JPH03162662A - Electrochemical flow cell - Google Patents

Electrochemical flow cell

Info

Publication number
JPH03162662A
JPH03162662A JP1301180A JP30118089A JPH03162662A JP H03162662 A JPH03162662 A JP H03162662A JP 1301180 A JP1301180 A JP 1301180A JP 30118089 A JP30118089 A JP 30118089A JP H03162662 A JPH03162662 A JP H03162662A
Authority
JP
Japan
Prior art keywords
soln
electrode
reference electrode
detected
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1301180A
Other languages
Japanese (ja)
Inventor
Masayuki Suda
正之 須田
Hiroshi Muramatsu
宏 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP1301180A priority Critical patent/JPH03162662A/en
Publication of JPH03162662A publication Critical patent/JPH03162662A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the mixing of an internal liquid and a soln. to be detected and to maintain a nearly specified potential difference between liquids by using a material which allows the permeation of only the specific ions or exchanges the same in the liquid junction part between the internal liquid of a reference electrode and the soln. to be detected. CONSTITUTION:The electrochemical flow cell is constituted of the reference electrode 1, a counter electrode 2 consisting of platinum, a working electrode 3 consisting of platinum, and a cell body 4 having a bisected structure. An AgCl film is formed on the surface of a silver rod 5 of the electrode 1 and is fixed to a reference electrode body 6. The material, such as cation exchange resin NaF ion of a 'Teflon(R)' system, which allows the permeation of only the ions in the soln. or exchanges the same, is used for the liquid junction part 7 with the soln. to be detected. Such material allows the permeation of only the ions in the soln. and hardly allows the permeation of the solvent itself. The outflow of the internal liquid 8 of the reference electrode and the intrusion of the soln. to be detected into the internal liquid 8 are, therefore, substantially prevented even when the soln. to be detected flows. The potential of the reference electrode 1 remains stable even while the soln. to be detected is static or flows. The measurement with high accuracy is thus executed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明の電気化学セルは、例えばカテコールアミンなど
の定量を行う医療,薬学分野.アスコルビン酸などの定
量を行う食品分野などの他、電気化学測定法を利用した
各分析,定量法において広範囲な利用が可能である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The electrochemical cell of the present invention can be used in the medical and pharmaceutical fields, for example, for quantifying catecholamines. It can be used in a wide range of applications, such as in the food field for quantifying ascorbic acid and other substances, as well as in various analyzes and quantitative methods using electrochemical measurement methods.

[発明の概要] 電気化学の測定においては、電位の基準となる基4!電
極が必要とされる場合が多いが、その際用いられる基準
電極は、その内部にある一定の組戒をもつ基準溶液を有
する構造のものが一般的である。この基準電極の内部液
と被検溶液との液絡部に特定のイオンのみを透過もしく
は交換を行う物質を用いているものが本発明の電気化学
フローセルである. [従来の技術] 従来の電気化学フローセルにおいて用いられる基l1!
電極は、内部液と被検溶液との液絡部の構造は次のよう
なものが用いられていた. A.開放型液絡部:液絡部に微細な孔があいており、こ
の孔を通して内部液と被検溶液が接している。
[Summary of the Invention] In electrochemical measurements, the group 4! serves as a standard for potential. In many cases, an electrode is required, and the reference electrode used at that time generally has a structure in which a reference solution having a certain composition is contained therein. The electrochemical flow cell of the present invention uses a material that transmits or exchanges only specific ions at the liquid junction between the internal solution of the reference electrode and the test solution. [Prior Art] Groups l1! used in conventional electrochemical flow cells.
The electrode used had the following structure for the liquid junction between the internal liquid and the test solution. A. Open type liquid junction: The liquid junction has fine holes through which the internal liquid and the test solution come into contact.

B.スリーブ型液絡部:内部液と被検液がスリ合わせガ
ラスによって接触している。
B. Sleeve type liquid junction: Internal liquid and test liquid are in contact with each other through a laminated glass.

C.多孔性物質による液絡部:細孔性ガラス、多孔質セ
ラごツタ、綿などの溶液の透過性をもつ物質を液絡部に
用いている。
C. Liquid junction made of porous material: Materials that are permeable to solutions, such as porous glass, porous ivy, and cotton, are used for the liquid junction.

D.ゲルによる液絡部:寒天などのゲルを用いて、内部
演と被検溶液を接触させる。
D. Gel-based liquid junction: A gel such as agar is used to bring the inner layer into contact with the test solution.

また、簡便な測定法として、基準電極を用いない対極と
作用電極だけを用いた2極の電気化学フローセルなども
用いられている。
Furthermore, as a simple measurement method, a bipolar electrochemical flow cell using only a counter electrode and a working electrode without using a reference electrode is also used.

[発明が解決しようとする課題] 従来の電気化学フローセルにおいて、用いられてきた基
準電極は、次のような問題点を有していた。
[Problems to be Solved by the Invention] The reference electrodes used in conventional electrochemical flow cells have the following problems.

A.開放型液絡部:被検/8岐が静置した状態では、液
間電位が安定しているという特長を有するが、被検溶液
が流れた状態にあるフローセルに用いた場合、圧力がか
かることにより、被検/8戒が孔を通して、内部液と混
入したり、逆に内部l夜が圧力差乙こより被検溶液中に
流れ出してしまうなどの問題点がある。
A. Open type liquid junction: When the test/8-junction is left still, the liquid junction potential is stable, but when used in a flow cell where the test solution is flowing, pressure is applied. This causes problems such as the sample/eight precepts passing through the holes and mixing with the internal solution, or conversely, the internal liquid flowing out into the sample solution due to the pressure difference.

B.スリーブ型岐絡部:スリ合わせガラス面に異物が混
入した場合、それを除去することが困難である。また、
構造的に微小化することがむすかし<、電気化学フロー
セルが大型になってしまうという間到点がある。
B. Sleeve type junction: If foreign matter gets mixed into the surface of the laminated glass, it is difficult to remove it. Also,
There is a point where the electrochemical flow cell becomes larger than it is structurally possible to miniaturize it.

C.多孔性物質による液絡部:内部液の流出は上述A.
の開放型液絡部に比較して少ないものの、やはり圧力差
が大きくなると、その量は無視できなくなる.また、細
孔が汚れ易く、除去するためには超音波跣浄などを行わ
なければならないなどの問題点がある。
C. Liquid junction made of porous material: Outflow of internal liquid is as described in A. above.
Although the amount is smaller than that of the open liquid junction, as the pressure difference increases, the amount cannot be ignored. Further, there are problems in that the pores are easily contaminated and must be cleaned using ultrasonic cleaning.

D,ゲルによる液絡部二内部液の流出はほとんどないが
、圧力差が生した場合ゲル自身が、変形もしくは流動し
てしまう可能性がある。また、長期間にわたって使用し
た場合、ゲルの変質,汚染が生しる可能性があり、汚染
したゲルを交換するのは非常に手間がかかるという問題
点がある。
D. There is almost no outflow of the liquid inside the liquid junction part 2 due to the gel, but if a pressure difference occurs, the gel itself may deform or flow. Furthermore, when used for a long period of time, there is a possibility that the gel may be deteriorated or contaminated, and it is very time-consuming to replace the contaminated gel.

また、従来の基準電極においては、被検?8液が流動し
ている状態では、圧力による電極内部液と被検溶液間で
の溶岐の移動による電位差が生しるため、静止状態での
液関電位差と違いがでできてしまうという問題点があっ
た。
In addition, in the conventional reference electrode, the test object? 8 When the liquid is flowing, a potential difference occurs due to the movement of the melt between the electrode internal liquid and the test solution due to pressure, which causes a difference between the liquid junction potential difference in a stationary state. There was a point.

[LI!題を解決するための千段] 本発明の電気化学フローセルは、基1!電極の液絡部に
イオン交換樹脂などの特定のイオンのみを透過もしくは
交換する物質を用いている。このような物質は冫容冫&
中のイオンのみを透過させるが、溶媒自身の透過はほと
んどないかあってもごく少量である。このため、被検?
8?&が流動しているような、圧力差が生じる条件下で
あっても内部液の流出や被検溶液の内部液への混入はほ
とんどないか、あってもごく少量である。また、液間電
位差は、被検溶液が静止した状態であっても、流動して
いる状態であってもほぼ一定である。
[LI! 1,000 steps to solve the problem] The electrochemical flow cell of the present invention is based on 1! The liquid junction of the electrode uses a material such as ion exchange resin that allows only specific ions to pass through or be exchanged. Such substances are dangerous &
Only the ions inside pass through, but the solvent itself passes through very little, if at all. Are you being examined for this reason?
8? Even under conditions where a pressure difference occurs, such as when the liquid is flowing, there is little or no leakage of the internal liquid or contamination of the test solution into the internal liquid. Further, the liquid junction potential difference is approximately constant whether the test solution is in a stationary state or in a flowing state.

[作用1 電気化学測定に用いられる、基準電極の液絡部は一般に
次のような条件を満たすものでなければならない。
[Action 1 The liquid junction of the reference electrode used in electrochemical measurements must generally satisfy the following conditions.

1.電極内部液や塩橋に用いる溶液による被検溶液の汚
染や逆に被検溶液6こよる電極内部液の汚染をできるだ
け小さくするため、液絡間の溶液の移動はできるだけ小
さくなければならない。ただし、これらが小さすぎると
インピーダンスが大きくなり、l夜間電位差が不安定と
なる。
1. In order to minimize the contamination of the test solution by the electrode internal solution and the solution used for the salt bridge, and conversely the contamination of the electrode internal solution by the test solution 6, the movement of the solution between the liquid junctions must be as small as possible. However, if these are too small, the impedance becomes large and the nighttime potential difference becomes unstable.

2.安定で再現性のある液関電位差を得るためには、溶
?(lの移動速度は一定でなければならない。
2. In order to obtain a stable and reproducible liquid junction potential difference, what is the solution? (The moving speed of l must be constant.

被検}容液が静止した状態で測定を行う場合は、従来の
基準電極であっても前記の条件を満たすことができるが
、被検溶液が流動した状態で測定を行うフローセルでは
、従来の基準電極では、前記の条件を満たすのは困難で
ある。本発明の電気化学フローセルでは、基準電極の液
洛部にイオン交換樹脂などの特定のイオンのみを透過も
しくは交換する物質を用いた。このような物質は、溶媒
自身の透過性はほとんどないか、あってもごく少量であ
る。このため、電極の内部液と被検溶液が直接混合する
ことはほとんどないか全くないので、前記の汚染の問題
は生しない。また、被検溶液や電極内部液とイオン透過
もしくは交換物質問でのイオンの透過もしくは交換反応
は、イオンの濃度差に起因する平衡反応であるので、溶
液が静止した場合と流動している場合での圧力の差によ
るイオンの移動速度はほとんど変化しない。このため、
溶液が流動している状態であっても、静止している状態
であっても、イオン透過もしくは交換物質の表裏間の液
間電位差はほぼ一定となる。流動している被検溶液中の
イオン濃度が極端に変化するような溶液の測定では、イ
オン這過もしくは交換平衡が動くため、液間電位差が変
化する場合があるが、電気化学の測定の多くは、支持電
解質としてある一定量の無機塩類を添加している場合が
多いので、これらの無機イオンを選択的に透過もしくは
、交換を行う物質を液洛部に用いれば問題なく測定を行
うことができる。
Test} When measuring with a stationary solution, the above conditions can be met even with a conventional reference electrode, but with a flow cell that performs measurements with a flowing sample solution, conventional With reference electrodes, it is difficult to satisfy the above conditions. In the electrochemical flow cell of the present invention, a material such as an ion exchange resin that permeates or exchanges only specific ions is used in the liquid liquid portion of the reference electrode. Such substances have little or no permeability to the solvent itself. Therefore, the internal liquid of the electrode and the test solution rarely or never mix directly, so that the above-mentioned problem of contamination does not occur. In addition, the ion permeation or exchange reaction between the test solution or electrode internal solution and the ion permeation or exchange reaction is an equilibrium reaction caused by the difference in ion concentration, so it should be noted that when the solution is stationary and when it is flowing, The movement speed of ions hardly changes due to the difference in pressure at . For this reason,
Whether the solution is flowing or stationary, the liquid junction potential difference between the front and back surfaces of the ion-permeable or exchange material remains approximately constant. When measuring solutions where the ion concentration in the flowing test solution changes drastically, the ion migration or exchange equilibrium moves, which may change the liquid junction potential difference, but in many electrochemical measurements, Since a certain amount of inorganic salts are often added as a supporting electrolyte, measurements can be performed without problems if a substance that selectively permeates or exchanges these inorganic ions is used in the liquid chamber. can.

[実施例] 以下、本発明の電気化学フローセルの実施例を図面に基
づいて説明する。
[Example] Hereinafter, an example of the electrochemical flow cell of the present invention will be described based on the drawings.

第1図に示されるのが本発明の電気化学フロセルの模式
図である.この電気化学フローセルは、基準電極lと白
金の対極2.白金の作用極3および上下2分割構造のセ
ルボディ4とから構成されている.このうち基準電極l
の構造を詳細に示したものが第2図である。銀の口7ド
5はあらかしめIM HCI中で電解して、表面にAg
Cl皮膜を作製したものをエポキン樹脂を用いて、基4
電極ボディ6に固定している。また、この恨ロソド5に
は、外部と導通をとるためのリード線10が接続されて
いる。被検冷液とのl夜洛部7にはテフロン系の陽イオ
ン交換樹脂であるナフィオン(デュポン社の登録商標)
を用い、エボキシ樹脂で基準電極ボディ6に接着してい
る。電極内部?Il 8には、飽和KC1水?8液を用
いている。この電極内部液8を補充、交換するために、
基準電極ポディ6には、電極内部掖挿入口9が設けられ
ている.本実施例で用いている基準電極は、^g/^g
cl電極で、第1式の反応を利用している. Ag + CI−  →AgCl + (! −  第
1式この場合の、電極電位E (Ag/Agc+)は塩
化物イオンの活13cl−を用いて第2式のように表さ
れる。
Figure 1 is a schematic diagram of the electrochemical flow cell of the present invention. This electrochemical flow cell consists of a reference electrode 1 and a platinum counter electrode 2. It consists of a platinum working electrode 3 and a cell body 4 that is divided into upper and lower halves. Of these, the reference electrode l
FIG. 2 shows the structure of the device in detail. The silver opening 7 and 5 were electrolyzed in IM HCI, and the surface was coated with Ag.
The prepared Cl film was treated with Epoquine resin to form a base 4
It is fixed to the electrode body 6. Further, a lead wire 10 is connected to the wire rod 5 for establishing conduction with the outside. Nafion (registered trademark of DuPont), a Teflon-based cation exchange resin, is used in the cold liquid test section 7.
The reference electrode body 6 is bonded to the reference electrode body 6 using epoxy resin. Inside the electrode? Il 8 has saturated KC1 water? 8 liquids are used. In order to replenish and replace this electrode internal liquid 8,
The reference electrode pod 6 is provided with an electrode internal insertion opening 9. The reference electrode used in this example is ^g/^g
The reaction of equation 1 is used with the cl electrode. Ag + CI- →AgCl + (!- First equation) In this case, the electrode potential E (Ag/Agc+) is expressed as in the second equation using active 13cl- of chloride ions.

RT E (Ag/八gc+)   一 E’  (Ag/A
gCl)−  −  In a clF ・・・第2式 ここで、E’ (Ag/AgCI)は銀一塩化銀の+M
準電極電位であり、25℃において222.34mV 
 である。ここで、塩化銀の溶解度は第3式で表される
RT E (Ag/8gc+) 1 E' (Ag/A
gCl) - - In a clF ... Second formula Here, E' (Ag/AgCI) is +M of silver monochloride
quasi-electrode potential, 222.34 mV at 25°C
It is. Here, the solubility of silver chloride is expressed by the third equation.

KAgC]=aAg+ ・aCI− −  第3式この
関係を第2式に代入すれば、第4式が得られる。
KAgC]=aAg+ ・aCI− − Third equation Substituting this relationship into the second equation yields the fourth equation.

RT E(Ag/AgCl)  = E”  (Ag/AgC
l)− − 1nKAgclF RT + − In a Ag+・・・ 第4式F 第2式,および第4式からこの電極は、Ag+CI−に
対して可逆的に応答することがわかる。
RT E (Ag/AgCl) = E” (Ag/AgC
l) - - 1nKAgclF RT + - In a Ag+... Fourth Formula F From the second formula and the fourth formula, it can be seen that this electrode reversibly responds to Ag+CI-.

本発明の電気化学フローセルを用いて、pH6.0の0
.2M NatHPO40.1M  クエン酸ハノファ
を静止した場合と、流動させた場合の白金の作用極3と
基* fl極1間の電位の変化を測定した。pHが一定
の溶液中での白金電極の溶液に対する電位は変化しない
ので、これは被検溶液が静止している場合と流動してい
る場合での被検(容7夜に対する基準電極3の電位を測
定していることになる。
Using the electrochemical flow cell of the present invention, 0 at pH 6.0
.. Changes in potential between the platinum working electrode 3 and the base*fl electrode 1 were measured when 2M NatHPO40.1M citric acid Hanofa was kept stationary and when it was allowed to flow. Since the potential of the platinum electrode with respect to the solution in a solution with a constant pH does not change, this is the potential of the reference electrode 3 for the test solution when the test solution is stationary and when it is flowing. is being measured.

測定は、ポンプを用いて流量を5ml/minとし、測
定開始後5分経過したところで、ポンプON、さらに5
分経過したところで、ポンプOFFとした後、5分経過
するまでの計15分間の電位をポルトメー夕を用いて測
定した。その結果を第3図に示す。
The measurement was performed using a pump at a flow rate of 5 ml/min, and after 5 minutes had passed from the start of the measurement, the pump was turned on and
After 5 minutes had elapsed, the pump was turned off, and the potential was measured using a portometer for a total of 15 minutes until 5 minutes had elapsed. The results are shown in FIG.

第3図の(a)は本発明の電気化学フローセルを用いた
場合、第3図の(b)は従来の電気化学フローセルを用
いた場合である。図からわかるように本発明の電気化学
フローセルを用いた場合には、ポンプがON. OFF
 Lたときの電位の差がきわめて小さく、電位が安定し
ていることが示されている。
FIG. 3(a) shows the case when the electrochemical flow cell of the present invention is used, and FIG. 3(b) shows the case when the conventional electrochemical flow cell is used. As can be seen from the figure, when the electrochemical flow cell of the present invention is used, the pump is ON. OFF
The difference in potential at L is extremely small, indicating that the potential is stable.

[発明の効果] 本発明の電気化学フローセルでは、被検溶液が静止して
いる場合でも、流動している場合でも基4!電極の電位
は安定しており、これにより高精度な測定が可能となっ
た。また、基$電極内部液と被検溶液の混合がほとんど
生しないか、全く生しないので、被検溶液の汚染を極力
少なくすることが可能となった。
[Effects of the Invention] In the electrochemical flow cell of the present invention, the group 4! The potential of the electrodes was stable, which enabled highly accurate measurements. Furthermore, since there is little or no mixing between the base electrode internal solution and the test solution, it has become possible to minimize contamination of the test solution.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気化学フローセルの模式図.第2図
は本発明の電気化学フローセルの基準電極部の構造を示
す図.第3図は本発明の電気化学フセルと従来の電気化
学フローセルを用いた場合の電位安定性を示す図である
。 1 ・基準電極 7 ・lei.vi部 以 上
Figure 1 is a schematic diagram of the electrochemical flow cell of the present invention. Figure 2 is a diagram showing the structure of the reference electrode section of the electrochemical flow cell of the present invention. FIG. 3 is a diagram showing potential stability when using the electrochemical flow cell of the present invention and a conventional electrochemical flow cell. 1 ・Reference electrode 7 ・lei. vi part and above

Claims (1)

【特許請求の範囲】[Claims]  内部に基準溶液を有する構造の基準電極、および作用
電極、対極、を少なくとも各1本ずつ有し、被検溶液を
通液させることが可能な構造の電気化学フローセルにお
いて、基準電極内部の溶液と被検溶液の液絡部に特定の
イオンのみを透過もしくは交換を行う物質を用いる電気
化学フローセル。
In an electrochemical flow cell having a structure in which a reference electrode has a reference solution inside, and at least one working electrode and a counter electrode, and has a structure that allows a test solution to pass through, the solution inside the reference electrode and An electrochemical flow cell that uses a substance that permeates or exchanges only specific ions at the liquid junction of the test solution.
JP1301180A 1989-11-20 1989-11-20 Electrochemical flow cell Pending JPH03162662A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1301180A JPH03162662A (en) 1989-11-20 1989-11-20 Electrochemical flow cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301180A JPH03162662A (en) 1989-11-20 1989-11-20 Electrochemical flow cell

Publications (1)

Publication Number Publication Date
JPH03162662A true JPH03162662A (en) 1991-07-12

Family

ID=17893747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301180A Pending JPH03162662A (en) 1989-11-20 1989-11-20 Electrochemical flow cell

Country Status (1)

Country Link
JP (1) JPH03162662A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159367A (en) * 1993-12-08 1995-06-23 Nikkiso Co Ltd Reference electrode
JP2012141295A (en) * 2010-12-17 2012-07-26 Horiba Ltd Reference electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07159367A (en) * 1993-12-08 1995-06-23 Nikkiso Co Ltd Reference electrode
JP2012141295A (en) * 2010-12-17 2012-07-26 Horiba Ltd Reference electrode

Similar Documents

Publication Publication Date Title
Fibbioli et al. Potential drifts of solid‐contacted ion‐selective electrodes due to zero‐current ion fluxes through the sensor membrane
Ammann et al. Neutral carrier based hydrogen ion selective microelectrode for extra-and intracellular studies
Armstrong et al. Properties of PVC based membranes used in ion-selective electrodes
Samec et al. Ion amperometry at the interface between two immiscible electrolyte solutions in view of realizing the amperometric ion-selective electrode
CA1126337A (en) Flow-through electrochemical system
Zhang et al. Advantages and limitations of reference electrodes with an ionic liquid junction and three-dimensionally ordered macroporous carbon as solid contact
US4105509A (en) Combination measuring and reference potential electrode and method of measuring ph in samples subject to large voltage gradients
GB2093194A (en) Reference electrode with internal diffusion barrier
JPH0449910B2 (en)
US5505836A (en) Solid-state ion sensor
US5376254A (en) Potentiometric electrochemical device for qualitative and quantitative analysis
US3455793A (en) Method of providing for liquid junction
JP2872633B2 (en) Electrochemical measurement cell
Anderson et al. Easy-to-Make Capillary-Based Reference Electrodes with Controlled, Pressure-Driven Electrolyte Flow
Shinbo et al. Enantiomer-selective membrane electrode for amino acid methyl esters
Anderson et al. More than a liquid junction: Effect of stirring, flow rate, and inward and outward electrolyte diffusion on reference electrodes with salt bridges contained in nanoporous glass
US3438886A (en) Organic liquid ion-exchanger electrode
US5312537A (en) Electrochemical cell, reference electrode and electrochemical method
JPH09170998A (en) Reference electrode assembly
Nash et al. Zeta potential in the development of pharmaceutical suspensions
Cammann Ion-selective bulk membranes as models for biomembranes: Active ion transport as a consequence of stationary state situations at asymmetric biomembranes
US3657095A (en) Electrode system for measuring ion activity having sensing and unknown solutions in direct contact
JPH03162662A (en) Electrochemical flow cell
Barragan et al. On the fixed charge concentration and the water electroosmotic transport in a cellulose acetate membrane
US3681205A (en) Method and cell for repetitive high precision ph and like measurements