JPH03162504A - Manufacture of metal powder sintered compact - Google Patents

Manufacture of metal powder sintered compact

Info

Publication number
JPH03162504A
JPH03162504A JP30435789A JP30435789A JPH03162504A JP H03162504 A JPH03162504 A JP H03162504A JP 30435789 A JP30435789 A JP 30435789A JP 30435789 A JP30435789 A JP 30435789A JP H03162504 A JPH03162504 A JP H03162504A
Authority
JP
Japan
Prior art keywords
mold
powder
metal powder
alloy
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30435789A
Other languages
Japanese (ja)
Other versions
JP2932538B2 (en
Inventor
Masahide Unno
正英 海野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP30435789A priority Critical patent/JP2932538B2/en
Publication of JPH03162504A publication Critical patent/JPH03162504A/en
Application granted granted Critical
Publication of JP2932538B2 publication Critical patent/JP2932538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture alloy raw material for compacted projectile having drastically excellent penetration depth more than Cu with good yield of the material by packing the specific metal powder into space between a rubber mold and a core of metallic mold and infiltrating Cu or Cu alloy after compacting with cold isostatic pressing. CONSTITUTION:After packing mixed material of fine powder having 2 - 30 mum of the metal having excellent infiltrating depth of W, Ta, Re, etc., or alloy of W-Cu, Ta-Cu, Re-Cu, etc., and binder of wax, etc., into a mold for cold isostatic pressing composed of the rubber mold 2 made of e.g., urethane rubber having 5 - 25 mm thickness and metallic mold made of steel material, the cold isostatic press-compacting at 500 - 2000 kg f/cm<2> pressure and dewaxing treatment are executed. After sintering the green compact, Cu-made disk is laid on this and heated to infiltrate Cu, and the alloy raw material for compacted projectile having very excellent penetration depth is obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、例えば防護物を侵徹する成形弾用ライナに有
用な金属粉末成形体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a metal powder compact useful as, for example, a liner for a shaped bullet that penetrates a protective object.

(従来の技術) 戒形弾用ライナには純銅(無酸素銅)が、一般的に使用
されているが、このライナの製造方法としては、鍛造法
、機械加工法、電析法などがある。
(Prior technology) Pure copper (oxygen-free copper) is generally used for liners for military bullets, and methods for manufacturing this liner include forging, machining, and electrodeposition. .

ところで、この或形弾用ライナに要求される特性は、■
密度が高いこと、■ジェットの伸びが大きいことであり
、この要求を比較的満足する材料としては前記した純銅
の他、金、タンタルなどが知られている。
By the way, the characteristics required for this liner for a certain type of bullet are: ■
(1) high density, and (1) large elongation of the jet. In addition to the pure copper mentioned above, gold, tantalum, and the like are known as materials that relatively satisfy these requirements.

(発明が解決しようとする課題) しかしながら金やタンタルは純銅より特性は優れている
が高価であるため実用化されておらず、純銅より特性の
優れた合金及びライチの製造方法の開発が望まれていた
(Problem to be solved by the invention) However, although gold and tantalum have better properties than pure copper, they are expensive and have not been put into practical use.Therefore, it is desired to develop an alloy with better properties than pure copper and a method for producing litchi. was.

本発明は上記実情に鑑みて威されたものであり、銅より
も密度、伸びの大きい合金、換言すれば、防護物の侵敬
長の大きい合金を用いて成形体を製造する方法を提供す
ることを目的としている。
The present invention was developed in view of the above circumstances, and provides a method for manufacturing a molded body using an alloy that has a higher density and elongation than copper, in other words, an alloy that has a large penetration length of a protective object. The purpose is to

(課題を解決するための手段) タングステン(W)、タンタル(Ta) 、レニウム(
Re)と!M(Cu)は液相あるいは固相状態で相互に
固溶しないため、鋳造法、鍛造法では製造が困難である
.しかしながら粉末冶金法で、W,Ta、Re粉末の骨
格を形成させた後に焼結してCuを溶浸することにより
製造が可能である.この粉末冶金法で製造した合金(た
とえばW−Cu)は古くから電気接点材料として使用さ
れているが、例えば環状円錐形をした戒形弾用ライナへ
の適用はなされておらず、その製造方法も知られていな
い。
(Means for solving the problem) Tungsten (W), tantalum (Ta), rhenium (
Re) and! Since M (Cu) does not dissolve into each other in the liquid or solid state, it is difficult to manufacture by casting or forging methods. However, it can be manufactured using a powder metallurgy method by forming a skeleton of W, Ta, and Re powder, sintering it, and infiltrating it with Cu. Alloys manufactured by this powder metallurgy method (for example, W-Cu) have been used as electrical contact materials for a long time, but they have not been applied to, for example, liners for military bullets in the shape of an annular cone, and their manufacturing method is also unknown.

そこで本発明者は、侵徹長にすぐれかつ高価な金属であ
るW, Ta, Reの材料歩留りの高いW −Cu、
Ta − CuおよびRe−Cu合金素材を用いた成形
体を開発するため、合金粉末成形体の製造方法につき、
種々検討を加えた結果、以下のような本発明を成立させ
たのである。
Therefore, the present inventor developed W-Cu, which has a high material yield of W, Ta, and Re, which are expensive metals with excellent penetration length.
In order to develop compacts using Ta-Cu and Re-Cu alloy materials, we developed a method for producing alloy powder compacts.
As a result of various studies, the following invention was established.

すなわち第1の本発明は、金属粉末をゴム型と、金型の
中子とで形成される空間に充填して冷間静水圧成形した
後、該威形体に銅あるいは銅合金を溶浸させることを要
旨とする金属粉末或形体の製造方法である。
That is, the first aspect of the present invention is to fill a space formed by a rubber mold and a core of the mold with metal powder, perform cold isostatic pressing, and then infiltrate the large body with copper or copper alloy. This is a method for manufacturing a metal powder or shaped body.

また第2の本発明は、金属粉末がタングステン、タンタ
ルあるいはレニウムの粉末、あるいはこれらと銅又は銅
合金粉末との混合粉末であることを要旨とする前記第1
の本発明に係る金属粉末成形体の製造方法である。
Further, the second invention is characterized in that the metal powder is tungsten, tantalum or rhenium powder, or a mixed powder of these and copper or copper alloy powder.
1 is a method for manufacturing a metal powder compact according to the present invention.

また第3の本発明は、成形体が或形弾用合金素材である
ことを要旨とする前記第l又は第2の本発明に係る金属
粉末成形体の製造方法である。
A third aspect of the present invention is a method for manufacturing a metal powder compact according to the first or second aspect of the present invention, wherein the compact is an alloy material for a certain shaped bullet.

本発明方法では例えば第3図に示す形状のライナ素材の
成形体1を製造するため、第1図に示す如き冷間静水圧
プレス(以下rC I PJと略す)用型を使用するの
である。
In the method of the present invention, a mold for cold isostatic press (hereinafter abbreviated as rC I PJ) as shown in FIG. 1 is used to manufacture a molded body 1 of a liner material having the shape shown in FIG. 3, for example.

第1図及び第2図において2はゴム型であり、材質は硬
さHs70程度が適しておりたとえばウレタンゴムを用
いる.硬さがこれより低いと金属粉がゴムにささるため
、CIPの除荷時、金属粉とゴムとの摩擦が大きくなる
ため成形体にクランクが発生しやすくなるからである。
In FIGS. 1 and 2, 2 is a rubber type, and the suitable material is a hardness of about Hs70, for example, urethane rubber. If the hardness is lower than this, the metal powder will stick to the rubber, and when the CIP is unloaded, the friction between the metal powder and the rubber will increase, making it easier for the molded product to crack.

また、硬さがこれより高くなるとゴムのモジュラスが大
きくなり、同様に成形体にクランクが発生しやすくなる
からである。ゴムの肉厚は5口から25mmの範囲が望
ましい。肉厚が51IIfllより小さいと金型の中子
3とゴム型2のセッティングが不安定となってCIP時
或形体の芯ズレを生じるからである。また肉厚が251
IIIを超えるとCIP時の収縮率が変化してくる上、
モジュラスが大きくなり、除荷時、成形体にクラフクが
発生しやすくなるからである。第2図に示すようにゴム
型2の肉厚に変化をつけることにより、第1図に比べて
芯ズレ防止、クラック防止を一層図ることが可能である
Further, if the hardness is higher than this, the modulus of the rubber will increase, and the molded product will similarly be prone to cranking. The thickness of the rubber is preferably in the range of 5 mm to 25 mm. This is because if the wall thickness is smaller than 51IIfl, the setting of the mold core 3 and the rubber mold 2 will become unstable, resulting in misalignment of a certain shaped object during CIP. Also, the wall thickness is 251
If it exceeds III, the shrinkage rate during CIP will change,
This is because the modulus becomes large and cracks are likely to occur in the molded product during unloading. By varying the thickness of the rubber mold 2 as shown in FIG. 2, it is possible to further prevent misalignment and cracks compared to FIG. 1.

前記金型の中子3は強度、耐摩耗性の点よりHs35以
上の鋼例えばS45C,SCM440の調質材を用いる
ことが好ましい。
For the core 3 of the mold, it is preferable to use a tempered material of Hs35 or higher steel, such as S45C or SCM440, from the viewpoint of strength and wear resistance.

中子3に金型を用いることによりゴム型を用いるよりも
CIPtc形体の寸法精度を大幅に向上させることが可
能だからである。
This is because by using a mold for the core 3, it is possible to significantly improve the dimensional accuracy of the CIPtc shape compared to using a rubber mold.

第1図及び第2図の4はゴム栓であり粉末充填後、密封
するために用いる。
4 in FIGS. 1 and 2 is a rubber stopper, which is used for sealing after powder filling.

次に前記したようなCIP用型を用いた本発明製造方法
について詳細に述べる。
Next, the manufacturing method of the present invention using the CIP mold as described above will be described in detail.

W, Ta, Re粉あるいはW−Cu..Ta −C
u, Re  Cuの混合粉にバインダーを添加した後
、第1図あるいは第2図に示すCIP用型に充填し、C
IP威形する。W, Ta, Re粉末の粒度は2−3
0μmの範囲が好ましい。ここで、粒度とはフィッシャ
ー・サブ・シーブ・サイザーで測定した値をいう。Cu
粉の粒度はフルイ法でe200メッシュが好ましい。
W, Ta, Re powder or W-Cu. .. Ta-C
After adding a binder to the mixed powder of u, Re Cu, it was filled into the CIP mold shown in Figure 1 or Figure 2, and
IP prestige. The particle size of W, Ta, Re powder is 2-3
A range of 0 μm is preferred. Here, the particle size refers to a value measured using a Fisher sub-sieve sizer. Cu
The particle size of the powder is preferably e200 mesh by the sieve method.

W..Ta, Re粉とCu又はCu合金粉の混合はボ
ールミル、V型あるいはWコーンミキサー、アトライタ
ー等で行う。なお、焼結、溶浸促進のため、必要により
Ni粉を添加する。
W. .. Ta, Re powder and Cu or Cu alloy powder are mixed using a ball mill, V-type or W-cone mixer, attritor, or the like. Note that Ni powder is added if necessary to promote sintering and infiltration.

ところでバインダーは粉末冶金に一般に用いられている
ワックス、セルロース、ステアリン酸亜鉛等が適用でき
る。
By the way, wax, cellulose, zinc stearate, etc., which are generally used in powder metallurgy, can be used as the binder.

CIPの或形圧力は粉末粒度、Cu合金粉の混合比率に
より変化するが圧力は500〜3000kgf/cff
lの範囲が適当である。この範囲の圧力ならば溶浸後、
ライナ素材の組威が、W,TaあるいはReが60 −
 90重量%となるからである。
The pressure of a certain type of CIP varies depending on the powder particle size and the mixing ratio of Cu alloy powder, but the pressure is 500 to 3000 kgf/cff.
A range of l is appropriate. If the pressure is in this range, after infiltration,
The liner material has a W, Ta or Re of 60 −
This is because it is 90% by weight.

前記した方法で成形した成形体、あるいは或形体を脱ろ
うし、焼結した焼結体の上部あるいはキャビティにCu
あるいはCu合金の円板あるいは粉末を載せ、Cu溶浸
を行う。溶漫に使用するCuあるいはCu合金は鋳鍛造
品から加工した円板の他、Cu、Cu−Ag..Cu 
− P, Cu−Coなどの粉末を用いる。溶浸処理は
、水素あるいは水素一窒素混合雰囲気中で1100〜1
250℃で10〜120分間行う。また、溶浸前にエン
ドリングを容易とするため、必要に応じて焼結するが、
1100〜1250″Cで10〜120分間、真空ある
いは水素、水素一窒素混合雰囲気中で行う。
A molded body formed by the method described above or a certain shaped body is dewaxed, and Cu is applied to the upper part or cavity of the sintered body.
Alternatively, a Cu alloy disk or powder is placed and Cu infiltration is performed. Cu or Cu alloys used for melting are not only disks machined from cast and forged products, but also Cu, Cu-Ag. .. Cu
- Use powders such as P, Cu-Co, etc. Infiltration treatment is carried out in a hydrogen or hydrogen-nitrogen mixed atmosphere at 1100-1
It is carried out for 10-120 minutes at 250°C. In addition, in order to facilitate the end ring before infiltration, sintering is performed as necessary.
The treatment is carried out at 1100 to 1250''C for 10 to 120 minutes in vacuum or in a hydrogen or hydrogen-nitrogen mixed atmosphere.

かかる方法によって或形弾用ライナに適した金属粉末成
形体が製造できる。
By this method, a metal powder compact suitable for a liner for a certain type of bullet can be manufactured.

(実 施 例) W, TaSRe粉末あるいはボールミルで4時間混合
したW −Cu, Ta−Cu, Re粉末にロストワ
ックスを加熱混合して添加した。
(Example) Lost wax was heated and mixed and added to W, TaSRe powder or W-Cu, Ta-Cu, Re powder that had been mixed in a ball mill for 4 hours.

直径φ50鴫の内径を有する第1図のCIP用型に粉末
を充填シタ後、500〜3000kgf/c1a(7)
圧力テCIP戒形し、その後、型より成形体を取り出し
た。
After filling the powder into the CIP mold shown in Fig. 1, which has an inner diameter of 50 mm in diameter, 500 to 3000 kgf/c1a (7)
After applying pressure and CIP, the molded product was taken out from the mold.

比較として、■直径φ50mo+の内径を有する中子も
ゴム型からなる第1図のCIP用型にロストワックスを
添加したW粉末を充填した後、1000kgf/cff
lの圧力でCIP成形した成形体と、■直径φ50印の
内径を有する金型にロストワックスを添加したW粉末を
充填した後、ダブルアクションの粉末成形プレスで、1
000kgf/cmの圧力で加圧成形し、円柱形状の成
形体を得た。
As a comparison, after filling the CIP mold shown in Fig. 1, which also has a rubber core with an inner diameter of φ50mo+, and filling it with W powder to which lost wax has been added, 1000 kgf/cff was obtained.
After filling the molded body CIP-molded at a pressure of 1 lb with W powder to which lost wax has been added into a mold having an inner diameter of φ50 mark, 1
Pressure molding was performed at a pressure of 1,000 kgf/cm to obtain a cylindrical molded body.

これら成形体を脱ろう後、真空焼結炉で1l50゜Cで
2時間焼結し、焼結体の上にCuの円板を載せて113
0”Cで1時間溶浸処理した。さらにこの素材より所定
の形状に機械加工した後、炸薬Comp Bを用いて侵
徹試験を実施した。試験には比較として前記の、■の方
法で製造した成形体と無酸素銅の丸棒から削り出したラ
イナを用いた。
After dewaxing these molded bodies, they were sintered in a vacuum sintering furnace at 1 liter and 50°C for 2 hours, and a Cu disk was placed on top of the sintered bodies.
The material was infiltrated for 1 hour at 0"C. After this material was machined into a predetermined shape, a penetration test was conducted using the explosive Comp B. For comparison, A molded body and a liner cut from a round bar of oxygen-free copper were used.

試験結果を下記第1表に示すが、本発明製造方法は従来
のCu (比較例3)と比較して、1.3倍以上の侵徹
長を有するとともに、比較例1に比較して材料歩留まり
の高い製造方法であることが明らかである。なお、比較
例2は、質量が大きいため溶漫欠陥が発生し、 侵敞長は低下している。
The test results are shown in Table 1 below, and the manufacturing method of the present invention has a penetration length that is 1.3 times or more compared to conventional Cu (Comparative Example 3), and has a lower material yield than Comparative Example 1. It is clear that this is a highly efficient manufacturing method. In addition, in Comparative Example 2, a dissolution defect occurred due to the large mass, and the erosion length decreased.

第l表 (発明の効果) 以上説明したように、本発明方法によれば従来使用され
ていたCuより著しく侵徹長にすぐれ、かつ、材料歩留
まりの高い成形弾用合金素材を製造することができる。
Table 1 (Effects of the Invention) As explained above, according to the method of the present invention, it is possible to produce an alloy material for shaped bullets that has significantly better penetration length than conventionally used Cu and has a high material yield. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明方法に使用するCIP用型の
説明図、第3図は本発明方法で製造した成形体の一例を
示す図面である。 1は成形体、2はゴム型、3は中子、4はゴム栓。
1 and 2 are explanatory diagrams of a CIP mold used in the method of the present invention, and FIG. 3 is a drawing showing an example of a molded article produced by the method of the present invention. 1 is a molded body, 2 is a rubber mold, 3 is a core, and 4 is a rubber stopper.

Claims (3)

【特許請求の範囲】[Claims] (1)金属粉末をゴム型と、金型の中子とで形成される
空間に充填して冷間静水圧成形した後、該成形体に銅あ
るいは銅合金を溶浸させることを特徴とする金属粉末成
形体の製造方法。
(1) The space formed by the rubber mold and the mold core is filled with metal powder, cold isostatic pressing is performed, and then copper or copper alloy is infiltrated into the molded product. A method for producing a metal powder compact.
(2)金属粉末がタングステン、タンタルあるいはレニ
ウムの粉末、あるいはこれらと銅又は銅合金粉末との混
合粉末であることを特徴とする請求項1記載の金属粉末
成形体の製造方法。
(2) The method for producing a metal powder compact according to claim 1, wherein the metal powder is tungsten, tantalum, or rhenium powder, or a mixed powder of these and copper or copper alloy powder.
(3)成形体が成形弾用合金素材であることを特徴とす
る請求項1又は2記載の金属粉末成形体の製造方法。
(3) The method for producing a metal powder compact according to claim 1 or 2, wherein the compact is an alloy material for a shaped bullet.
JP30435789A 1989-11-21 1989-11-21 Manufacturing method of alloy material for molding bullets Expired - Lifetime JP2932538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30435789A JP2932538B2 (en) 1989-11-21 1989-11-21 Manufacturing method of alloy material for molding bullets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30435789A JP2932538B2 (en) 1989-11-21 1989-11-21 Manufacturing method of alloy material for molding bullets

Publications (2)

Publication Number Publication Date
JPH03162504A true JPH03162504A (en) 1991-07-12
JP2932538B2 JP2932538B2 (en) 1999-08-09

Family

ID=17932046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30435789A Expired - Lifetime JP2932538B2 (en) 1989-11-21 1989-11-21 Manufacturing method of alloy material for molding bullets

Country Status (1)

Country Link
JP (1) JP2932538B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287314A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Isostatic molding die and powder molding method
KR100490879B1 (en) * 2002-11-29 2005-05-24 국방과학연구소 W-Cu ALLOY WITH HOMOGENEOUS MICRO-STRUCTURE AND THE MANUFACTURING METHOD THEREOF
JP2006266531A (en) * 2005-03-22 2006-10-05 Asahi Kasei Chemicals Corp Clay composition for shooting
JP2011075251A (en) * 2009-10-01 2011-04-14 Daikin Industries Ltd Warhead part
JP2013231589A (en) * 2013-07-04 2013-11-14 Daikin Industries Ltd Warhead part

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101632040B1 (en) * 2014-08-26 2016-06-21 엔에이티엠 주식회사 Method for calculating contraction percentage of tungsten crucible and method for producing tungsten crucible using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05287314A (en) * 1992-04-07 1993-11-02 Nippon Steel Corp Isostatic molding die and powder molding method
KR100490879B1 (en) * 2002-11-29 2005-05-24 국방과학연구소 W-Cu ALLOY WITH HOMOGENEOUS MICRO-STRUCTURE AND THE MANUFACTURING METHOD THEREOF
US7172725B2 (en) * 2002-11-29 2007-02-06 Agency For Defense Development W-Cu alloy having homogeneous micro-structure and the manufacturing method thereof
JP2006266531A (en) * 2005-03-22 2006-10-05 Asahi Kasei Chemicals Corp Clay composition for shooting
JP2011075251A (en) * 2009-10-01 2011-04-14 Daikin Industries Ltd Warhead part
JP2013231589A (en) * 2013-07-04 2013-11-14 Daikin Industries Ltd Warhead part

Also Published As

Publication number Publication date
JP2932538B2 (en) 1999-08-09

Similar Documents

Publication Publication Date Title
US5778301A (en) Cemented carbide
US4612162A (en) Method for producing a high density metal article
EP1082578B1 (en) Lead-free projectiles made by liquid metal infiltration
US4721598A (en) Powder metal composite and method of its manufacture
JP2004517215A (en) Powder metallurgy for producing high density molded parts.
US4244738A (en) Method of and apparatus for hot pressing particulates
JPH03162504A (en) Manufacture of metal powder sintered compact
US8486541B2 (en) Co-sintered multi-system tungsten alloy composite
JP3071118B2 (en) Method for producing NiAl intermetallic compound to which fine additive element is added
US4726927A (en) Method and apparatus for forming pressed powder metal parts having multiple cavities
JP2864564B2 (en) Manufacturing method of alloy for molding bullet
CA2421429A1 (en) Hard metal body with hardness gradient, such as punching tools
US4445936A (en) Method of making inelastically compressible ductile particulate material article and subsequent working thereof
JP2731857B2 (en) Alloy for forming bullet and method for producing the same
Fischmeister Powder compaction: fundamentals and recent developments
US6821313B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
US2947068A (en) Aluminum base powder products
JPH04131334A (en) Production of alloy for shaped charge
JP2828279B2 (en) Alloy for forming bullet and method for producing the same
JP2828280B2 (en) Alloy for forming bullet and method for producing the same
US7270782B2 (en) Reduced temperature and pressure powder metallurgy process for consolidating rhenium alloys
JPS6038442B2 (en) Manufacturing method of aluminum alloy low density sintered parts
JPH07278693A (en) Production of tungsten-based sintered heavy alloy
JPS62270736A (en) Manufacture of valve seat material for internal combustion engine
Pawar et al. Development of EDM electrode by powder metallurgy process