JPH03161610A - Pressure variable type water pouring device into boring pit - Google Patents

Pressure variable type water pouring device into boring pit

Info

Publication number
JPH03161610A
JPH03161610A JP30122589A JP30122589A JPH03161610A JP H03161610 A JPH03161610 A JP H03161610A JP 30122589 A JP30122589 A JP 30122589A JP 30122589 A JP30122589 A JP 30122589A JP H03161610 A JPH03161610 A JP H03161610A
Authority
JP
Japan
Prior art keywords
pressure
water
discharge
pit
adding section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30122589A
Other languages
Japanese (ja)
Other versions
JP2849416B2 (en
Inventor
Yukio Oi
幸雄 大井
Yasunori Ootsuka
康範 大塚
Akinori Takahashi
高橋 昭教
Kazumasa Ito
伊藤 一誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oyo Corp
Original Assignee
Oyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oyo Corp filed Critical Oyo Corp
Priority to JP30122589A priority Critical patent/JP2849416B2/en
Publication of JPH03161610A publication Critical patent/JPH03161610A/en
Application granted granted Critical
Publication of JP2849416B2 publication Critical patent/JP2849416B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To measure section pressure accurately by combining a centrifugal pump, a return piping and a flow regulating valve, arbitrarily adjusting the flow rate of discharge and pressure and supplying an in-pit pressure adding section inserted into a boring pit. CONSTITUTION:A continuous discharge type centrifugal pump 10, a return piping 12 and flow regulating valves 16a, 16b are combined, and the flow rate of discharge and pressure to a water discharge piping 24 can be adjusted arbitrarily. Upper and lower pneumatic-packers 42a, 42b are installed and a hydraulic-pressure adding section is set, and an in-pit pressure adding section with a water impregnating pipe 44 opened to said adding section and pressure transducers 46a, 46b is provided. The in-pit pressure adding section is inserted into a boring pit 40, the discharge piping 24 is connected to the water pouring pipe 44, and fixed hydraulic pressure or required variable hydraulic pressure is supplied for a prolonged time. The pressure of the hydraulic-pressure adding section responding to the supply of fixed hydraulic pressure or required variable hydraulic pressure is measured by the pressure transducers 46a, 46b.

Description

【発明の詳細な説明】 1 2 [産業上の利用分野] 本発明はボーリング孔内に加圧水を注入するための装置
に関し、更に詳しくは、往入時の孔内圧力を自由に可変
できる装置に関するものである.この装置は、例えば地
盤中での水の流動を調査する透水性試験に利用できる. [従来の技術] 岩盤の透水性を求める試験としてシヌソイダル試験があ
る.これは岩盤中に形成した発信孔からサイン波状に変
化する加圧水を注入し、受信孔でその応答圧力を計測す
るものであり、岩盤モデルを仮定して解析解によって割
れ目の透水係数を求める技術である.この試験はスウェ
ーデンの放射性廃棄物地層処分実験サイトで行われてい
る. 上記の試験は極めて小さな透水係数(平均的には1 .
  O X 1 0−”cm/秒以下)の岩盤を対象と
している.サイン波状の水圧変化を発生させるため、注
水装置にはピストンの往復運動によって水を吸い込み所
定の圧力に圧縮して送り出す断続吐出形式のポンプ(往
復ポンプ)を用いている. [発明が解決しようとする課題] 従来のピストン−シリンダ方式の往復ポンプは加圧力変
化の調節を比較的容易に行なえる利点がある.そして前
記のように透水係数が極めて小さい特殊な岩盤の試験に
は対応できる.しかし一般土木分野で問題となる高這水
姓の割れ目系岩盤(例えば割れ目を含んだV:盤の活水
係数でl.OXIO−’〜I.OXIO−”cm/秒程
度)では浸這する水量が多くなり、それに見合ったノリ
ンダ容積が要求されるため、従来装置では必然的に巨大
化せざるを得ない.具体的には例えば数百lといったシ
リンダ容IDが必要なことも起こり、野外でしかも場所
を移動して行うこの種の試験装置としては非現実的であ
る.またピストンーシリンダ方式ではlストロークの吐
出容量が固定しでいるため、地盤内への水の浸iJIが
大きいと加圧時間は当然短くなり、必要な条件での試験
ができなくなる不都合が生しる. 本発明の目的は、上記のような従来技術の欠点を解消し
、一般の土木分野(例えばトンネル、ダム1!E礎岩盤
、斜面、I5粱基礎、地下空洞周辺岩盤など〉での透水
係数の大きな地層にも十分対応できるように大量の給水
能力があり、その{ハ給水に長時間にわたって一定のあ
るいは任意に変化する圧力をかけることができ、しかも
比較的小型化でき移動性にも優れたボーリング孔内への
圧力可変式注水装置を提供することにある. [課題を解決するための手段] 本発明では、ポンプが大容量の水の供給源になると同時
に可変圧力発生機能を有するように改良し、その吐出水
をボーリング孔内の所定深度の区間に導くように横威し
ている.即ら前記のような技術的i!題を解決できる本
発明は、連続吐出形式のポンプと、その吐出側から分岐
して吸込側に戻す戻り配管と、該戻り配管に設けたfi
lffl節弁と、ポンプ吐出水をボーリング孔内に導く
吐出配管とを具備しているボーリング孔内への圧力可変
式注水装置である.ここで実際には吐出配管に二一ドル
開閉弁や流量計を設けることが好ましい.またポンプは
原理、構造並びに運転性能等の観点から渦巻ボンプが望
ましい. 透水性試験ではボーリング孔内に孔内圧力付加部を挿入
する.この装置は水圧付加区間を設定するために遮水す
る上部及び下部パソカーと、ほぼ中央に位置し該水圧付
加区間のみで開口している注水管と、該水圧付加区間の
圧力を直接測定する圧力トランスジューサを具備し、前
記注水管が吐出配管に接続されている。
Detailed Description of the Invention 1 2 [Industrial Application Field] The present invention relates to a device for injecting pressurized water into a borehole, and more particularly, to a device that can freely vary the pressure inside the hole when water enters and enters the borehole. It is something. This device can be used, for example, for permeability tests to investigate the flow of water in the ground. [Conventional technology] A sinusoidal test is a test for determining the permeability of rock. This is a technique in which pressurized water that changes in a sine wave is injected from a transmitting hole formed in the rock mass, and the response pressure is measured at the receiving hole.This technology assumes a rock mass model and calculates the hydraulic conductivity of cracks through analytical solutions. be. The test is being conducted at a radioactive waste geological disposal experimental site in Sweden. The above test shows a very small hydraulic conductivity (on average 1.
The target is rock formations (below 0 x 10cm/sec).In order to generate a sine wave-like water pressure change, the water injection device has an intermittent discharge system that uses the reciprocating motion of a piston to draw in water, compress it to a predetermined pressure, and send it out. [Problems to be Solved by the Invention] The conventional piston-cylinder type reciprocating pump has the advantage of relatively easy adjustment of changes in pressure. However, in the general civil engineering field, it is possible to test special rock masses with extremely low permeability coefficients.However, it is a problem in the general civil engineering field (e.g., V containing fractures: the water activity coefficient of the plate is l.OXIO- '~I.OXIO-'cm/sec), the amount of water that infiltrates increases, and a commensurate Norinda volume is required, so conventional equipment inevitably has to grow in size. Specifically, a cylinder capacity ID of several hundred liters, for example, may be required, which is impractical for this type of test equipment that is carried out outdoors and by moving from place to place. In addition, in the piston-cylinder method, the discharge capacity per stroke is fixed, so if the water infiltration into the ground is large, the pressurization time will naturally become shorter, resulting in the inconvenience of not being able to perform tests under the necessary conditions. Ru. The purpose of the present invention is to solve the above-mentioned drawbacks of the prior art, and to improve the permeability coefficient in general civil engineering fields (for example, tunnels, dam 1!E foundation rock, slopes, I5 foundations, rock around underground cavities, etc.). It has a large water supply capacity that is sufficient to handle large geological formations, can apply constant or arbitrarily variable pressure to the water supply over a long period of time, is relatively compact, and has excellent mobility. An object of the present invention is to provide a variable pressure water injection device into a borehole. [Means for Solving the Problems] In the present invention, a pump serves as a large capacity water supply source and at the same time has a variable pressure generation function. In other words, the present invention, which can solve the above-mentioned technical problems, uses a continuous discharge type pump, A return pipe that branches from the discharge side and returns to the suction side, and a fi installed in the return pipe.
This is a variable pressure water injection device into a borehole, which is equipped with an lffl control valve and a discharge pipe that guides pump discharge water into the borehole. In practice, it is preferable to install a $21 on-off valve and a flow meter in the discharge piping. In addition, a volute pump is preferable from the viewpoint of principle, structure, and operating performance. In the permeability test, an in-hole pressure applying section is inserted into the borehole. This device consists of upper and lower pasocars that are water-blocked to set the water pressure addition section, a water injection pipe that is located approximately in the center and opens only in the water pressure addition section, and a pressure that directly measures the pressure in the water pressure addition section. A transducer is provided, and the water inlet pipe is connected to a discharge pipe.

[作用] 一aにポンプは水頭条件を一定とし定格動力で運転する
限り、吐出水量と吐出圧はともに一定の値を示す.そし
て定格動力運転時における吐出水量と吐出圧は、吐出圧
が低い時に吐出水量が増す関係で変化し、それらの絶対
値はポンプの形式性能によって決まる. 地層中に浸透する水量は水の圧力に比例して増滅するが
、這水性試験ではポンプの吐出水量吐出圧の関係に関わ
らず、自在に変化する圧力を札内に付加して、その際の
水量変化、圧力伝播速度を知る必要がある. 本発明では、ポンプの吐出水を二方向に分岐し、一方に
流量調節弁を設けて吸込側に戻している.そして吐出水
は開閉弁を通ってボーリング孔内に至る.開閉弁及び流
M調節弁を開放すれば戻り水流の抵抗が低下し、またポ
ンプの吸込力がかかるため、吐出水の大部分は戻り配管
ポンプ中を循環し、ボーリング孔内にかかる圧力及び流
入する水量は非常に小さくなる。逆に流量調節弁を完全
に閉鎖すれば、戻り水量が遮断されるので孔内にはポン
プ能力いっぱいの流量、圧力をかけることができる.従
ってこれらの中間に流量調節弁を制御することによって
、孔内の地層状況に合致した水量と圧力に自在に調節で
きることになる.但し、ボーリング孔側への流入を完全
に遮断するためには吐出配管に設けた開閉弁を閉しる,
+7!−要がある.従って拭験に必要な圧ノノが得られ
るように流険調節ブtを調節し、要末されるタイムサイ
クルで開閉介をつ激Cこ開閉ずれば、所定圧力で、その
F[力に比例ずる疏量の、所疋タイムサイクルの沖形波
状の永住変化G rL内に付加することができる.また
開閉弁を開放し、/AF!i調節弁の開度を所定のプロ
グラム・パターンに従って制?’lQすることによって
、圧力と澁量が連続的に変化する種々のパターン(例え
ばサイン波状の)の加『水をIし内に付加することがで
きる.ボーリング孔内に上下のパノカ一により区切られ
た水Y[付加区間を設定することによって、所定の限ら
れた深度、限られた長さの区間に各挿の加圧パターンの
水疏を{1(給できる.ロ1出水は汗水管の開口から吐
出する.その時の圧力(よ圧力トランスジュー→Jで検
出される.孔内の水圧付加区間の圧力を測定する理由は
、水が地1,の圧力発生部から札内の所定区間まで吐出
配管と注水管内を移動し到達する間に管の材質、流速に
左右される抵抗が発生し、その抵抗による゛圧力損失に
よって圧力発生部と圧力付加装置との間に圧力差が生し
るためである.地層の透水性の評価に本当に必要な圧力
は、孔内に実際にかかる圧力であり、圧力トランスジュ
ーサによりそれを正確に検出することができる.そして
この圧力検出値が所定の圧力変動になるように地上の圧
力発生部を制御することもできる.[実施例] 本発明に係る圧力可変式注水装置の一実施例を第1図に
示す.この装置は、渦をポンプ10と、その吐出水を二
方向に分岐して一方を吸込側に戻す戻り配管I2を有す
る.戻り配管l2は4系統あり、それぞれに手動調節弁
14、自動調節弁16a.16b、安全弁l8を組み込
む.自動調節弁+62は大容量用、自動調節弁16bは
小容量用であり、何れもプログラム・コントローラによ
り制御される.符号20は水槽を示す。堝巻ポンプlO
はポンプ制御盤22で制御される。
[Function] Firstly, as long as the pump is operated at the rated power with a constant water head condition, both the discharge water volume and the discharge pressure will be constant values. The discharge water volume and discharge pressure during rated power operation change as the discharge water volume increases when the discharge pressure is low, and their absolute values are determined by the formal performance of the pump. The amount of water that permeates into the stratum increases or decreases in proportion to the water pressure, but in the water seepage test, a freely changing pressure is applied to the inside of the cell, regardless of the relationship between the pump's discharge water volume and discharge pressure, and the water volume at that time is determined. It is necessary to know the change and pressure propagation velocity. In the present invention, the water discharged from the pump is branched into two directions, one of which is provided with a flow control valve, and returned to the suction side. The discharged water then passes through the on-off valve and reaches the borehole. When the on-off valve and the flow M control valve are opened, the resistance of the return water flow is reduced and the suction force of the pump is applied, so most of the discharged water circulates through the return piping pump, reducing the pressure in the borehole and the inflow. The amount of water used will be very small. On the other hand, if the flow rate control valve is completely closed, the return water volume is cut off, allowing the full pumping capacity to be applied to the hole. Therefore, by controlling the flow rate control valve between these, it is possible to freely adjust the water volume and pressure to match the geological conditions within the hole. However, in order to completely block the flow into the borehole side, close the on-off valve installed in the discharge pipe.
+7! -There is a point. Therefore, if you adjust the flow adjustment button t to obtain the pressure necessary for wiping, and open and close the pressure adjustment button t using the opening/closing intermediary in the required time cycle, then at a predetermined pressure, the pressure is proportional to the force. It can be added to the wave-like permanent change GrL of the current time cycle of the shear amount. Also, open the on-off valve and /AF! i Is the opening of the control valve controlled according to a predetermined program pattern? By adding water, it is possible to add water in various patterns (for example, sinusoidal) in which the pressure and volume change continuously. In the borehole, water Y [by setting an additional section, the pressure pattern of each insertion can be applied to a section of a predetermined limited depth and limited length. (2) Water is discharged from the opening of the sweat pipe.The pressure at that time (1) is detected by the pressure transducer → J.The reason for measuring the pressure in the water pressure application section in the hole is that the water While moving through the discharge piping and water injection pipe from the pressure generating part of the pipe to a predetermined section in the inside, resistance depending on the material of the pipe and the flow rate occurs, and the pressure loss due to this resistance causes the pressure generating part and the pressure adding device to This is because there is a pressure difference between the two.The pressure that is really needed to evaluate the permeability of a geological formation is the actual pressure that is applied inside the hole, and it can be accurately detected using a pressure transducer. It is also possible to control the pressure generating section on the ground so that this pressure detection value becomes a predetermined pressure fluctuation. [Embodiment] An embodiment of the variable pressure type water injection device according to the present invention is shown in Fig. 1. This device has a vortex pump 10 and a return pipe I2 that branches its discharge water into two directions and returns one to the suction side.There are four systems of return pipes I2, each with a manual control valve 14 and an automatic control valve. 16a, 16b, safety valve 18 is incorporated. Automatic control valve +62 is for large capacity, and automatic control valve 16b is for small capacity, both of which are controlled by a program controller. Reference numeral 20 indicates a water tank. Homaki pump 1O
is controlled by the pump control panel 22.

分岐した吐出水の他方は吐出配管24によってボーリン
グrL内に導かれる.吐出配管24には圧力計26、ア
キュムレータ2B、ニードル開閉弁30、流量測定系統
32、圧力計34が設けられる.流量測定系統32は4
系統あり、それぞれ?T磁流量計36a.・・・.36
dと手動切り喚えj↑38a,・・・,38dを有する
。これらの電磁流量計36a.・・・.36dはそれぞ
れ容量が異なる. ボーリング孔40内に孔内圧力付加部を挿入する。これ
は上部ニューマチンク・パノカ−423と下部ニューマ
チソク・パ,カー42bを設け、それらの間に注水管4
4の開口が存在するように構戒する.両ニューマチ7ク
・パフ力−422,42bにより区切られた区間が水圧
4t加区間となる.その区間内及び下部ニューマチック
・パッカー42bの下方にそれぞれ圧力トランスジュー
サ46a.46bを設け、それらの信号をプログラム・
コントローラや圧力指示器に導く.なお符号48はニュ
ーマチック・ハ7h−4 2 a,  4 2 bを膨
張させるためのガス供給装置を示す. 本実施例では渦巻ボンプを用いている.ポンプの最高圧
力で矩形波状の水M変動を与えて透水性試験を行おうと
する時は、戻り配管の調節弁14.16a,16bを全
閑にし、開閉弁30を開閉するが、開閉弁30が閉の時
はポンプ吐出を完全におさえて運転することになる。
The other branched discharge water is guided into the boring rL by the discharge piping 24. The discharge piping 24 is provided with a pressure gauge 26, an accumulator 2B, a needle on-off valve 30, a flow rate measurement system 32, and a pressure gauge 34. The flow measurement system 32 has 4
Is there a system, each one? T magnetic flowmeter 36a.・・・. 36
d and manual switching j↑38a,...,38d. These electromagnetic flow meters 36a.・・・. Each 36d has a different capacity. An in-hole pressure applying section is inserted into the borehole 40. This is provided with an upper pneumatic tank car 423 and a lower pneumatic tank car 42b, and a water injection pipe 4 between them.
Make sure that there are 4 openings. The area separated by both pneumatic pumps and puff forces -422 and 42b is the area where the water pressure is applied by 4t. Within that section and below lower pneumatic packer 42b are respective pressure transducers 46a. 46b and program those signals.
Leads to controller and pressure indicator. The reference numeral 48 indicates a gas supply device for expanding the Pneumatic Ha7h-42a and 42b. In this example, a spiral pump is used. When performing a water permeability test by applying rectangular wave-like water M fluctuations at the maximum pressure of the pump, the control valves 14, 16a and 16b of the return piping are fully idle, and the on-off valve 30 is opened and closed, but the on-off valve 30 When it is closed, the pump discharge is completely suppressed during operation.

従ってその場合でも破損や停止等に至らないようなIl
類のポンプを用いる必要がある.このような観点から渦
巻ポンブを選定している。しかし上記の条件が満たされ
るならば、他の形式のポンプであっても差し支えない。
Therefore, even in that case, the Il
It is necessary to use a similar type of pump. We selected a volute pump from this point of view. However, other types of pumps may be used as long as the above conditions are met.

自動調節弁16a.16bは孔内に付加する圧力、流量
を連続的に変化させる場合に用いるものであり、圧力ト
ランスジューサ46aで圧力を検出しながら予め決めら
れた所定のプログラムで開度を自動的に調節し孔内への
付加圧力を制御する。その際、二一ドル開閉弁30は開
放状態とする.また簡単な圧力変動であれば自動調節弁
16a.16bを用いず(全閑にしておき)、圧力トラ
ンスジューサ46aの検出圧力を見ながら手動調節弁l
4で開度調節を行うこともできる.I″IvJ調節弁が
2個あるのは、圧力変動幅が大きい場合と、付加圧力が
高く変動幅が小さい場合とで使い分けるためである.矩
形波状の圧力変動を付加する場合は、手動調節弁l4を
用いて圧力を調節した後、ニ一ドル開閉弁30をタイマ
ー等の信号で開閉する.この際、惣速な開閑によって開
閉弁30の前後域で圧力が瞬間的に上昇するウォーター
ハンマー現象が生しる可能性がある.この現象は測定上
、また装置の破損の可能性もあり好ましくない.従って
開閉弁30としてこの現象が起こり難い二一ドル形式の
ものを用いている.但しこの現象が起こり難い性能の弁
であればよく、二一ドル形式のものに限定されるもので
はない.安全弁18、アキュムレータ28もそれぞれ万
一ウォーターハンマーが発生した場合の防備として設け
ている.アキュムレータ28にはポンプ10の脈動など
の変動を吸収し吐出水量を滑らかにする機能もある. 札内に流入する水量は地質の状態によって数ml〜3 
0 0mll分と大幅に変わる.これを1台の流量計で
精度良′く測定することは不可能であり、本実施例では
測定範囲の異なる4台のfLffl計36a.・・・,
36dを用いている.どの流量計を用いるかの選択は予
備試験の結果に基づき決定し、手動切り換え弁38a.
・・・、38dで経路を切り換える. lffi計をiiI1遇した加圧水は、孔内圧力付加部
に導かれる.加圧水は上部ニューマチ7ク・バンカー4
2aと下部ニューマチック・パッカ42bの間で放出さ
れ、所定形式の圧力変動がその区間に付加される.圧力
トランスジューサ46aは水圧付加区間にかかる圧力を
検出する.札内に連続的圧力変化を付加する場合は、そ
の圧力信号をプログラム・コントローラにフイードバン
クして、高精度のプログラム制御を可能にする.圧力ト
ランスジューサ46bは下部ニューマチソク・バンカー
42bよりも下の孔内圧力を測定するが、これにより下
部ニューマチック・パソカー42bの遍水状況を知り、
透水性の結果の解析に役立てることができる.本発明の
注水装置を用いた透水性試験の計測概念図を第2図に示
す.解析対象である割れ目系岩5150に発信孔52と
受信孔54を掘削する.割れ目を71号5lで示す.受
信孔54は、一般には異なる位置に複数本形成する.発
信孔52内に上下のニューマチンク・パフ力−55a,
55bによって4水した発信区間56を設定し、地表の
注水gzssから加圧水を注入する.受信孔54は、こ
こでは多数のバンカー59によって複数の受信区間に分
けられており、それぞれの受信区間に圧力トランスジュ
ーサ60が設けられ、その検出信号が記録・解析装置6
2に送られる. 各圧力トランスジューサ60で検出した信号は受信圧力
の時間的変化を表し、そのデータが記録・解析装i1f
62で解析される.このように同時に多数の受信区間で
応答圧力を検出する方法は、同一解析対象領域で行う試
験回数を低減できるため試験作業時間を短縮できるし、
また解析対象領域への注水量も減少することになり、注
水量の増加による岩盤の変化を最小限に抑えることがで
きる等の利点がある. [発明の効果] 本発明は上記のようにポンプが大容量の水の供給源にな
ると共に可変圧力発生機能を有するように改良し、その
吐出水をボーリング孔内の所定区間に導き圧力変動を付
加する装置であるから、水量を大きくでき透水係数の大
きな地盤にも十分対応できる.そして供給水に長時間に
わたって一定あるいは変化した圧力をかけることができ
、且つその圧力を種々の形式に変化させることができる
.そのため一般の土木分野における地下水調査、透水性
試験の装置として極めて好ましく、また連続吐出形式の
ポンプを用いるため水量の割には小型化でき、試験現場
への移動性にもすぐれている. また加圧水を地層のボーリング札内に導き圧力を付加す
る孔内圧力付加部も非常に小さく且つ細くでき、ボーリ
ング孔内の所定の区間のみに集中して加圧水を付加する
ことができ、その区問の圧力を正確に測定できる. 4.[.;!l而の簡単な説明 第1図は本発明に係る圧力可変式注水装置のー丈施例を
示す系統図、第2図はそれを用いた透水性拭験の計測概
念図である.
Automatic control valve 16a. Reference numeral 16b is used to continuously change the pressure and flow rate applied to the inside of the hole, and the opening degree is automatically adjusted according to a predetermined program while detecting the pressure with the pressure transducer 46a. Control the pressure applied to the At this time, the twenty-one-dollar on-off valve 30 is left open. Also, if there is a simple pressure fluctuation, the automatic control valve 16a. 16b (leave it completely idle), and check the pressure detected by the pressure transducer 46a while adjusting the manual control valve l.
You can also adjust the opening with 4. The reason why there are two I"IvJ control valves is that they can be used for cases where the pressure fluctuation width is large and when the added pressure is high and the fluctuation width is small. When adding rectangular wave-like pressure fluctuations, the manual control valve is used. After adjusting the pressure using l4, the needle on-off valve 30 is opened and closed using a signal from a timer, etc. At this time, a water hammer is used in which the pressure increases instantaneously in the front and rear regions of the on-off valve 30 due to rapid opening and closing. There is a possibility that this phenomenon will occur. This phenomenon is undesirable in terms of measurement and may cause damage to the device. Therefore, a 21-dollar type valve is used as the on-off valve 30, in which this phenomenon is unlikely to occur. However, Any valve with performance that prevents this phenomenon from occurring is sufficient, and is not limited to the 21-dollar type.The safety valve 18 and the accumulator 28 are also provided as a defense in the unlikely event that water hammer occurs.Accumulator 28 also has the function of absorbing fluctuations such as the pulsation of the pump 10 and smoothing out the amount of water discharged.The amount of water flowing into Satsunai varies from several ml to 3 ml depending on the geological condition.
0 0 ml, which changes significantly. It is impossible to measure this accurately with one flow meter, and in this embodiment, four fLffl meters 36a. ...,
I am using 36d. The selection of which flowmeter to use is determined based on the results of preliminary tests, and manual switching valves 38a.
..., switch the route at 38d. The pressurized water that has passed through the lffi meter is led to the hole pressure application section. Pressurized water is in upper pneumatic tank 7 bunker 4
2a and the lower pneumatic packer 42b, and a predetermined type of pressure fluctuation is applied to that section. The pressure transducer 46a detects the pressure applied to the water pressure application section. When applying continuous pressure changes to the interior, the pressure signal is fed to the program controller to enable highly accurate program control. The pressure transducer 46b measures the pressure in the hole below the lower pneumatic bunker 42b, and from this the water distribution situation in the lower pneumatic bunker 42b is known.
This can be useful for analyzing permeability results. Figure 2 shows a conceptual diagram of a water permeability test using the water injection device of the present invention. A transmitting hole 52 and a receiving hole 54 are drilled in the fissure rock 5150 that is the object of analysis. The crack is indicated by No. 71 5L. Generally, a plurality of receiving holes 54 are formed at different positions. Upper and lower pneumatic puff force in the transmission hole 52 -55a,
55b, a four-water transmission section 56 is set, and pressurized water is injected from the water injection gzss on the ground surface. Here, the reception hole 54 is divided into a plurality of reception sections by a large number of bunkers 59, and a pressure transducer 60 is provided in each reception section, and the detection signal is sent to a recording/analysis device 6.
Sent to 2. The signals detected by each pressure transducer 60 represent temporal changes in the received pressure, and the data is stored in the recording and analysis device i1f.
62 is analyzed. This method of simultaneously detecting response pressure in multiple receiving sections can reduce the number of tests performed in the same analysis target area, which can shorten test work time.
It also reduces the amount of water injected into the analysis target area, which has the advantage of minimizing changes in the rock mass due to increased water injection. [Effects of the Invention] As described above, the present invention improves the pump so that it becomes a large-capacity water supply source and has a variable pressure generation function, and guides the discharged water to a predetermined section in the borehole to suppress pressure fluctuations. Since it is an additional device, the amount of water can be increased and it can be used in ground with a high permeability coefficient. It is possible to apply a constant or variable pressure to the supply water over a long period of time, and the pressure can be changed in various ways. For this reason, it is extremely suitable as a device for groundwater surveys and permeability tests in the general civil engineering field, and since it uses a continuous discharge pump, it can be made compact in relation to the volume of water, and it has excellent portability to test sites. In addition, the in-hole pressure application section that guides pressurized water into the borehole tag of the formation and applies pressure can be made very small and thin, making it possible to concentrate pressurized water only in a predetermined section of the borehole, and to apply pressure to that section. Pressure can be measured accurately. 4. [.. ;! 1 is a system diagram showing an example of the variable pressure water injection device according to the present invention, and FIG. 2 is a conceptual diagram of a water permeability wiping test using the same.

Claims (1)

【特許請求の範囲】 1、連続吐出形式のポンプと、その吐出側から分岐して
吸込側に戻す戻り配管と、該戻り配管に設けた流量調節
弁と、ポンプ吐出水をボーリング孔内に導く吐出配管を
具備しているボーリング孔内への圧力可変式注水装置。 2、吐出配管に開閉弁と流量計を設けた請求項1記載の
注水装置。 3、ボーリング孔内に挿入される孔内圧力付加部を有し
、該孔内圧力付加部は、水圧付加区間を設定するために
遮水する上部及び下部パッカーと、ほぼ中央に位置し該
水圧付加区間のみで開口している注水管と、該水圧付加
区間の圧力を直接測定する圧力トランスジューサを具備
し、前記注水管が吐出配管に接続されている請求項1又
は2記載の注水装置。
[Claims] 1. A continuous discharge type pump, a return pipe that branches from the discharge side and returns to the suction side, a flow rate control valve provided on the return pipe, and guides the pump discharge water into the borehole. A variable pressure water injection device into a borehole equipped with discharge piping. 2. The water injection device according to claim 1, wherein the discharge piping is provided with an on-off valve and a flow meter. 3. It has an in-hole pressure applying part that is inserted into the borehole, and the in-hole pressure applying part is located approximately in the center of the upper and lower packers that block water in order to set the water pressure adding section, and the in-hole pressure applying part is located approximately in the center and 3. The water injection device according to claim 1, comprising a water injection pipe that is open only in the addition section, and a pressure transducer that directly measures the pressure in the water pressure addition section, and wherein the water injection pipe is connected to a discharge pipe.
JP30122589A 1989-11-20 1989-11-20 Variable pressure water injection device in borehole Expired - Fee Related JP2849416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30122589A JP2849416B2 (en) 1989-11-20 1989-11-20 Variable pressure water injection device in borehole

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30122589A JP2849416B2 (en) 1989-11-20 1989-11-20 Variable pressure water injection device in borehole

Publications (2)

Publication Number Publication Date
JPH03161610A true JPH03161610A (en) 1991-07-11
JP2849416B2 JP2849416B2 (en) 1999-01-20

Family

ID=17894289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30122589A Expired - Fee Related JP2849416B2 (en) 1989-11-20 1989-11-20 Variable pressure water injection device in borehole

Country Status (1)

Country Link
JP (1) JP2849416B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101839131A (en) * 2010-05-06 2010-09-22 中国海洋石油总公司 Method and structure for optimizing axial fluid line in cylindrical matrix
JP2011508125A (en) * 2007-12-31 2011-03-10 シュルンベルジェ ホールディングス リミテッド Method and apparatus for programmable pressure drilling and programmable gradient drilling and finishing
CN113109230A (en) * 2021-03-30 2021-07-13 中国电建集团西北勘测设计研究院有限公司 Novel earth and rockfill dam construction material seepage deformation test system and method
CN114876422A (en) * 2022-05-12 2022-08-09 中国科学院武汉岩土力学研究所 Flow control and multi-stratum fluid integrated injection device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011508125A (en) * 2007-12-31 2011-03-10 シュルンベルジェ ホールディングス リミテッド Method and apparatus for programmable pressure drilling and programmable gradient drilling and finishing
CN101839131A (en) * 2010-05-06 2010-09-22 中国海洋石油总公司 Method and structure for optimizing axial fluid line in cylindrical matrix
CN113109230A (en) * 2021-03-30 2021-07-13 中国电建集团西北勘测设计研究院有限公司 Novel earth and rockfill dam construction material seepage deformation test system and method
CN114876422A (en) * 2022-05-12 2022-08-09 中国科学院武汉岩土力学研究所 Flow control and multi-stratum fluid integrated injection device and method
CN114876422B (en) * 2022-05-12 2023-06-02 中国科学院武汉岩土力学研究所 Flow control and multi-layer fluid unification device and method

Also Published As

Publication number Publication date
JP2849416B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
US11692919B2 (en) Reciprocating rock fracture friction-seepage characteristic test device and method
Novakowski et al. Field measurement of radial solute transport in fractured rock
Thewes et al. Foam conditioning in EPB tunnelling
Robbins Methods for determining transverse dispersion coefficients of porous media in laboratory column experiments
CN109519156A (en) A kind of side water sand rock gas reservoir water drive section model Seepage Experiment method
CN109115982A (en) A kind of the coal seam excavating device and method of three-dimensional solid-liquid coupling analog simulation
CN104897877B (en) Model assay systems and control method thereof are recharged in the indoor on simulation artesian water stratum
CN108387685A (en) The method and apparatus of the weak consolidated formation drilling fluid stabilizing borehole evaluation of effect of deep water superficial part
CN105954499A (en) Method and device for evaluating collapsible site after carrying out fracturing grouting reinforcement on collapsible loess site
CN204758591U (en) Indoor model test system of recharging on simulation pressure -bearing irrigated land layer
Guo et al. Water invasion and remaining gas distribution in carbonate gas reservoirs using core displacement and NMR
JPH03161610A (en) Pressure variable type water pouring device into boring pit
CN104865372B (en) The test method of model assay systems is recharged in the indoor on simulation artesian water stratum
Zheng et al. Propagation and sealing efficiency of chemical grouting in a two-dimensional fracture network with flowing water
Stille Rock grouting in tunnel construction-models and design
CN103161499A (en) Division method for underground coal bed outburst and dangerous zones
JP2002250026A (en) Tracer testing device and single-hole tracer testing method
Pearson et al. Improvements in the Lugeon or packer permeability test
CN113217030B (en) Working method for monitoring grouting reinforcement effect of muddy slab rock tunnel
Bezuijen et al. Pressure gradients at the tunnel face of an Earth Pressure Balance shield
CN110455915A (en) Tunnel Second Lining supplements grouting method
CN103091726B (en) The remote sensing and quantizing surveying method of fault with abundant ground water engineering geology ground
CN109667623A (en) It is a kind of for underworkings and the on-line detecting system of Tunnel testing
CN109238859A (en) A kind of multiple cracking three-dimensional space induced stress test device
JPH0355310A (en) Water permeability testing for cracked rockbed

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees