1〜5ILmが
好適であり,前述の中間層と同様な方法により塗工され
る. 本発明の電子写真感光体においては、感光層は単一層型
でも、電荷発生層と電荷輸送層に機能分離した積層構造
型でもよい. 積層構造型感光体の電荷発生層はスーダンレッド,グイ
アンプル゜一などの7ゾ顔料,ピレンキノン、アントア
ントロンなどのキノンMH.$/シアニン顔料、ペリレ
ン顔料,インジゴ,チオインジゴなどのインジゴ顔料、
アズレニウム塩顔料、銅フタロシアニン,チタニルオキ
ソフタロシアニンなどのフタロシアニン顔料などの電荷
発生物質をポリビニルブチラール,ポリスチレン,ポリ
酢酸ビニル,アクリル樹脂,ポリビニルピロリドンエチ
ルセルロース、酢酸酪酸セルロースなどの結着剤樹脂に
分散させて、この分散液を前述の中間層の上に塗工する
ことによって形或できる.このような電荷発生層の膜厚
は、5JLm以下、好ましくは0.05〜2鯵mである
. 電荷輸送層は,主鎖または側鎖にビフェニレンアンドラ
セン、ピレン,フエナントレンなどの構造を有する多環
芳香族化合物,インドール、カルパゾール、オキサジア
ゾール、ビラゾリンなどの含窒素環式化合物、ヒドラゾ
ン化合物,スチリル化合物などの電荷輸送性物質を成膜
性を有する樹脂に溶解させた塗工液を用いて形威される
.このようにして形或する理由は、電荷輸送性物質が一
般に低分子量で,それ自体では戊膜性に乏しいためであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrophotographic photoreceptor, and more particularly to an improvement in an intermediate layer provided between a conductive support and a photosensitive layer. [Prior Art] In general, in a Carlson type electrophotographic photoreceptor, stability of dark area potential and bright area potential is required to form a constant image density and fog-free image when charging and exposure are repeated. It has become important. For this reason, it is possible to improve charge injection properties from the support to the photosensitive layer, improve adhesion between the support and the photosensitive layer,
It has been proposed to provide an intermediate layer between the support and the photosensitive layer to improve the coating properties of the photosensitive layer and cover defects on the support. In addition, a layered structure in which the photosensitive layer is functionally separated into a charge generation layer and a charge transport layer has been proposed, but the charge generation layer is generally provided as an extremely thin layer, for example, about 0.5 gm. , defects, dirt, deposits, or scratches on the surface of the support cause the thickness of the charge generation layer to be uneven. If the thickness of the charge generation layer is uneven, uneven sensitivity will occur in the photoreceptor, so it is required that the charge generation layer be made as uniform as possible. For this reason, it has been proposed to provide an intermediate layer between the charge generation layer and the support, which functions as a parryer layer, an adhesive layer, and covers defects on the support. Until now, polyamides (Japanese Unexamined Patent Application Publication No. 46-47344, Japanese Unexamined Patent Publication No. 52-256)
No. 38), polyester (JP-A-52-20836)
JP-A-54-28738), polyurethane (JP-A-49-10044, JP-A-53-89)
No. 435), casein (Japanese Unexamined Patent Publication No. 55-103556)
(Japanese Patent Application Laid-open No. 53-48523), polyvinyl alcohol (Japanese Patent Application Laid-open No. 52-1002)
40), polyvinylpyrrolidone (JP-A-48-3
0936), vinyl acetate-ethylene copolymer (JP-A-48-26141), maleic anhydride ester polymer (JP-A-52-10138), polyvinyl butyral (JP-A-57) -90639, JP-A-58-106549), quaternary ammonium salt-containing polymers (JP-A-51-126149, JP-A-Sho. 5)
6-60448), ethyl cellulose (Japanese Unexamined Patent Application Publication No. 1973)
5-143564), etc. are known to be used. However, in electrophotographic photoreceptors using the above-mentioned materials as an intermediate layer, the resistance of the intermediate layer changes due to changes in temperature and humidity, so potential characteristics are always stable in all environments from low temperature and low humidity to high temperature and high humidity. , it was difficult to obtain good image quality. For example, if a photoconductor is used repeatedly under low temperature and low humidity conditions where the resistance of the intermediate layer increases, charges remain in the intermediate layer, resulting in an increase in bright area potential and residual potential, which may cause fogging on copied images or reverse development. When such a photoreceptor is used in an electrophotographic printer, there are problems in that the image density becomes low and copies with a certain level of image quality cannot be obtained. Furthermore, under high temperature and high humidity conditions, the barrier function decreases due to the lower resistance of the intermediate layer, and carrier injection from the support side increases, resulting in a decrease in dark potential. Therefore, under high temperature and high humidity conditions, the density of copied images may become lighter, and when such a photoreceptor is used in an electrophotographic printer that performs reversal development, black dot-like defects (black spots) may appear on the image. There were problems such as , and fogging. [Problems to be Solved by the Invention] The objective of the present invention is to provide an electrophotographic photoreceptor that can provide stable potential characteristics and images in all environments, from low temperature and low humidity to high temperature and high humidity. Another object of the present invention is to provide an electrophotographic photoreceptor in which a good image without defects can be obtained by forming an intermediate layer that can sufficiently cover defects on the support. [Means for Solving the Problems, Effects] The present invention provides an electrophotographic photoreceptor in which a photosensitive layer is provided on a conductive support via an intermediate layer, in which the intermediate layer is N-hydroxyalkylated and/or N-hydroxyalkylated and/or N-hydroxyalkylated. - An electrophotographic photoreceptor characterized by containing a grafted polyamide treated with polyalkylene oxide. Further, in the electrophotographic photoreceptor of the present invention, when the conductive support is composed of a support base and a conductive layer containing a conductive substance provided thereon, the electrophotographic photoreceptor of the present invention The intermediate layer is N-hydroxyalkylated and/or
Alternatively, it is characterized in that it contains a grafted polyamide converted to N-polyalkylene oxide, and a second intermediate layer mainly composed of a resin is provided between the intermediate layer and the photosensitive layer. The polyamides constituting the main chain of the grafted polyamide used in the present invention include 6 nylon, 11 nylon,
12-J-1lon%8 Nylon such as 6-J-ylon, 610 nylon, copolymerized nylon containing the above ingredients, N-alkoxymethylated. Examples include N-alkylated nylon and nylon containing aromatic components. On the other hand, when the part constituting the graft side chain is polyalkylene oxide, it is not only one type of polyalkylene oxide, but also two or more types of polyalkylene oxide. It may also be an oxide copolymer. The content of the graft portion is 5 to 70% by weight, preferably 1
It is 0 to 50% by weight. Furthermore, the grafted polyamide used in the present invention can be crosslinked in consideration of the compatibility of the solvent with the coating for the photosensitive layer. Crosslinking is usually carried out by heat treatment after coating film formation using a crosslinking agent such as an epoxy compound or melamine compound. When N-alkoxymethylated nylon is used as a polyamide, an acid catalyst such as citric acid, adipic acid, tartaric acid, maleic acid, or hypophosphorous acid is used without using a crosslinking agent.
A crosslinked product can also be formed by self-crosslinking by heating. Here, we will show examples of grafted polyamides used in the present invention. Grafted polyamide is a product in which polyamide used for the main chain is grafted through a polymer reaction. Examples of polyamide moieties that form the main chain are shown below. Name of polyamide resin used in graft polymer
Weight average molecular weight (I) + I0 7 105
,000(II) 8,813,810 copolymerized nylon y
180,000 composition ratio 8/8B/810-1
/1/1(IO) 6,12.88,810 copolymerization ratio 8/ 12/8B/
8 10-2/1/2/2 (IV) N-methoxymethylated 6 nylon 2110.000 Methoxymethyl substitution rate 28 mol% N-hydroxyalkylated and/or N-borialkylene oxide used in the present invention below An example of grafted polyamide is shown below. Resin example (1) Main chain: Polyamide fraction example (I) Side chain: Graft moiety fraction - CH YuOH YuO}l Graft moiety content: 12wt% Resin example (2) Main chain: Polyamide fraction Example (II) Side chain: Graft moiety or the same as above Graft moiety content: 10 wt% Resin example (3) Main chain: Polyamide Some example (m) Side chain: Graft moiety content as above Graft moiety content: 9 wt% Resin example (4) Main chain: Polyamide fraction example (rV) Side chain: Graft moiety Same as above Graft moiety content: 10wt% Resin example (5) Main chain: Polyamide fraction example (I) Side chain: Graft moiety or Min-CHzCHsCHJLOH Graft portion content: 15wt% Resin example (6) Main chain: Polyamide (■) Side chain: Graft portion content: 14wt% Resin example (7) Main chain: Polyamide partial example (m) Side chain: Graft moiety (same as above) Graft moiety content: 10wt% Resin example (8) Main chain: Polyamide (same as above) Graft moiety content: 8wt % Resin example (9) Main chain: Polyamide component example CI) Side chain: Graft part content CH3 -CH20HOH Graft part content ratio: l4wt% Resin example (10) Main chain: Polyamide component example (II) Side M4: Grafting part content: 15wt% Resin example (1 1) Main chain: Polyamide weight example (m) Side chain: Grafting part -CH on CH, CH, CH. OH Graft part content: 18 wt% Resin example (12) Main chain: Polyamide component (rV) Side chain: Graft part or the same as above Graft part content: 15 wt% Resin example (13) Main chain: Polyamide component Example (I) Side chain: Grafting part? H3 +C H a C H C H
Average degree of polymerization n = 3.2 Graft moiety content: 23 wt% Resin example (14) Main chain: Polyamide (Part II) Side chain: Graft moiety or same graft moiety content -1: 20 wt% Resin example (15 ) Main chain: Polyamide partial example (m) Side chain: Graft portion or the above graft portion Content rate: 18wt% Resin example (16) Main chain: Polyamide partial example (rV) Side chain: Graft portion or the same graft as above Partial content: 17wt% Resin example (l7) Main chain: Polyamide classification example CI) Side chain: Graft partial division ÷C}I engineering CH. 0+-H n=2.8 Graft moiety content: 21 wt% Resin example (18) Main chain: Polyamide (■) Side chain: Graft moiety content Same as above Graft moiety content: 26 wt% Resin example (19) Main chain: Polyamide component example (m) Side chain: Graft moiety or graft moiety content as above: 18wt% Resin example (20) Main chain: Polyamide component example (rV) Side chain: Contains graft moiety or graft moiety as above Ratio: 25wt% Resin example (21) Main chain: Polyamide or part Example (I) Side chain: Graft part or part? H] 10G H z C H O % H nw2.3 Graft moiety content: 25 wt% Resin example (22) Main chain = Polyamide Some examples ([I[) Side chain: Graft moiety or Graft moiety content as above : 23wt% Resin example (23) Main chain: Polyamide component example (■) Side chain: Graft portion or 10% CHy-CH zCHz CH. 0 Hn = 3.7 Graft part content: 35 wt% Resin example (24) Main chain: Polyamide Partial example (17) Side chain: Graft part or same as above Graft part content: 30 wt% Resin example (25) Main Chain: Polyamide fraction example (1) Side chain: Graft component ÷ CH CH j LCH 0 H n = 2.5 Graft portion content: 28wt% Resin example (26) Main chain: Polyamide fraction example (II) Side chain: Graft moiety or Graft moiety content as above: 25wt% Resin example (27) Main chain dibolyamide fraction example (I) Side chain: Graft moiety content CH3 +C H 2 C H C H LO Hime Hn=4 .3 Graft moiety content: 32wt% Resin example (28) Main chain: Polyamide sample (■!) Side chain: Graft moiety content Same as above Graft moiety content: 34wt% Resin example (29) Main chain: Polyamide Partitioning example (I) Side chain: Graft part CH3 10〇}lλCHyu 0 coral → CH扛HO anti-Hm: n=6:4 Graft part content: 35wt% Resin example (30) Main chain: Polyamide or Separation example (Il7) Side chain: Graft part part + C HλCHλCH9CHyu0fun-{OHλCHyu0keHm: n=5 : 5 Graft part content: 30wt% Resin example (31) Main button: Polyamide Fractional example (II) Side chain: Graft part fraction (molar ratio) (molar ratio) 9H3 10CHλC}IλCI{0-C'H>CH2 CHλ0
+-Hm:n=7:3 (molar ratio) Graft part content: 30wt% Resin example (32) Main chain: Polyamide precipitate example (m) Side chain: Graft part content ÷ OH et CHzO mound → CHλCH5 〇Hyu0seHm:n
= 8:2 (mole ratio) Graft portion content: 34 wt% The electrophotographic photoreceptor of the present invention can achieve the object of the invention by containing the above-mentioned grafted polyamide in the intermediate layer. can. That is, by using grafted polyamide in the intermediate layer, it is possible to prevent environmental changes such as an increase in residual potential under low temperature and low humidity conditions and a decrease in dark area potential due to a decrease in barrier function under high temperature and high humidity conditions. Grafted poly-7mide does not change much in volume resistivity under various environments such as low temperature and low humidity, high temperature and high temperature, and when this resin is used as an intermediate layer, it is possible to obtain an electrophotographic photoreceptor that is free from environmental fluctuations. For ordinary polyamide, the resistance decreases by three orders of magnitude when exposed to high temperature and high humidity compared to normal temperature and humidity, but for grafted polyamide there is almost no change. Although it is not clear why the grafted polyamide exhibits less environmental variation, the following structural factors may be considered. ■By attaching a graft button, it is easier to become amorphous or mesh than a linear polymer when forming a coating film, and it is easier to retain conductive substances such as water or ions inside. ■Water, ionic substances, etc. are easily adsorbed due to the polar groups of the grafted portion. From the above two points, the resistance does not increase even under low temperature and low humidity, and the amorphous network structure prevents excess water molecules from being taken into the coating film, resulting in resistance even under high temperature and high humidity. It is considered that there is no sudden decline in The grafted polyamide used in the present invention is synthesized by grafting a monomer corresponding to a certain amount of the above units onto the main chain of the polyamide through a polymer reaction. The main chain of polyamide is not particularly limited, but in general, the methine group or methylene group that is in contact with the nitrogen atom of the amide bond has a considerably high degree of activity and is prone to radicalization, and the graft chain is restricted from this part. It is known to last a long time. For this reason, the polyamide used in the present invention preferably has a proton on the carbon atom on the main chain that is in contact with the nitrogen atom of the 7-mid bond. The grafted polyamide used in the present invention is synthesized by graft polymerizing 7-lukylene oxide or the like onto a polyamide resin. The amide group of the polyamide resin is metalized in a liquid ammonia solution containing an alkali metal to form a metalated polyamide polyamide, and an alkylene oxide is added to this metalized polyamide for graft polymerization to produce N-hydroxyalkylation or N-polyalkylene. Oxidized grafted polyamide can be synthesized. The grafted polyamide after synthesis is preferably purified by reprecipitation, washing, etc. Combined example (resin example (3)
6, 12, 66, 610 copolymer nylon (weight composition ratio:
6/l 2/6 6,/6 1 0=2/L/2/
2, weight average molecular weight 140,000) with a sodium-liquid ammonium solution. The residual ammonia was removed under vacuum, and the metalized polyamide was synthesized. Add 10.2 g of this metalized polyamide to 120 g of THF. -40'C! After cooling, 4.3 g of ethylene oxide was added by distillation. Next, graft polymerization was carried out in a constant temperature bath with stirring. After filtering the tetrahydrofuran (THF) layer containing the homopolymer, the polymer obtained as an insoluble material was dissolved in methanol at room temperature, and the insoluble material was separated to obtain a graft polymer. The obtained graft polymer was converted into methyl ethyl ketone (MEK).
The resin was washed three times using 600 g, filtered, and distilled under reduced pressure at 35°C for 6 hours to obtain 13 g of the desired resin. The intermediate layer in the present invention may be composed of only the above-mentioned grafted polyamide, or may be composed of a system in which other resins, additives, and conductive substances are added as necessary. Examples of other resins added here include copolymerized nylon, N-
Examples include polyamides such as alkoxymethylated nylon, polyester 9 polyurethane, polyurethane 7, and phenolic resins. Examples of additives include powders such as titanium oxide, alumina, and silicone resins, surfactants, silicone leveling agents, silane coupling agents, and titanate coupling agents. Aluminum is also used as a conductive material. vA. Metal powders such as nickel and silver, scaly metal powders and metal oxides, conductive metal oxides such as antimony oxide, indium oxide, tin oxide,
Examples include conductive polymer materials such as polypyrrole, polyaniline, and polymer electrolytes, carbon fiber, carbon black graphite powder, organic and inorganic electrolytes, and conductive powders whose surfaces are coated with these conductive substances. The thickness of the intermediate layer in the present invention is determined in consideration of electrophotographic characteristics and defects on the support, and is determined by o. i
It can be set up to ~50gm, but usually 0.5~5g
m, and when a conductive substance is added, 1 to 30 pm is suitable. The intermediate layer can be applied by dip coating or spray coating. This can be done using methods such as roll coating. Furthermore, in the present invention, a second intermediate layer containing resin as a main component can be provided on the intermediate layer as necessary to control barrier properties. Examples of the resin material used for this second intermediate layer include polyamide, polyester, polyurethane, polyurea, and phenolic resin. The thickness of this second intermediate layer is preferably 50.1 to 5 ILm, and is coated by the same method as the aforementioned intermediate layer. In the electrophotographic photoreceptor of the present invention, the photosensitive layer may be of a single layer type or a laminated structure type in which a charge generation layer and a charge transport layer are separated in function. The charge generation layer of the laminated structure type photoreceptor is composed of 7 pigments such as Sudan Red and Guianpuru゜1, quinone MH. $/Indigo pigments such as cyanine pigments, perylene pigments, indigo, and thioindigo,
A charge-generating substance such as a phthalocyanine pigment such as an azulenium salt pigment, copper phthalocyanine, or titanyl oxophthalocyanine is dispersed in a binder resin such as polyvinyl butyral, polystyrene, polyvinyl acetate, acrylic resin, polyvinylpyrrolidone ethylcellulose, or cellulose acetate butyrate. This dispersion can be formed by coating the above-mentioned intermediate layer. The thickness of such a charge generation layer is 5 JLm or less, preferably 0.05 to 2 JLm. The charge transport layer is made of polycyclic aromatic compounds having structures such as biphenyleneandhracene, pyrene, and phenanthrene in the main chain or side chain, nitrogen-containing cyclic compounds such as indole, carpazole, oxadiazole, and birazoline, hydrazone compounds, and styryl. It is produced using a coating liquid in which a charge transporting substance such as a compound is dissolved in a resin that has film-forming properties. The reason for this shape is that the charge transporting substance generally has a low molecular weight and lacks film-blocking properties by itself.

このような成膜性を有する樹脂としてはポリエステル、
ポリヵーポネート、ポリメタクリル酸エステル,ポリス
チレンなどが挙げられる.電荷輸送層の厚さは5〜40
gm、好ましくは10〜30ルmである. また、本発明においては,ポリビニルカルバゾール,ポ
リビニルアントラセンなどの有機光導電性ポリマー層,
セレン蒸s−s.セレンーテルル蒸着層,アモルファス
シリコン層なども感光層に用いることができる. 一方,本発明の電子写真感光体において用いる支持体は
、導電性を有するものであれば,何れのものでもよく、
例えばアルミニウム、銅、クロム、ニッケル、亜鉛,ス
テンレスなどの金属や合金をドラムまたはシート状に或
形したもの,アルミニウムや銅などの金属箔をプラスチ
ックフィルムにラミネートしたもの,アルミニウム、酸
化インジウム、酸化スズなどをプラスチックフィルムに
蒸着したものあるいは導電性物質を単独または適当な結
着剤樹脂と共に塗布して導電層を設けた金属,プラスチ
ックや紙などが挙げられる.この導電層に用いられる導
電性物質としてはアルミニウム、銅、ニッケル,銀など
の金属粉体,金属箔および金属短繊維、酸化アンチモン
,酸化インジウム、酸化スズなどの導電性金属酸化物,
ポリピロール、ポリアニリン,高分子電解質などの高分
子導電材、カーボンファイバー,カーボンブラック、グ
ラファイト粉体,有機および無機の電解質またはこれら
の導電性物質で表面を被覆した導電性粉体などが挙げら
れる. また,導電層に用いられる結着剤樹脂としてはポリアミ
ド,ポリエステル,アクリル樹脂、ポリアミノ酸エステ
ル、ポリ酢酸ビニル,ポリカーボネート,ポリビニルホ
ルマール,ポリビニルブチラール、ポリビニルアルキル
エーテル、ポリアルキレネーテル、ポリウレタネラスト
マーなどの熱可塑性樹脂や熱硬化性ポリウレタン、フェ
ノール樹脂、エポキシ樹脂などの熱硬化性樹脂が挙げら
れる. 導電性物質と結着剤樹脂の混合比は、5:1〜l:5程
度である.この混合比は導電暦の抵抗値、表面性,塗布
適性などを考慮して決められる.導電性物質が粉体の場
合にはポールミル,ロールミル,サンドミルなどを用い
て常法により混合物を調製して用いる. また、他の添加剤として界面活性剤,シランヵップリン
グ剤、チタネート力ップリング剤、シリューンオイル、
シリコーンレベリング剤などを添加してもよい. 本発明の電子写真感光体は,複写機,レーザービームプ
リンター.LEDプリンター,液晶シャッター式プリン
ターなどの電子写真装置一般に適用し得るが、さらに電
子写真技術を応用したディスプレー,記録、軽印刷、製
版,ファクシミリなどの装置にも幅広く適用し得る. [実施例] 実施例l 10%の酸化アンチモンを含有する酸化スズで被覆した
導電性酸化チタン粉体50部,フェノール樹脂25部、
メチルセロソルブ20部、メタノール5部およびシリコ
ーンオイル(ポリジメチルシロキサンボリ.オキシアル
キレンコボリマー,平均分子量3千)0.002部をφ
immガラスビーズを用いたサンドミルで2時間分散し
て導電層用塗料を調製した. アルミニウムシリンダー(φ30mmX260mm)上
に、上記塗料を浸漬塗布し、140℃で30分間乾燥さ
せ、膜厚20gmの導電層を形成した. 次に樹脂例(3)の5部をメタノール95部に溶解し、
中間層用塗料を調製した. この塗料を,上記導電層上に浸漬塗布し,100℃で2
0分間乾燥させ、膜厚0.6pmの中間層を形威した. 次に、構造式 のジスアゾ顔料3部、ポリビニルベンザール(ベンザー
ル化率80%、重量平均分子量1万1千)2部およびシ
クロヘキサノン35部をφ1mmガラスビーズを用いた
サンドミルで12時間分散した後、MEK60部を加え
て電荷発生層用塗工液を調製した. この塗工液を上記中間層上に浸漬塗布し,80℃で20
分間乾燥させ,膜厚0.2pmの電荷発生層を形威した
. のスチリル化合物10部およびポリカーポネート(重量
平均分子量4万6千)10部をジクロロメタン20部,
クロロベンゼン40部の混合溶媒中に溶解し,この溶液
を上記電荷発生層上に浸漬塗布し,120℃で60分間
乾燥させ、膜厚工8JLmの電荷輸送層を形威した. こうして製造した電子写真感光体を、帯電一露光一現像
一転写−クリ〜ニングのプロセスを1.5秒サイクルで
繰り返す反転現像方式のレーザービームプリンターに取
り付け、常温常湿下(23’0,50%RH)および高
温高湿下(30℃、85%RH)の環境で電子写真特性
の評価を行なった.結果を後記する. この結果は,実施例lの電子写真感光体では、暗部電位
(Vo )と明都電位(VL )の差が大きく,十分な
電位コントラストが得られたとともに,高温高湿下でも
暗部電位は安定し,黒点上の欠陥(黒ポチ)、カブリの
ない良好な画像が得られた. 実施例2〜5 中間層用塗料に,樹脂例(5).(10)、(l9)お
よび(32)をそれぞれ用いた他は,実施例1と同様に
して実施例2〜5に対応する電子写真感光体を製造した
. これらの電子写真感光体を実施例lと同様にして評価し
たところ,後記のように,いずれも高温高湿下でも暗部
電位は安定し、黒点上の欠陥(黒ポチ)、カブリのない
良好な画像が得られた.比較例1 中間層用塗料にN−メトキシメチル化6ナイロン(重量
平均分子[15万、メトキシメチル基置換率28%)を
用いた他は、実施例lと同様にして電子写真感光体を製
造した. この電子写真感光体を実施例1と同様にして評価したと
ころ、後記するように高温高湿下になると帯電能が悪化
し,暗部電位の低下が見られ、画像上には黒点状の欠陥
(黒ポチ)が発生するようになった. 比較例2 中間層用塗料にボリプロビレンオキシド(重合度4千)
を用いた他は、実施例lと同様にして電子写真感光体を
製造した. この電子写真感光体を実施例lと同様にして評価したと
ころ,後記するように高温高湿下になると帯電能が悪化
し、暗部電位の低下が見られ、画像上には黒点状の欠陥
(黒ボチ)が発生するようになった. 2 3℃、 50%R}I    30℃、 85$I
’lHvD   vL    Vo   画像−V  
     −V         −V実施例1 70
5 //2680 //3690 //4675 //5685 150     700 160     675 175     680 160     675 180     680 良好 良好 良好 良好 良好 実施例6 樹脂例(7)の5部をメタノール95部に溶解し、中M
層用塗料を調製した. この塗料を、アルミニウムシリンダー(φ30mmX 
3 6 0 mm)上に浸漬塗布し、100’0−C’
15分間乾燥させ、膜厚1.2gmの中間層を形戊した
. 次に,構造式 のジスアゾ顔料4部、ポリビニルブチラール(ブチラー
ル化率68%、 重量平均分子量2万4千) 2部およびシクロヘキサノン34部をφ1mmガラスビ
ーズを用いたサンドミルで12時間分散した後、THF
60部を加えて電荷発生層用塗工液を調製した. この塗工液を上記中間層上に浸漬塗布し、80゜Cで2
0分間乾燥させ、膜厚0.l51Lmの電荷発生層を形
或した. 次に、実施例lで用いたスチリル化合物10部およびポ
リカーボネート(重量平均分子量6万3千)10部をジ
クロロメタン15部、クロロベンゼン45部の混合溶媒
中に溶解し,この溶液を上記電荷発生層上に浸漬塗布し
,120″Cで60分間乾燥させ,膜厚25pmの電荷
輸送層を形或した. こうして製造した電子写真感光体を、帯電一露光(M光
fj2.olux−sec)一現像一転写−クリーニン
グのプロセスを0.6秒サイクルで繰り返す複写機に取
り付けた. この電子写真感光体に対して低温低湿下(15゜C、1
5%RH)’(7)環境で電子写真特性の評価を行なっ
た.結果を後記する. この結果は、暗部電位(Vo )と明部電位(VL )
の差が大きく,十分な電位コントラストが得られた. さらに、連続1千枚の画像を出したところ,明部電位の
上昇もなく,非常に安定した画像が得られた. 実施例7〜lO 中間層用塗料に樹脂例(1 1) .  (1 3) 
.(22)および(27)を用いた他は,実施例6と同
様にして実施例7〜15に対応する電子写真感光体を製
造し、実施例6と同様にして評価したところ,いずれの
電子写真感光体も,暗部電位(Vo )と明部電位(v
L )の差が大きく,十分な電位コントラストが得られ
ると共に,連続1千枚の画像を出しても、明部電位の上
昇がほとんどなく,非常に安定した画像が得られた.結
果を後記する. 比較例3 中間層用塗料にアルコール可溶性共重合ナイロン(重量
平均分子M7万8千)を用いた他は,実施例6と同様に
して電子写真感光体を製造し,実施例6と同様にして評
価したところ、連続1千枚の繰り返しで明部電位が上昇
し,画像上にはカブリを生じるようになった.結果を示
す.a  期    連続1千枚後 実施例6  670  205   210   良好
1/  7  685  195   200   良
好//  8  700  200   210   
良好/I  9  690  185   195  
 良好ttLo  680  210   215  
 良好実施例l1 10%の酸化アンチモンを含有する酸化スズで被覆した
導電性酸化チタン粉体30部、ルチル型酸化チタン粉体
20部,樹脂例(3)の20部、メタノール20部,2
−プロパノールlo部をφ1mmガラスビーズを用いた
サンドミルで1時間分散して導電層用塗料を調製した. この塗料を、アルミニウムシリンダー(φ60mmX 
2 6 0 mm)上に浸漬塗布し、160℃で30分
間乾燥させ、膜厚167zmの中間暦を形成した. 次に,アルコール可溶性共重合ナイロン(重量平均分子
量7万5千)5部をメタノール95部に溶解し,上記中
間層上に浸漬塗布後、80℃で10分間乾燥させ,膜厚
0.3ILmの第二中間層を形威した. 次に.構造式 のジスアゾ顔料2部,ポリビニルブチラール(ブチラー
ル化率72%、重量平均分子量1万8千)1部およびシ
クロヘキサノン30部をφlmmガラスビーズを用いた
サンドミルで20時間分散した後、MEK65部を加え
て電荷発生層用塗工液を調製した. この塗工液を上記第二中間層上に浸漬塗布し、80″C
で20分間乾燥させ、膜厚0 . 2 pmの電のヒド
ラゾン化合物10部およびポリカーボネート(重量平均
分子M4万6千)10部をジクロロメタン20部、クロ
ロベンゼン40部の混合溶媒中に溶解し,この溶液を上
記電荷発生層上に浸漬塗布し.120℃で60分間乾燥
させ、膜厚23JLmの電荷輸送層を形威した. こうして製造した電子写真感光体を、帯電一露光(露光
量2.5Jluxasec)一現像一転写−クリーニン
グのプロセスを0.8秒サイクルで繰り返す複写機に取
り付けた. この電子写真感光体に対して低温低湿下(10”0.1
0%RH)の環境で電子写真特性の評価を行なった.結
果を後記する. この結果は、暗部電位(Vo )と明部電位(VL )
の差が大きく,十分な電位コントラストが得られた. さらに、連続1千枚の画像を出したところ2明部電位の
上昇もなく、非常に安定した画像が得られた. 実施例l2 第二の中間層を設けな、かった他は、実施例l1と同様
にして中間層、電荷発生層および電荷輸送層を形威し,
電子写真感光体を製造した.この電子写真感光体を実施
例1lと同様にして評価したところ、暗部電位(Vo 
)と明部電位(VL )の差が大きく,十分な電位コン
トラストが得られた. さらに,連続1千枚の画像を出したところ、明部電位の
上昇がほとんどなく、非常に安定した画像が得られた.
結果を後記する. 比較例4および5 導電性酸化チタン粉体およびルチル型酸化チタン粉体を
含む中間層用塗料に本発明において用いるグラフト化ポ
リアミドに代え、フェノール樹脂を用いた他は,実施例
11および12と同様にして比較例4および5に対応す
る電子写真感光体を製造した. このそれぞれの電子写真感光体を実施例11と同様にし
て評価したところ、比較例4では連続1千枚の繰り返し
で明部電位が上昇し,画像上にはカプリを生じるように
なった.また、中M層上に直接電荷発生層、電荷輸送層
を設けた比較例5では中間層のバリャー性が不足し、支
持体側からの電荷注入が大きく暗部電位が低いため,画
像形或に必要な電位コントラストが得られなかった.結
果を示す. 第二   初 期  連続1千枚後 実施例11 有   890  170  175  
 良好// 12 無  880  185  190
   良好[発明の効果] 木発明の電子写真感光体は,低温低湿から高温高湿に至
る全環境に対して安定した電位特性と画像を得ることが
できる.
Examples of resins with such film-forming properties include polyester,
Examples include polycarbonate, polymethacrylate, and polystyrene. The thickness of the charge transport layer is 5 to 40
gm, preferably 10 to 30 lm. In addition, in the present invention, an organic photoconductive polymer layer such as polyvinylcarbazole or polyvinylanthracene,
Selenium vapor s-s. A selenium-tellurium vapor deposited layer, an amorphous silicon layer, etc. can also be used as the photosensitive layer. On the other hand, the support used in the electrophotographic photoreceptor of the present invention may be any support as long as it has conductivity.
For example, metals and alloys such as aluminum, copper, chromium, nickel, zinc, and stainless steel shaped into drums or sheets, metal foils such as aluminum and copper laminated onto plastic films, aluminum, indium oxide, and tin oxide. Examples include metals, plastics, and paper in which a conductive material is deposited on a plastic film, or a conductive layer is provided by applying a conductive substance alone or together with a suitable binder resin. The conductive substances used in this conductive layer include metal powders such as aluminum, copper, nickel, and silver, metal foils and short metal fibers, conductive metal oxides such as antimony oxide, indium oxide, and tin oxide,
Examples include conductive polymer materials such as polypyrrole, polyaniline, and polymer electrolytes, carbon fiber, carbon black, graphite powder, organic and inorganic electrolytes, and conductive powders whose surfaces are coated with these conductive substances. In addition, binder resins used for the conductive layer include polyamide, polyester, acrylic resin, polyamino acid ester, polyvinyl acetate, polycarbonate, polyvinyl formal, polyvinyl butyral, polyvinyl alkyl ether, polyalkylene ether, polyurethane elastomer, etc. Examples include thermosetting resins such as thermoplastic resins, thermosetting polyurethanes, phenolic resins, and epoxy resins. The mixing ratio of the conductive substance and the binder resin is about 5:1 to 1:5. This mixing ratio is determined by considering the resistance value of the conductive calendar, surface properties, coating suitability, etc. If the conductive substance is a powder, prepare a mixture using a conventional method using a pole mill, roll mill, sand mill, etc. In addition, other additives include surfactants, silane coupling agents, titanate coupling agents, silane oil,
Silicone leveling agents, etc. may also be added. The electrophotographic photoreceptor of the present invention can be used in copying machines and laser beam printers. It can be applied to general electrophotographic devices such as LED printers and liquid crystal shutter printers, but it can also be widely applied to devices that apply electrophotographic technology, such as displays, recording, light printing, plate making, and facsimile. [Example] Example 1 50 parts of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide, 25 parts of phenolic resin,
20 parts of methyl cellosolve, 5 parts of methanol and 0.002 part of silicone oil (polydimethylsiloxane polyoxyalkylene copolymer, average molecular weight 3,000) were added to φ
A paint for the conductive layer was prepared by dispersing for 2 hours in a sand mill using imm glass beads. The above paint was applied by dip coating onto an aluminum cylinder (φ30 mm x 260 mm) and dried at 140°C for 30 minutes to form a conductive layer with a thickness of 20 gm. Next, 5 parts of resin example (3) was dissolved in 95 parts of methanol,
A paint for the intermediate layer was prepared. This paint was applied by dip coating on the above conductive layer and heated to 100℃ for 2 hours.
After drying for 0 minutes, an intermediate layer with a thickness of 0.6 pm was formed. Next, 3 parts of the disazo pigment of the structural formula, 2 parts of polyvinylbenzal (benzalization rate 80%, weight average molecular weight 11,000) and 35 parts of cyclohexanone were dispersed for 12 hours in a sand mill using φ1 mm glass beads. A coating solution for the charge generation layer was prepared by adding 60 parts of MEK. This coating solution was applied by dip coating onto the above intermediate layer, and
After drying for 1 minute, a charge generation layer with a thickness of 0.2 pm was formed. 10 parts of styryl compound and 10 parts of polycarbonate (weight average molecular weight 46,000) were mixed with 20 parts of dichloromethane,
This solution was dissolved in a mixed solvent of 40 parts of chlorobenzene, and this solution was dip-coated onto the above charge generation layer and dried at 120°C for 60 minutes to form a charge transport layer with a film thickness of 8JLm. The electrophotographic photoreceptor thus produced was attached to a reversal development type laser beam printer that repeated the process of charging, exposure, development, transfer, and cleaning in a 1.5-second cycle. %RH) and high temperature and high humidity environments (30°C, 85%RH). The results will be described later. This result shows that in the electrophotographic photoreceptor of Example 1, the difference between the dark area potential (Vo) and Meito potential (VL) was large, sufficient potential contrast was obtained, and the dark area potential was stable even under high temperature and high humidity. However, good images were obtained with no defects on sunspots (black spots) or fog. Examples 2 to 5 Resin example (5) was used for the intermediate layer paint. Electrophotographic photoreceptors corresponding to Examples 2 to 5 were produced in the same manner as in Example 1, except that (10), (19), and (32) were used, respectively. When these electrophotographic photoreceptors were evaluated in the same manner as in Example 1, as described below, the dark area potential of all of them was stable even under high temperature and high humidity, and they had good properties with no defects on sunspots (black spots) or fog. An image was obtained. Comparative Example 1 An electrophotographic photoreceptor was produced in the same manner as in Example 1, except that N-methoxymethylated nylon 6 (weight average molecular weight [150,000, methoxymethyl group substitution rate 28%) was used as the intermediate layer paint. did. When this electrophotographic photoreceptor was evaluated in the same manner as in Example 1, it was found that under high temperature and high humidity conditions, the charging ability deteriorated, the dark area potential decreased, and black dot-like defects ( Black spots) now occur. Comparative Example 2 Polypropylene oxide (polymerization degree 4,000) for intermediate layer paint
An electrophotographic photoreceptor was produced in the same manner as in Example 1, except that . When this electrophotographic photoreceptor was evaluated in the same manner as in Example 1, it was found that under high temperature and high humidity conditions, the charging ability deteriorated, the dark area potential decreased, and black dot-like defects ( Black spots) now occur. 2 3℃, 50%R}I 30℃, 85$I
'lHvD vL Vo Image-V
-V -V Example 1 70
5 //2680 //3690 //4675 //5685 150 700 160 675 175 680 160 675 180 680 Good Good Good Good Good Example 6 5 parts of resin example (7) was dissolved in 95 parts of methanol, medium M
A layer paint was prepared. Apply this paint to an aluminum cylinder (φ30mm
360 mm) and applied by dip coating on 100'0-C'
After drying for 15 minutes, an intermediate layer with a thickness of 1.2 gm was formed. Next, 4 parts of a disazo pigment with the structural formula, 2 parts of polyvinyl butyral (butyralization rate 68%, weight average molecular weight 24,000), and 34 parts of cyclohexanone were dispersed for 12 hours in a sand mill using φ1 mm glass beads, and then dispersed in THF.
A coating solution for charge generation layer was prepared by adding 60 parts of the solution. This coating solution was dip coated onto the above intermediate layer and heated at 80°C for 2 hours.
Dry for 0 minutes until the film thickness is 0. A charge generation layer of 151Lm was formed. Next, 10 parts of the styryl compound used in Example 1 and 10 parts of polycarbonate (weight average molecular weight 63,000) were dissolved in a mixed solvent of 15 parts of dichloromethane and 45 parts of chlorobenzene, and this solution was poured onto the charge generation layer. The electrophotographic photoreceptor thus produced was subjected to charging, exposure (M light fj2.olux-sec), development, and drying at 120"C for 60 minutes to form a charge transport layer with a film thickness of 25 pm. The electrophotographic photoreceptor was installed in a copying machine that repeats the transfer-cleaning process in a 0.6-second cycle.
The electrophotographic properties were evaluated in an environment of 5% RH)' (7). The results will be described later. This result shows that the dark area potential (Vo) and the light area potential (VL)
The difference was large, and sufficient potential contrast was obtained. Furthermore, when 1,000 consecutive images were taken, very stable images were obtained with no increase in bright area potential. Example 7~lO Resin example (1 1) for intermediate layer paint. (1 3)
.. Electrophotographic photoreceptors corresponding to Examples 7 to 15 were produced in the same manner as in Example 6, except that (22) and (27) were used, and evaluated in the same manner as in Example 6. Photographic photoreceptors also have dark area potential (Vo) and bright area potential (V
The difference in L ) was large, sufficient potential contrast was obtained, and very stable images were obtained with almost no rise in bright area potential even after 1,000 consecutive images were produced. The results will be described later. Comparative Example 3 An electrophotographic photoreceptor was produced in the same manner as in Example 6, except that alcohol-soluble copolymerized nylon (weight average molecular weight: M78,000) was used as the intermediate layer paint. When evaluated, it was found that after 1,000 consecutive images, the bright area potential increased and fog appeared on the images. Show the results. A period Example 6 after 1,000 sheets in a row 670 205 210 Good 1/7 685 195 200 Good // 8 700 200 210
Good/I 9 690 185 195
Good ttLo 680 210 215
Good Example 11 30 parts of conductive titanium oxide powder coated with tin oxide containing 10% antimony oxide, 20 parts of rutile type titanium oxide powder, 20 parts of resin example (3), 20 parts of methanol, 2
- A coating material for a conductive layer was prepared by dispersing the lo part of propanol in a sand mill using φ1 mm glass beads for 1 hour. Apply this paint to an aluminum cylinder (φ60mm
260 mm) and dried at 160°C for 30 minutes to form an intermediate calendar with a film thickness of 167 zm. Next, 5 parts of alcohol-soluble copolymerized nylon (weight average molecular weight 75,000) was dissolved in 95 parts of methanol, and after coating on the above intermediate layer by dip coating, it was dried at 80°C for 10 minutes to obtain a film thickness of 0.3 ILm. It established a second middle class. next. After dispersing 2 parts of a disazo pigment with the structural formula, 1 part of polyvinyl butyral (butyralization rate 72%, weight average molecular weight 18,000) and 30 parts of cyclohexanone in a sand mill using φlmm glass beads for 20 hours, 65 parts of MEK was added. A coating solution for the charge generation layer was prepared. This coating solution was dip coated onto the second intermediate layer, and
to dry for 20 minutes to a film thickness of 0. 10 parts of a 2 pm electric hydrazone compound and 10 parts of polycarbonate (weight average molecular weight: 46,000) were dissolved in a mixed solvent of 20 parts of dichloromethane and 40 parts of chlorobenzene, and this solution was applied by dip coating onto the charge generation layer. .. It was dried at 120°C for 60 minutes to form a charge transport layer with a thickness of 23 JLm. The thus produced electrophotographic photoreceptor was attached to a copying machine in which a process of charging, exposure (exposure amount: 2.5 Jluxasec), development, transfer, and cleaning was repeated in a 0.8 second cycle. This electrophotographic photoreceptor was subjected to low temperature and low humidity (10"0.1
The electrophotographic characteristics were evaluated in an environment (0% RH). The results will be described later. This result shows that the dark area potential (Vo) and the light area potential (VL)
The difference was large, and sufficient potential contrast was obtained. Furthermore, when 1,000 consecutive images were taken, very stable images were obtained with no increase in the potential of the second bright area. Example 12 The intermediate layer, charge generation layer, and charge transport layer were formed in the same manner as in Example 11, except that the second intermediate layer was not provided.
An electrophotographic photoreceptor was manufactured. This electrophotographic photoreceptor was evaluated in the same manner as in Example 1l, and the dark area potential (Vo
) and the bright area potential (VL ), and sufficient potential contrast was obtained. Furthermore, when 1,000 consecutive images were taken, very stable images were obtained with almost no rise in bright area potential.
The results will be described later. Comparative Examples 4 and 5 Same as Examples 11 and 12 except that a phenolic resin was used instead of the grafted polyamide used in the present invention for the intermediate layer paint containing conductive titanium oxide powder and rutile type titanium oxide powder. Electrophotographic photoreceptors corresponding to Comparative Examples 4 and 5 were manufactured in the following manner. When each of these electrophotographic photoreceptors was evaluated in the same manner as in Example 11, it was found that in Comparative Example 4, the bright area potential increased after 1,000 continuous sheets were printed, and capri was produced on the image. In addition, in Comparative Example 5, in which a charge generation layer and a charge transport layer were provided directly on the middle M layer, the barrier properties of the middle layer were insufficient, the charge injection from the support side was large, and the dark area potential was low. A suitable potential contrast could not be obtained. Show the results. Second Initial After 1,000 continuous sheets Example 11 Yes 890 170 175
Good // 12 No 880 185 190
Good [Effects of the Invention] The electrophotographic photoreceptor invented by Miki can obtain stable potential characteristics and images in all environments, from low temperature and low humidity to high temperature and high humidity.

Claims (1)

【特許請求の範囲】 1、導電性支持体上に中間層を介して感光層を設けた電
子写真感光体において、該中間層がN−ヒドロキシアル
キル化および/またはN−ポリアルキレンオキシド化さ
れたグラフト化ポリアミドを含有することを特徴とする
電子写真感光体。 2、導電性支持体が、支持体基体と、その上に設けられ
た導電性物質を含有する導電層とから構成される請求項
1記載の電子写真感光体。 3、中間層がN−ヒドロキシアルキル化および/または
N−ポリアルキレンオキシド化されたグラフト化ポリア
ミドを含有し、かつ、中間層と感光層との間に樹脂を主
成分とする第二の中間層を設けた請求項1記載の電子写
真感光体。
[Claims] 1. An electrophotographic photoreceptor in which a photosensitive layer is provided on a conductive support via an intermediate layer, in which the intermediate layer is N-hydroxyalkylated and/or N-polyalkylene oxide. An electrophotographic photoreceptor comprising a grafted polyamide. 2. The electrophotographic photoreceptor according to claim 1, wherein the conductive support comprises a support base and a conductive layer containing a conductive substance provided thereon. 3. A second intermediate layer in which the intermediate layer contains a grafted polyamide subjected to N-hydroxyalkylation and/or N-polyalkylene oxide, and the main component is a resin between the intermediate layer and the photosensitive layer. The electrophotographic photoreceptor according to claim 1, further comprising:
JP30222889A 1989-11-22 1989-11-22 Electrophotographic sensitive body Pending JPH03163560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30222889A JPH03163560A (en) 1989-11-22 1989-11-22 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30222889A JPH03163560A (en) 1989-11-22 1989-11-22 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH03163560A true JPH03163560A (en) 1991-07-15

Family

ID=17906490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30222889A Pending JPH03163560A (en) 1989-11-22 1989-11-22 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH03163560A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026272A (en) * 2012-06-20 2014-02-06 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014026272A (en) * 2012-06-20 2014-02-06 Mitsubishi Chemicals Corp Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming device
JP2017027090A (en) * 2012-06-20 2017-02-02 三菱化学株式会社 Electrophotographic photoreceptor, electrophotographic photoreceptor cartridge, and image forming apparatus

Similar Documents

Publication Publication Date Title
JP2567090B2 (en) Electrophotographic photoreceptor
JPH0345961A (en) Electrophotographic sensitive body
US5104757A (en) Electrophotographic photosensitive member having an improved intermediate layer
US6383699B1 (en) Photoreceptor with charge blocking layer containing quaternary ammonium salts
JPH04170552A (en) Electrophotosensitive material and copying machine and facsimile using this material
JPH03122656A (en) Electrophotographic sensitive body
JP2692962B2 (en) Electrophotographic photoreceptor
JPH03163560A (en) Electrophotographic sensitive body
JP3226110B2 (en) Electrophotographic photoreceptor
JP2700009B2 (en) Electrophotographic photoreceptor
JP2608328B2 (en) Electrophotographic photoreceptor
JP2637563B2 (en) Electrophotographic photoreceptor
JP2887209B2 (en) Electrophotographic photoreceptor
JPH03122655A (en) Electrophotographic sensitive body
JP3287595B2 (en) Electrophotographic photoreceptor, electrophotographic apparatus using the same, apparatus unit and facsimile
JPH04170550A (en) Electrophotosensitive material and copying machine and facsimile using this material
JPH1115183A (en) Electrophotographic photoreceptor
JPH05150534A (en) Image holding member
JPH07295267A (en) Image holding member and electrophotographic device
JPH04171458A (en) Electrophotographic sensitized body, and copying machine and facsimile using the same sensitized body
JPH04171457A (en) Electrophotographic sensitized body, and copying machine and facsimile using the same sensitized body
JPH0311360A (en) Electrophotographic sensitive body
JPH05333580A (en) Image holding member
JPH0243561A (en) Electrophotographic sensitive body
JPH04170551A (en) Electrophotosensitive material and copying machine and facsimile using this material