JPH03162614A - Vehicle azimuth detector - Google Patents

Vehicle azimuth detector

Info

Publication number
JPH03162614A
JPH03162614A JP30151189A JP30151189A JPH03162614A JP H03162614 A JPH03162614 A JP H03162614A JP 30151189 A JP30151189 A JP 30151189A JP 30151189 A JP30151189 A JP 30151189A JP H03162614 A JPH03162614 A JP H03162614A
Authority
JP
Japan
Prior art keywords
geomagnetic sensor
azimuth
center point
vehicle
predetermined range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30151189A
Other languages
Japanese (ja)
Inventor
Yasuhisa Hiroshima
靖久 廣島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP30151189A priority Critical patent/JPH03162614A/en
Publication of JPH03162614A publication Critical patent/JPH03162614A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To find the center point of a present vehicle azimuth accurate at all times by detecting the displacement variation of the vehicle according to the detection data of driven wheel speed sensors and an earth magnetism sensor and also detecting variation in the azimuth of the vehicle according to the detection data of the driven wheel speed sensor. CONSTITUTION:The vehicle azimuth detecting device 1 is constituted centering a control part 2 consisting of a microcomputer. The earth magnetism sensor 3, the driven wheel speed sensors 4a and 4b which detect the speed of the right and left driven wheels, and a storage part 5 such as a floppy disk where various data are stored are connected to the control part 2. The voltage value of the sensor 3 is inputted to the control part 2 to find the current vehicle azimuth. Center point processing is carried out according to the detection data of the sensors 4a and 4b to find the center point in the current vehicle azimuth. Then the current vehicle position, etc., is displayed on a map on the screen 7a of a navigation system 8 according to the current vehicle azimuth detected by the device 1 and a traveling distance, etc., detected by the sensors 4a and 4b.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、車両のナビゲーションシステム等に用いられ
る車両方位検出装置の改良に係り、詳しくは当該車両方
位検出装置の地磁気センサの現在車両方位の中心点を正
確に求め得るようにした車両方位検出装置に関する. 〔従来技術〕 第6図は、車両が1回転したときの同車両に搭載された
地磁気センサの理想的なX−Y出力電圧軌跡を示すグラ
フである. 一般に、現在車両方位の中心点C(×.Y)は上記軌跡
と基準電圧Y=Yo−X−Xoとの交点の中心として求
められる.即ち、上記交点をそれぞれ(xl,xク) 
 (y+,y2)とすると、上記中心点C(x,y)は
、 C(x.y)  =(( Xl + X2 )/2,(
y+ + V2 )/2 ) ・=(+1で示される。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the improvement of a vehicle direction detection device used in a vehicle navigation system, etc., and more specifically, the present invention relates to the improvement of a vehicle direction detection device used in a vehicle navigation system, etc. This article relates to a vehicle orientation detection device that can accurately determine the center point. [Prior Art] Fig. 6 is a graph showing an ideal X-Y output voltage trajectory of the geomagnetic sensor mounted on the vehicle when the vehicle rotates once. Generally, the center point C(x.Y) of the current vehicle orientation is determined as the center of the intersection of the above trajectory and the reference voltage Y=Yo-X-Xo. That is, each of the above intersection points is (xl, xk)
(y+, y2), the above center point C(x, y) is C(x.y) = (( Xl + X2 )/2, (
y+ + V2 )/2 ) ・=(indicated by +1.

従来の車両方位槍出装置では、車両走行中、同車両が曲
がる度に地磁気センサの検出データを記憶し上記出力電
圧軌跡を得ている. 第7図は、上記車両方位検出装置に記憶された実際の出
力電圧軌跡の一例を示している。
Conventional vehicle orientation devices memorize the detection data of the geomagnetic sensor and obtain the output voltage locus each time the vehicle turns while the vehicle is running. FIG. 7 shows an example of an actual output voltage trajectory stored in the vehicle direction detection device.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の車両方位検出装置では、上述したように地磁気セ
ンサからの検出データをそのまま記憶しているので、こ
の第7図に示すように上記出力電圧軌跡には各種要因に
より「乱れJX.Y等が生しる場合がある. 例えば上記出力電圧軌跡の「乱れ」Xは、車両が電波を
強く出している場所を通過したときにあらわれる. また、上記「乱れ」Yは、例えば対向車が遠くから接近
したときにあらわれる. 従って、上記出力電圧軌跡に基づいて求めた現在車両方
位の中心点Cl (x,y)は上述した「乱れ」を含む
場合があり、このとき上記中心点C I (x,y)は
正確に求まらず、その結果地磁気センサの検出方位に誤
差を生していた. 従って、本発明は地磁気センサの現在車両方位の中心点
を常に正確に求め得るようにした車両方位検出装置を提
供することを目的としてなされたものである. 〔課題を解決するための手段〕 上記目的を達威するために本発明は、地磁気センサの検
出データを用いて現在車両方位の中心点を求める車両方
位検出装置において、2個の従動輪の速度を検出する従
輪速センサと、上記地磁気センサの検出データに基づい
て車両の方位変化を検出する第1方位変化検出手段と、
上記従輪速センサの検出データに基づいて車両の方位変
化を検出する第2方位変化検出手段と、上記第1方位変
化検出手段と上記第2方位変化検出手段との方位変化差
が所定範囲内であるかどうかを判断する方位変化差判別
手段と、上記地磁気センサの出力値が所定範囲内である
かどうかを判断する出力値判断手段と、上記方位変化差
判別手段により上記方位変化差が上記所定範囲内である
と判断され且つ上記出力値判断手段により上記地磁気セ
ンサの出力値が上記所定範囲内であると判断されたとき
に上記地磁気センサの上記検出データを用いて上記中心
点を求め、上記方位変化差判別手段により上記方位変化
差が上記所定範囲内でないと判断され、又は上記出力値
判断手段により上記地磁気センサの出力値が上記所定範
囲内でないと判断されたときに前回採用された検出デー
タを用いて現在車両方位の中心点を求める中心点演算手
段とを具備してなることを特徴とする車両方位検出装置
として構成されている. 〔作用〕 この車両方位検出装置は上記のように楕威されているの
で、例えば地磁気センサの検出データの乱れがないか又
はその乱れが小さいと、方位変化差判別手段により第1
方位変化検出手段と第2方位変化検出手段との方位変化
差が所定範囲内に収まる.また出力値判断手段による地
磁気センサの出力値も所定範囲内に収まるので中心点演
算手段により上記地磁気センサの上記検出データを用い
て現在車両方位の中心点が求められる.地磁気センサの
検出データは車両が大きい磁場の横を通ったり、線路の
上を通ったりすると大きく乱れる. 例えば前者のケースでは、方位変化差判別手段により第
1方位変化検出手段と第2方位変化検出手段との方位変
化差が所定範囲を超えたと判断きれる場合がある.また
後者の場合には上記出力値判断手段により地磁気センサ
の出力値が所定範囲内でないと判断される場合がある.
これらいずれの場合にも乱れた地磁気センサの検出デー
タは採用できないので、中心点演算手段により前回採用
された地磁気センサの検出データを用いて現在車両方位
の中心点が求められる. 従って、地磁気センサの「乱れ」のない検出データのみ
が採用されて現在車両方位の中心点が求められるので、
同中心点は正確となる.〔実施例〕 以下、添付図面を参照して、本発明を具体化した実施例
につき説明し、本発明の理解に供する.面、以下の実施
例は本発明を具体化した一例であって、本発明の技術的
範囲を限定する性格のものではない. 第1図は本発明の一実施例に係る車両方位瞳出装置を車
両のナビゲーションシステムに用いたところを示すブロ
ノク図、第2図は同車両方位検出装置の中心点検出処理
を示すフローチャート、第3図は同車両方位検出装置の
地磁気センサの出力値の一例を示す説明グラフ、第4図
は同地磁気センサの出力値の所定範囲を示す説明グラフ
、第5図fa1、 (blはそれぞれ同地磁気センサの
出力値の他の例を示す説明グラフである. 第1図に示す車両方位検出装置lは不図示の左右2個の
従動輪を有する車両に搭載されている.この車両方位検
出装置1はマイクロコンピュータCPU等からなる制御
部2を中心として構威され、上記制御部2に、地磁気を
検出する地磁気センサ3、右側(および左側)の従動輪
の速度を検出する従輪速センサ41 (および4b)、
更に各種データを記憶するフロッピーディスク等の記憶
部5が接続されている. 上記地磁気センサ3の電圧値は制御9+12に入力され
て、現在車両方位が求められる. また、上記従輪速センサ4m,4hの検出データに基づ
いて制御部2により従輪速差等が求められて現在車両方
位の変化が求められる.上記地磁気センサ3、従輸速セ
ンサ4a.4bの検出データに基づいて後述する中心点
検出処理?なされ、現在車両方位の中心点が求められる
.この車両方位検出装置1は、上記制御部2に各種入力
操作をするための手書きタブレフト等の入力部6、およ
び地図情報等を画面71に表示するCRT$からなる表
示NI7等が更に接続されて、車両のナビゲーションシ
ステム8として用いられる. 上記車両方位検出装置lにより検出された現在車両方位
および従輪速センサ4■.4bにより検出された走行距
離等に基づき上記ナビゲーシ3ンシステム8の画面7.
の地図上に現在車両位置等が表示される. 次に第2[!lを参照してこの車両方位検出装置1の前
記中心点検出処理手順について、ステップS1.S2,
・・・の順に説明する. このナビゲーションシステム8が起動され、同ナビゲー
ションシステム8を搭載している車両が曲がると、地磁
気センサ3により現在車両方位θ1が検出され(Sl)
、前回検出された車両方位との差(車両方位変化Δθ1
)が求められる(s2)上述した地磁気センサ3の検出
データに基づいて車両の方位変化△θ1を検出する機能
を実現する手段が第1方位変化検出手段の一例である.
このとき、従輪速センサ(右,左)41,ahの検出デ
ータに基づいて従動輪右左の速度差が演算され(S3)
、更にこの速度差に基づいて上記車両の曲がり前後の車
両方位変化△θ2が求められる(S4). 上述した従輪速センサ4,,4,の検出データに基づい
て車両の方位変化Δθ,を検出する機能を実現する手段
が第2方位変化検出手段の一例である. そして、前記S1で検出した地磁気センサ3の検出デー
タが前記第7図に示したX, Y等の「乱れ」を含んで
いないかの判断処理が以下に述べるようになされる. 即ち、前記S2で求めた地磁気センサ3の検出方位変化
Δθ,と上記従輪速センサ4a,ahの検出方位変化△
θクとの方位変化差1Δθ1−Δθ21が所定範囲内で
あるかどうかが判断される(S5)?のとき、例えば第
3図に示すように地磁気センサの検出データに上記Δθ
1とΔθ2の方位変化の差が所定範囲内とならないよう
な「乱れ」Yが生したとすると、上記地磁気センサ3の
検出データは記憶部5に格納されず(S6)、前回記憶
された検出データは書き替えられない.即ち、後述する
ようにこの場合前回採用された地磁気センサの検出デー
タを用いて現在車両方位の中心点が求められる. 上述した地磁気センサ3の検出方位変化△θ1と上記従
輪速センサ41,4&の検出方位変化Δθ2との方位変
化差が所定範囲内であるかどうかを判断する機能を実現
する手段が方位変化差判別手段の一例である. 上記方位変化差1△θ1−△θ21が所定範囲内である
場合には、地磁気センサ3の検出方位変化差Δθ,と上
記従輪速センサ4■.4+,の検出方位変化△θ,とが
それぞれ第5図fal, (blに示すようにたまたま
略一致する場合の「乱れJX,,Y2を除去する処理が
、更になされる. 尚、上記のような第5図+alの乱れX.は第7図の乱
れXに該当し、第7図の乱れYは第5図(a).山)又
は第3図に示す乱れx,.’y2又はY,が単独又は混
しって生しるものである. ここでは、上記地磁気センサ3の電圧出力値が第4図斜
ijI部の所定範囲内(α〜β間)であるかどうか判断
される(S7). 上述した地磁気センサ3の電圧出力値が所定範囲内(α
〜β間)であるかどうかを判断する機能を実現する手段
が出力値判断手段の一例である.このとき、第5図+a
1、 (blに示すように上記地磁気センサ3の電圧出
力値(例えばP,.P2)が所定範囲外(上記αの外)
である場合は、上記地磁気センサ3の検出データは記憶
部5に格納されず前回記憶された検出データは書き替え
られない.即ち、後述するようにこの場合前回採用され
た地磁気センサの検出データを用いて現在車両方位の中
心点が求められる. 一方、地磁気センサ3の電圧出力値が所定範囲内(α〜
β間)であれば、前記第3図に示すような状態でなく且
つ上記第4図の斜線部に電圧出力値が含まれているので
、同電圧出力値は現在車両方位の中心点を求めるための
地磁気センサ3の検出データとして記憶部5に格納され
(S8)、前回記憶された検出データは上記地磁気セン
サ3の検出データに書き替えられる. 従って、上記記憶部5に記憶された検出データは第3図
に示す「乱れJY+および第5図ta+, (blに示
す乱れX..Y2等を含まないデータとなる.そして、
上記記憶部5に記憶された検出データに基づき前記(1
)式に従って現在車両方位の中心点が求められる. 従って、この現在車両方位の中止点は常に正確に求めら
れる. また、この中心点を基準として求めた地磁気センサ3の
現在車両方位も当然ながら正確となる.上述した上記地
磁気センサ3の電圧出力値が所定範囲内(α〜β間)で
あると判断されたときに、地磁気センサ3の検出データ
を用い、上記所定範囲内(α〜β間)でないと判断され
たときに前回採用された検出データを用いて現在車両方
位の中心点を求める機能を実現する手段が中心点演算手
段の一例である. なお、前記左右2個の従動輪を有する車両とは、主とし
て2WDの車両であるが、2WDに切り換えて駆動でき
る4WD車両も含む. 〔発明の効果〕 本発明により地磁気センサの検出データを用いて現在車
両方位の中心点を求める車両方位検出装置において、2
個の従動輪の速度を検出する従輪速センサと、上記地磁
気センサの検出データに基づいて車両の方位変化を検出
する第1方位変化検出手段と、上記従輸速度センサの検
出データに基づいて車両の方位変化を検出する第2方位
変化検出手段と、上記第1方位変化検出手段と上記第2
方位変化検出手段との方位変化差が所定範囲内であるか
どうかを判断する方位変化差判別手段と、上記地磁気セ
ンサの出力値が所定範囲内であるかどうかを判断する出
力値判断手段と、上記方位変化差判別手段により上記方
位変化差が上記所定範囲内であると判断され且つ上記出
力値判断手段により上記地磁気センサの出力値が上記所
定範囲内であると判断されたときに上記地磁気センサの
上記検出データを用いて上記中心点を求め、上記方位変
化差判別手段により上記方位変化差が上記所定範囲内で
ないと判断され、又は上記出力値判断手段により上記地
磁気センサの出力値が上記所定範囲内でないと判断され
たときに前回採用された検出データを用いて現在車両方
位の中心点を求める中心点演算手段とを具備してなるこ
とを特徴とする車両方位検出装置が提供される. 従って、地磁気センサの現在車両方位の中心点を常に正
確に求めることができる。
In the conventional vehicle direction detection device, as mentioned above, the detection data from the geomagnetic sensor is stored as is, so as shown in Fig. 7, the output voltage trajectory is affected by "disturbances such as JX.Y" due to various factors. For example, the above-mentioned "disturbance" X in the output voltage trajectory appears when the vehicle passes through a place where radio waves are strongly emitted. Furthermore, the above-mentioned "disturbance" Y appears, for example, when an oncoming vehicle approaches from a distance. Therefore, the center point C I (x, y) of the current vehicle direction determined based on the output voltage trajectory may include the above-mentioned "disturbance", and in this case, the center point C I (x, y) is accurately This resulted in an error in the direction detected by the geomagnetic sensor. Therefore, it is an object of the present invention to provide a vehicle direction detection device that can always accurately determine the center point of the current vehicle direction of a geomagnetic sensor. [Means for Solving the Problems] In order to achieve the above object, the present invention provides a vehicle orientation detection device that uses detection data from a geomagnetic sensor to determine the center point of the current vehicle orientation. a trailing wheel speed sensor that detects; and a first azimuth change detection means that detects a change in the azimuth of the vehicle based on detection data of the geomagnetic sensor;
A second azimuth change detection means detects a azimuth change of the vehicle based on the detection data of the trailing wheel speed sensor, and a azimuth change difference between the first azimuth change detection means and the second azimuth change detection means is within a predetermined range. an azimuth change difference determining means for determining whether the output value of the geomagnetic sensor is within a predetermined range; and an output value determining means for determining whether the output value of the geomagnetic sensor is within a predetermined range; When it is determined that the output value of the geomagnetic sensor is within the predetermined range and the output value determining means determines that the output value of the geomagnetic sensor is within the predetermined range, the center point is determined using the detection data of the geomagnetic sensor, and The detection adopted last time when the orientation change difference determining means determines that the orientation change difference is not within the predetermined range, or when the output value determining means determines that the output value of the geomagnetic sensor is not within the predetermined range. The present invention is configured as a vehicle direction detection device characterized by comprising a center point calculation means for calculating the center point of the current vehicle direction using data. [Operation] Since this vehicle orientation detection device is configured as described above, for example, if there is no disturbance in the detection data of the geomagnetic sensor or the disturbance is small, the orientation change difference discriminating means detects the first
The difference in azimuth change between the azimuth change detection means and the second azimuth change detection means falls within a predetermined range. Furthermore, since the output value of the geomagnetic sensor determined by the output value determining means is within a predetermined range, the center point calculation means uses the detection data of the geomagnetic sensor to determine the center point of the current vehicle heading. The detection data of the geomagnetic sensor is greatly disturbed when the vehicle passes by a large magnetic field or passes over railroad tracks. For example, in the former case, the azimuth change difference determining means may determine that the azimuth change difference between the first azimuth change detection means and the second azimuth change detection means exceeds a predetermined range. In the latter case, the output value determining means may determine that the output value of the geomagnetic sensor is not within the predetermined range.
In any of these cases, the detected data of the geomagnetic sensor that is disturbed cannot be adopted, so the center point calculation means uses the previously adopted detected data of the geomagnetic sensor to find the center point of the current vehicle heading. Therefore, only the undisturbed detection data of the geomagnetic sensor is used to find the center point of the current vehicle direction.
The concentric points are exact. [Examples] Examples embodying the present invention will be described below with reference to the accompanying drawings to provide an understanding of the present invention. On the other hand, the following examples are examples embodying the present invention, and are not intended to limit the technical scope of the present invention. FIG. 1 is a Bronnoch diagram showing the use of a vehicle orientation pupil detection device according to an embodiment of the present invention in a vehicle navigation system; FIG. 2 is a flowchart showing center point detection processing of the vehicle orientation detection device; Fig. 3 is an explanatory graph showing an example of the output value of the geomagnetic sensor of the same vehicle direction detection device, Fig. 4 is an explanatory graph showing a predetermined range of the output value of the same geomagnetic sensor, and Fig. 5 fa1, (bl is the geomagnetic sensor, respectively) It is an explanatory graph showing another example of the output value of the sensor. The vehicle direction detection device 1 shown in FIG. 1 is mounted on a vehicle having two left and right driven wheels (not shown). The control unit 2 is mainly composed of a control unit 2 consisting of a microcomputer CPU, etc., and the control unit 2 includes a geomagnetic sensor 3 that detects geomagnetism, a trailing wheel speed sensor 41 (and 4b),
Furthermore, a storage unit 5 such as a floppy disk for storing various data is connected. The voltage value of the geomagnetic sensor 3 is input to the control 9+12, and the current vehicle direction is determined. Further, based on the detection data of the following wheel speed sensors 4m and 4h, the control unit 2 determines the speed difference of the trailing wheels, etc., and determines a change in the current vehicle heading. The above-mentioned geomagnetic sensor 3, secondary speed sensor 4a. Center point detection processing described later based on the detection data of 4b? The center point of the vehicle's current orientation is determined. This vehicle direction detection device 1 is further connected to the control unit 2, an input unit 6 such as a handwriting tablet left for various input operations, and a display NI7 made of a CRT for displaying map information etc. on a screen 71. , used as a vehicle navigation system 8. The current vehicle direction detected by the vehicle direction detection device 1 and the trailing wheel speed sensor 4■. Screen 7. of the navigation system 8 is displayed based on the mileage etc. detected by 4b.
The current vehicle position etc. is displayed on the map. Next, the second [! Regarding the center point detection processing procedure of this vehicle direction detection device 1, step S1. S2,
I will explain in order. When the navigation system 8 is activated and the vehicle equipped with the navigation system 8 turns, the current vehicle direction θ1 is detected by the geomagnetic sensor 3 (Sl).
, the difference from the previously detected vehicle orientation (vehicle orientation change Δθ1
) is determined (s2) The means for realizing the function of detecting the azimuth change Δθ1 of the vehicle based on the detection data of the geomagnetic sensor 3 described above is an example of the first azimuth change detection means.
At this time, the speed difference between the right and left driven wheels is calculated based on the detection data of the driven wheel speed sensors (right, left) 41, ah (S3).
Furthermore, based on this speed difference, a change in the vehicle direction Δθ2 before and after the turn is determined (S4). An example of the second azimuth change detection means is a means for realizing the function of detecting the azimuth change Δθ of the vehicle based on the detection data of the following wheel speed sensors 4, 4, described above. Then, the process of determining whether the detection data of the geomagnetic sensor 3 detected in step S1 contains "disturbances" such as X and Y shown in FIG. 7 is performed as described below. That is, the detection azimuth change Δθ of the geomagnetic sensor 3 obtained in S2, and the detection azimuth change Δθ of the trailing wheel speed sensors 4a, ah.
It is determined whether the azimuth change difference 1Δθ1−Δθ21 with respect to θ is within a predetermined range (S5)? For example, as shown in Figure 3, the above Δθ is included in the detection data of the geomagnetic sensor.
If a "disturbance" Y occurs such that the difference in azimuth change between 1 and Δθ2 is not within a predetermined range, the detection data of the geomagnetic sensor 3 is not stored in the storage unit 5 (S6), and the previously stored detection data is Data cannot be rewritten. That is, as will be described later, in this case, the center point of the current vehicle direction is determined using the detection data of the previously employed geomagnetic sensor. Direction change difference determination is a means for realizing the function of determining whether the difference in direction change between the detected direction change Δθ1 of the geomagnetic sensor 3 and the detected direction change Δθ2 of the trailing wheel speed sensors 41, 4& is within a predetermined range. This is an example of a method. When the azimuth change difference 1Δθ1−Δθ21 is within a predetermined range, the detected azimuth change difference Δθ of the geomagnetic sensor 3 and the following wheel speed sensor 4■. When the detected azimuth changes △θ, and 4+, respectively coincide with each other by chance as shown in FIG. The disturbance X in Figure 5+al corresponds to the disturbance X in Figure 7, and the disturbance Y in Figure 7 corresponds to the disturbance x,.'y2 or Y shown in Figure 5(a). , may occur singly or in combination.Here, it is determined whether the voltage output value of the geomagnetic sensor 3 is within a predetermined range (between α and β) shown in the diagonal ijI section of Fig. 4. (S7). If the voltage output value of the geomagnetic sensor 3 described above is within the predetermined range (α
~β) is an example of an output value determining means. At this time, Fig. 5+a
1. (As shown in bl, the voltage output value (for example, P, P2) of the geomagnetic sensor 3 is outside the predetermined range (outside the α above)
In this case, the detection data of the geomagnetic sensor 3 is not stored in the storage unit 5, and the previously stored detection data is not rewritten. That is, as will be described later, in this case, the center point of the current vehicle direction is determined using the detection data of the previously employed geomagnetic sensor. On the other hand, the voltage output value of the geomagnetic sensor 3 is within a predetermined range (α ~
β), the state is not as shown in Fig. 3 above, and the voltage output value is included in the shaded area in Fig. 4 above, so the voltage output value is used to find the center point of the current vehicle direction. The detection data of the geomagnetic sensor 3 is stored in the storage unit 5 (S8), and the previously stored detection data is rewritten as the detection data of the geomagnetic sensor 3. Therefore, the detection data stored in the storage unit 5 becomes data that does not include the disturbances JY+ shown in FIG. 3 and the disturbances X...Y2 shown in FIG. 5 ta+, (bl).
Based on the detection data stored in the storage unit 5, the (1)
) can be used to find the center point of the current vehicle heading. Therefore, this stopping point for the current vehicle orientation can always be accurately determined. Also, the current vehicle direction of the geomagnetic sensor 3 determined using this center point as a reference is naturally accurate. When it is determined that the voltage output value of the geomagnetic sensor 3 described above is within a predetermined range (between α and β), using the detection data of the geomagnetic sensor 3, it is determined that the voltage output value of the geomagnetic sensor 3 is not within the predetermined range (between α and β). An example of a center point calculation means is a means for realizing the function of determining the center point of the current vehicle heading using the previously adopted detection data when the judgment is made. Note that the vehicle having two left and right driven wheels is primarily a 2WD vehicle, but also includes a 4WD vehicle that can be driven by switching to 2WD. [Effects of the Invention] According to the present invention, in the vehicle direction detection device for determining the center point of the current vehicle direction using detection data of a geomagnetic sensor,
a driven wheel speed sensor that detects the speed of each of the driven wheels; a first azimuth change detection means that detects a change in the orientation of the vehicle based on the detection data of the geomagnetic sensor; a second azimuth change detection means for detecting a azimuth change; the first azimuth change detection means and the second azimuth change detection means;
azimuth change difference determining means for determining whether the azimuth change difference with the azimuth change detecting means is within a predetermined range; and output value determining means for determining whether the output value of the geomagnetic sensor is within the predetermined range. When the orientation change difference determining means determines that the orientation change difference is within the predetermined range, and the output value determining means determines that the output value of the geomagnetic sensor is within the predetermined range, the geomagnetic sensor The center point is determined using the detected data of A vehicle heading detection device is provided, comprising: center point calculating means for determining the center point of the current vehicle heading using previously adopted detection data when it is determined that the vehicle heading is not within the range. Therefore, the center point of the current vehicle direction of the geomagnetic sensor can always be accurately determined.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る車両方位検出装置を車
両のナビゲーションシステムに用いたところを示すブロ
ック図、第2図は同車両方位検出装置の中心点検出処理
を示すフローチャート、第3図は同車両方位検出装置の
II+!!磁気センサの出力値の一例を示す説明グラフ
、第4図は同地磁気センサの出力値の所定範囲を示す説
明グラフ、第5図(al, (blはそれぞれ同地磁気
センサの出力値の他の例を示す説明グラフ、第6図は地
磁気センサの理想的なx−y出力電圧軌跡を示す説明グ
ラフ、第7図は従来の車両方位検出装置に記憶された実
際の出力電圧軌跡の一例を示す説明グラフである.〔符
号の説明〕 l・・・車両方位検出装置 2・・・制御部 3・・・地磁気センサ 4,,4ら・・・従輪速センサ 5・・・記憶部
FIG. 1 is a block diagram showing how a vehicle orientation detection device according to an embodiment of the present invention is used in a vehicle navigation system, FIG. 2 is a flowchart showing center point detection processing of the vehicle orientation detection device, and FIG. The figure shows the vehicle's orientation detection device II+! ! FIG. 4 is an explanatory graph showing an example of the output value of the magnetic sensor; FIG. 5 is an explanatory graph showing a predetermined range of the output value of the geomagnetic sensor; FIG. 6 is an explanatory graph showing an ideal x-y output voltage trajectory of a geomagnetic sensor. FIG. 7 is an explanatory graph showing an example of an actual output voltage trajectory stored in a conventional vehicle direction detection device. It is a graph. [Explanation of symbols] l...Vehicle direction detection device 2...Control unit 3...Geomagnetic sensor 4, 4, etc....Following wheel speed sensor 5...Storage unit

Claims (1)

【特許請求の範囲】 1、地磁気センサの検出データを用いて現在車両方位の
中心点を求める車両方位検出装置において、 2個の従動輪の速度を検出する従輪速センサと、 上記地磁気センサの検出データに基づいて車両の方位変
化を検出する第1方位変化検出手段と、 上記従輪速センサの検出データに基づいて車両の方位変
化を検出する第2方位変化検出手段と、 上記第1方位変化検出手段と上記第2方位変化検出手段
との方位変化差が所定範囲内であるかどうかを判断する
方位変化差判別手段と、 上記地磁気センサの出力値が所定範囲内であるかどうか
を判断する出力値判断手段と、上記方位変化差判別手段
により上記方位変化差が上記所定範囲内であると判断さ
れ且つ上記出力値判断手段により上記地磁気センサの出
力値が上記所定範囲内であると判断されたときに上記地
磁気センサの上記検出データを用いて上記中心点を求め
、上記方位変化差判別手段により上記方位変化差が上記
所定範囲内でないと判断され、又は上記出力値判断手段
により上記地磁気センサの出力値が上記所定範囲内でな
いと判断されたときに前回採用された検出データを用い
て現在車両方位の中心点を求める中心点演算手段とを具
備してなることを特徴とする車両方位検出装置。
[Scope of Claims] 1. A vehicle direction detection device that determines the center point of the current vehicle direction using detection data of a geomagnetic sensor, comprising: a driven wheel speed sensor that detects the speed of two driven wheels; and a detection of the geomagnetic sensor. a first azimuth change detection means for detecting a change in the azimuth of the vehicle based on data; a second azimuth change detection means for detecting a change in the azimuth of the vehicle based on the detection data of the trailing wheel speed sensor; and the first azimuth change detection means. azimuth change difference determining means for determining whether a difference in azimuth change between the means and the second azimuth change detection means is within a predetermined range; and an output for determining whether an output value of the geomagnetic sensor is within a predetermined range. The value determination means and the orientation change difference determination means determine that the orientation change difference is within the predetermined range, and the output value determination means determines that the output value of the geomagnetic sensor is within the predetermined range. When the center point is determined using the detection data of the geomagnetic sensor, the orientation change difference determining means determines that the orientation change difference is not within the predetermined range, or the output value determining means determines that the orientation change difference of the geomagnetic sensor is not within the predetermined range. A vehicle direction detection device comprising: center point calculation means for calculating the center point of the current vehicle direction using previously adopted detection data when it is determined that the output value is not within the predetermined range. .
JP30151189A 1989-11-20 1989-11-20 Vehicle azimuth detector Pending JPH03162614A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30151189A JPH03162614A (en) 1989-11-20 1989-11-20 Vehicle azimuth detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30151189A JPH03162614A (en) 1989-11-20 1989-11-20 Vehicle azimuth detector

Publications (1)

Publication Number Publication Date
JPH03162614A true JPH03162614A (en) 1991-07-12

Family

ID=17897804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30151189A Pending JPH03162614A (en) 1989-11-20 1989-11-20 Vehicle azimuth detector

Country Status (1)

Country Link
JP (1) JPH03162614A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130111818A1 (en) * 2010-08-06 2013-05-09 Yagiken Co., Ltd. Door opening/closing structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130111818A1 (en) * 2010-08-06 2013-05-09 Yagiken Co., Ltd. Door opening/closing structure
US8839561B2 (en) * 2010-08-06 2014-09-23 Yagiken Co., Ltd. Door opening/closing structure

Similar Documents

Publication Publication Date Title
JPH0629729B2 (en) Direction detector for mobile
JPS63150617A (en) Run path display device
JPS62502215A (en) How to determine the strike direction of a vehicle using an electronic compass
US5151872A (en) Method and apparatus for correcting the output of an onboard vehicle terrestrial magnetism sensor
JPS5834483A (en) Current position indicator for moving object
JPH02206716A (en) Running azimuth detection device for vehicle
JPS61245015A (en) Direction display device
JPH03162614A (en) Vehicle azimuth detector
JP2502432B2 (en) Vehicle position detection device
JP3278950B2 (en) Direction detection device
JPS63113309A (en) Method for processing data of earth magnetism sensor
JPS62255814A (en) Correcting method for vehicle azimuth error
JPS63128222A (en) Magnetization correcting method for geomagnetic azimuth sensor
JPH0368811A (en) Correcting apparatus for magnetization of geomagnetic azimuth sensor
JPS5899714A (en) Course guiding device for moving body
JPS5817313A (en) Azimuth meter for vehicle
JPS63182518A (en) On-vehicle navigation device
JPH0543257B2 (en)
JPH03167421A (en) Navigation apparatus
JPH0769181B2 (en) Vehicle direction detector
JPH03282322A (en) Vehicle azimuth detector
JPH0210111A (en) On-vehicle navigation system
JPH03267713A (en) Navigation system
JPS62102112A (en) On-vehicle navigator
JPH0224511A (en) Bearing correcting apparatus for vehicle