JPH03161515A - Conjugate fiber of multilayered structure - Google Patents

Conjugate fiber of multilayered structure

Info

Publication number
JPH03161515A
JPH03161515A JP29658289A JP29658289A JPH03161515A JP H03161515 A JPH03161515 A JP H03161515A JP 29658289 A JP29658289 A JP 29658289A JP 29658289 A JP29658289 A JP 29658289A JP H03161515 A JPH03161515 A JP H03161515A
Authority
JP
Japan
Prior art keywords
polyamide
sheath
core
component
polyester ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29658289A
Other languages
Japanese (ja)
Inventor
Chikara Honda
主税 本田
Takuji Sato
卓治 佐藤
Kenji Nakano
賢治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP29658289A priority Critical patent/JPH03161515A/en
Publication of JPH03161515A publication Critical patent/JPH03161515A/en
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)
  • Multicomponent Fibers (AREA)

Abstract

PURPOSE:To obtain the subject fiber, having the innermost and outermost layers respectively composed of polyester ether and polyamide and a dispersion mixture of both as an interlayer and excellent in high strength, high modulus, dimensional stability, etc. CONSTITUTION:The objective fiber, composed of three layers of (A) the innermost layer, composed of a polyester ether consisting essentially of poly(ethylene-1,2-diphenoxyethane-p,p'-dicarboxylate) having >=0.7 intrinsic viscosity [eta], >=170X10<-3> birefringence ( n) and >=1.365g/cm<3> density and accounting for 30-90wt.% of the objective fiber, (B) the outermost layer composed of a polyamide having >=2.8 relative viscosity (etar) in sulfuric acid, >=45X10<-3> birefringence ( n) and >=1.135g/cm<3> density and (C) a dispersion mixture obtained by dispersing and mixing the components (A) with (B) at (30/70)-(70/30) weight ratio and having >=6.0g/d strength, <=20% elongation, >=90g/d initial resistance to stretching and <=5% dry heat shrinkage factor at 150 deg.C.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業用の利用分野] 本発明は産業資材用途、特にゴム補強材に適した多層構
造複合繊維に関するものである。更に詳しくは高強度、
ハイモジュラス、改良された寸法安定性等の優れた機械
的特性を有し、且つゴムとの接着性、ゴム中における耐
熱性、及び芯鞘複合繊維の耐久性悪化の原因となる芯成
分と鞘成分との境界面剥離等の改良されたゴム補強材用
多廣構造複合繊維を提供することにある。 [従来の技術] ボリ(エチレン−1.2−ジフェノキシエタン−1),
P’ −ジカルボキシレート)からなるポリエステルエ
ーテル繊維はハイモジュラス、高強力、高弾性率、高い
ゴム中耐熱性を有するため、各種産業資材用途に広く用
いられている。 特にタイヤコード、伝動用ベルト、搬送用ベルI・等の
ゴム補強材と12てこの用途開発が進められつつある。 従来から、ボリエチ1ノンテレフタ1ノー ト、ポリ玉
ステルエーテル等の繊維の欠点であるゴムとの接着性を
改良しようとする試みは数多く提案されており、その一
つとして最近ポリエステルの表層をポリアミドで被覆し
、且つ適正な物性を有する複合繊維が特開平1−972
11号公報に記載されている。該特開平1−972il
号公報にはポリエステルを芯にナイロン66を鞘にした
複合繊維であり、それぞれの或分ボリマの重合度および
芯部ボリマの割合を特定した複合&a維について記載さ
れている。 [発明が解決しようとする課題] 前記特開平1−97211号公報に記載された複合繊維
は接着性、耐久性等がかなり改善されるものの、一部の
用途例えば、高速で走行する乗用車のタイヤ等において
は十分ではなく、尚一層改養された耐久性と,、乗り心
地が要求された。 またポリエチレンテレフタl/=}−やポリエステルエ
ーテルのようなポリマはナイロン6やナイロン6Gのよ
うなポリアミドとはボリマ同志の相溶性が悪いため、通
常の製糸方法下製造した場合は芯鞘複合構造の両ボリマ
界面で剥離破壊しやすく実用できる十分な耐久性を持た
なかった。と《に延仲工程、撚糸、デッピング等のタイ
ヤコード加工工程、タイヤ加硫工程、及びタイヤ走行時
に受ける繰返l2伸長圧縮疲労によって芯鞘界面が破壊
され、本来の芯鞘複合繊維に期待する性能が得られない
という課題を有する。 本発明の目的は」二紀の従来技術の課題を克服すること
により、ゴムとの接着性に優れ、ポリエステルを凌ぐハ
イモジスラスと寸法安定性を有し、且つ著1, <改善
されたゴム中における耐熱性(以下ゴム中耐熱性という
)及び耐疲労性を有するゴム補強用に好適な複合繊維を
提供することにある。 特に芯鞘複合界面のボリマの剥離に対(2て従来の技術
では達せられなかった十分な耐久性を釘する複合繊維を
提供することにある。 [課題を解決するための手段及び作用]本発明の構成は
、 多層構造複合繊維において、最内層がポリ(エチレン−
1,2−ジフエノキシエタンーP,■)′−ジカルボキ
シレート)を主成分とするポリエステルエーテルからな
り、最外層がポリアミド戊分からなり、前記最内層と最
外層との間に前記ポリエステルエーテルとポリアミドが
相hに分散混合された中間層が形成され、少なくとも3
層からなる複合繊維であり、 A.前記最内層を形成するポリエステルエーテル成分は
、極限粘度〔η〕がO、7以上、複屈折が170X10
−’以上、密度が1,365g/ern”以上の特性を
有I7、複合繊維全体に占める割合が30−・・90重
量%であり、 B.前記最外層を形成するポリアミド戊分は硫酸相対粘
度(η『)が2.8以上、複屈折(Δn)が45X10
−’以上、密度が1.135g/am”であり、 C.前記中間層を形成するポリエステルエーテルとポリ
アミドとの混合比が30:70〜70 : 30重量比
の割合で相互に分散混合されており、 前記複合繊維の強度が6.0g/デニール以上、伸度が
20%以下、初期引張り抵抗度が90g/デニール以上
、150℃乾熱収縮率が5%以下であることを特徴とす
る多層構造複合繊維にある。 本発明に係る多層構造複合繊維は上記構成からなるが、
特に本発明の目的とする、従来技術では達せられなかっ
た芯鞘複合界面のボリマ剥離耐久性については、最内層
成分(以下芯成分という)4最外層成分(以下鞘成分と
いう)との間に芯成分及び鞘戊分が相互に分散混合した
中間層を適正に設けることにより達成することができ、
またポリエステルを凌ぐハイモジュラス、寸法安定性、
及び著しく改良されたゴム中耐熱性等は、芯及び鞘を形
成するポリエステル工−テル及びポリアミド繊維部分の
特徴を特定の範囲で組合わせることによって達成するこ
とができる。 以下に本発明を構或する各要素の内容とその作用効果に
ついて詳述する。 本発明に係わる多層構造複合繊維の芯成分は実質的にポ
リ(エチレン−1,2−ジフェノキシエタンーP,P’
−ジカルボキシレート)を主成分とするポリエステルエ
ーテルからなり、ポリマ鎖中にビス−1.2−(パラ力
ルボキシフエノキシ)エタン、エチレングリコール以外
の第3成分が10モル%以下共重合されているものを含
む。 本発明に係る多層構造複合繊維の強度6,  Og/デ
ニール以上を得るために芯成分のポリエステルエーテル
繊維の極限粘度〔η〕は0.  7以上、好ましくは0
.8以上と高粘度である。 鞘成分であるポリアミドはポリ力ブラミド、ポリヘキサ
メチレンアジパミド、ポリテトラメチレンアジバミド、
ポリへキサメチレンセバカミド、ポリへキサメチレンド
デカミド等の通常のポリアミドからなり、上記ボリマを
ブレンドまたは一部共重合したボリマも用いることがで
きるが、特にポリヘキサメチレンアジバミドが好ましい
。 ポリアミド鞘成分ボリマも産業用途として要求される高
強度の複合繊維を得るために高重合度とし、硫酸相対粘
度(ηr)が2.8以上、好ましくは3.0以上とする
。ポリアミド或分には熱酸化防止剤として銅塩、及びそ
の他の有機、無機化合物が含有されていることが好まし
い。特に、沃化銅、酢酸銅、塩化銅、ステアリン酸銅等
の銅塩を銅として30〜500ppmと沃化カリウム、
臭化カリウム等のハロゲン化アルカリ金属が0.01〜
0.51ift%、及び/或いは有機、無機の燐化合物
が燐として10〜500ppm含有されていることが好
ましい。 本発明に係る多層構造複合繊維の芯成分と鞘戊分との間
に設ける中間層は、芯戊分ポリマおよび鞘成分ボリマが
重量比で30 : 70〜70:30の割合で相互に分
散混合された層でありこの範囲外の割合を有する部分は
それぞれ芯成分、鞘成分とみなす。前記中間層はフィラ
メント全断面積の5〜30%の範囲とするのが好ましい
。芯成分および鞘成分の相互に分散混合された中間層が
フィラメント全断面積の30%を越えると、本発明の芯
鞘複合繊維としての特徴、即ちモジュラス、寸法安定性
、ゴム中耐熱性等の改良が十分に達せられないこともあ
る。一方5%未満であると本発明の特徴である芯鞘界面
剥離耐久性の改良効果は認められるものの有意差を有す
るまでには至らないことがある。 本発明に係る多層構造複合繊維の芯或分であるポリエス
テルエーテルの割合が30〜90重量%、鞘成分である
ポリアミドの割合が10〜70重量%である。これらの
割合の中でそれぞれの一部が混合して中間層を形成して
いる。芯成分が30重量%未満では目的とする複合繊維
としてのモジュラス及び寸法安定性を従来のポリエステ
ル繊維を凌ぐレベルにするこるはできない。一方、芯或
分が90重量%を越えると、中間層及び鞘或分層が薄く
なり、芯鞘複合界面の耐久性、複合繊維とゴムとの接着
性、およびゴム中耐熱性等の改良が十分には達せられな
い。 本発明に係る多層構造複合繊維はポリエステルエーテル
芯或分繊維とポリアミド鞘或分繊維がいずれも高度に配
向、結晶化していることが特徴である。すなわちポリエ
ステルエーテル芯戊分繊維の複屈折は170X10−”
以上である。 170X10−’未満では複合繊維の強度6.  0g
/d以Lを達或することはできない。 一方、ポリアミド鞘或分繊維の複屈折は45×10一以
上、好ましくは50×1、O″′以上の高配向である。 複屈折が45X10−”未満では高い初期引張り抵抗度
を有する複合繊維は得られない。 ポリエステルエーテル戊分の密度は1.365以上、好
ましくはi,380以上である。密度が」二記特定の値
以上にならないと複合繊維の寸法安定牲、およびゴム中
耐熱性は改良ざれない。またポリアミド鞘成分の密度も
1,135g / e m ’以上、1.140g/c
m3以上に高度に結晶化していることが好ましい。 上記によって特徴づi−1られる本発明に係る多層構造
複合繊維は6.0g/デニール以上の高強度、90g/
デニール以上の初期引張り抵抗度を有し、伸度は20%
以下である。より好ま(7い複合繊維特性は強度7,O
g/デニール以上、初明引張り抵抗度1.00g/デニ
ール以上、伸度は8〜1.6%であり、これは前記条件
を適正に組合せることによって達せられる。 以」二の特徴を有する本発明に係る複合繊維は以下に示
す新規な方法によって製造される。 本発明に係る多層構造複合繊維のポリエステルエーテル
芯成分のポリマは、極限粘度〔η〕が0.7以上、通常
は0.  8以上の実質的にポリ(エチレン−1.2−
ジフェノキシエタンーP,P’−ジカルボキシレート)
からなるボリマを用いる。 ポリアミド鞘成分ボリマは硫酸相対粘度(ηr)で2.
8以上、通常は3.0以上の高重合度ポリマを用いる。 通常、前記酸化防止剤を重合工程または紡糸工程で添加
する。 前記芯成分と鞘或分との間に形成された中間層を、芯成
分ボリマおよび鞘戊分ボリマが重量比30 : 70〜
70 : 30の割合で相互に分放混合した中間層を安
定的にフィラメント全断面積の5〜30%となすために
は、■該分散混合層形成ボリマ(チップ状)を紡糸工程
前に予めブレンドし、それぞれ溶融(一口金内で複合す
る方法、■芯成z3、鞘或分ポリマをそれぞれ溶融後、
バック導入部以前に設置した混練装置に芯成分ボリマ及
び鞘或分ボリマの一部を導き混練し、口金内で複合する
方法、■芯戊分、鞘戊分ポリマをぞれぞれ溶融後、口金
パック内に導き、口金内で混練しつつ複合する/あるい
は口金内で複合後、芯鞘複合界面近傍ボリマの一部を混
練する方法等がある。 例えば前記■の方法の場合、芯戊分となるポリエステル
エーテルボリマ、鞘或分となるポリアミドボリマ、及び
芯或分と鞘戊分ボリマが相互に分散混合した中間層を形
戊させるための、ブレンドボリマの溶融紡糸には、3基
のエクストルダー型紡糸機を用いる。3基のエクストル
ダーでそれぞれ溶融された芯成分ポリエステルエーテル
ボリマ、鞘戊分ポリアミドボリマ、及び芯或分ボリマと
鞘或分ボリマが相互に分散混合した中間層を形威させる
ためのブレンドボリマを、複合紡糸バックに導き、複合
紡糸用口金)f−涌1,τ−ア丁にボ17工又テルエー
テル 5−招4}と鞘或分との中間にポリエステルエー
テル及びポリアミドボリマが相互に分散混合した中間層
、鞘成分にポリアミドを配した3層複合繊維として紡糸
する。 前記■の方法の場合、芯戊分、鞘戊分を2基のエクスト
ルダーで溶融し、それぞれの戊分の1部を定められた混
合比に計ffiL、バック導入部以前に設置した混練装
置で芯成分ボリマと鞘成分ボリマが相互に分散混合(2
た溶融ボリマとした後、複合紡糸バックに導き、複合紡
糸用口金を通して、芯にポリエステルエーテル、芯成分
と鞘戊分との中間にポリエステルエーテル及びポリアミ
ドポリマが相互に分散混合した中間層、鞘成分にポリア
ミドを配l一た3層の複合繊維として紡糸することもで
きる。 前記■の方法の場合、芯戊分ボリマと鞘成分ボリマを2
基のエクストルダーでそれぞれ溶融し、複合バック内に
導き、それぞれの戊分の一部をバック内で混練して芯成
分と鞘或分が相互lご4}書なaA−1+−矢才nル墨
 II  −y  J−  什 l トク鉛   餉1
人東七糸用口金を通して、芯にポリエステルエーテル、
芯戊分と鞘或分との中間にポリエステルエーテル及びポ
リアミドの相互に分散混合した中間層、鞘成分にポリア
ミドを配した3層の複合繊維として紡糸するか、あるい
は芯或分、鞘成分の溶融ボリマを直接複合口金に導き、
該両ボリマの一部を口金内に設けた多孔金属フィルター
を通して芯成分と鞘成分が相互に分散混合した溶融ボリ
マとなすことによって混線と複合を同時に行ない、芯に
ポリエステルエーテル、芯或分と鞘或分との中間にポリ
エステルエーテル及びポリアミドポリマが相互に分散混
合した中間層、鞘成分にポリアミドを配した3層の複合
繊維として紡糸することら可能である。 紡糸速度は1000m/分以上、好ましくは1 5 0
 0m/分以上の高速とする。紡糸口金直下に10cm
以上、1m以内にわたって200℃以上、好ましくは2
50℃以上、400℃以下の加熱雰囲気を、保温筒、加
熱等筒を設けることによって作る。紡出糸条は上記加熱
雰囲気中を通過した後冷風で急冷固化され、次いで油剤
を付与された後、紡糸速度を制御する引取口−ルで引取
られる。前記口金直下の加熱雰囲気の制御は本発明の高
速紡糸時の曳糸性を保持するため極めて重要である。引
取られた未延伸糸は通常一旦巻取ることなく連続して延
伸されるか、あるいは未延伸糸を一旦巻取った後、別工
程で延伸される。 本発明に係る多層構造複合繊維は芯戊分ポリマおよび鞘
成分ボリマの相互に分散混合した中間層の形戊によって
芯鞘複合界面の剥離耐久性が著しく改善され、それによ
って耐疲労性が著しく改善される。 前記のように紡糸速度を1000m/分以上、好ましく
は1 5 0 0m/分以上の高速紡糸とすることによ
って複合繊維のモジュラス、寸法安定性が著しく改良さ
れることは注目すべきである。恐らく、鞘或分であるポ
リアミド或分と芯或分であるポリエステルエーテル成分
の、紡糸張力の違いを、又ポリアミド成分とボリエステ
ルエーテル成分の延伸挙動の違いを、芯戊分と鞘成分ボ
リマが混合された中間層によって緩やかに吸収されるこ
とによって、上記の効果が顕著に表れていると考えられ
る。 次に該未延伸糸は連続して170℃以上、好ましくは2
00〜240℃の温度で熱延仲される。延伸は2段以上
、好ましくは3段以上の多段で行ない、延伸倍率は1.
4〜5.0倍、好ましくは1.4〜4,O倍の範囲であ
る。 かくして得られる繊維は前記本発明多層構造複合繊維の
特徴を有する。 本発明に係る多層構造複合繊維の各繊維特性、コード特
性の定義、及び測定方法は次の通りである。 ポリエステルエーテル芯成分繊維の特性(イ)極限粘度
〔η〕 : 試料をオルソマ口ロフェノールに溶解し、オストワルド
粘度計を用いて25℃で測定した。 (ロ)密度: 四塩化炭素を重液、n−ヘプタンを軽液として調整した
密度勾配管を用い、25℃で測定した。試料はポリアミ
ド鞘成分を蟻酸で溶解除去し、ポリエステルエーテル芯
繊維成分を測定した。 (ハ)複屈折: カールツアイスイエナ社(東独)製透過定量型顕微鏡を
用いて、干渉縞法によって繊維の側面から観察した平均
複屈折をもとめた。試料は鞘部の主戊分であるポリアミ
ド成分を蟻酸で溶解除去し、ポリエステル工−テル芯繊
維部分を測定した。 ポリアミド鞘成分繊維の特性 (イ)硫酸相対粘度(ηr): 試料0.25gを98%硫酸25ccに溶解し、オスト
ワルド粘度計を用いて25゜Cで測定した。 (口)複屈折: カールツァイスイエナ社(株)製透過定量型干渉顕微鏡
を用いて、干渉M法にょって繊維の側面から中心方向に
211間隔でポリアミド鞘部分のみを測定17、平均値
を求めた。 (ハ)所度: 複合繊維およびポリエステルエーテル芯繊維戊分の密度
を測定し、複合比率を用いてポリアミド繊維或分の密度
を算出した。 複合繊維の特性 (イ)強度、伸度、初期引張り抵抗度二強度、伸度、初
期引張り抵抗度はJIS−L1017の定義及び測定方
法によっt:Q尚、SS曲線を得るための引張り試験の
具体的な条件は次の通りである。 試料を総状にとり、20℃、65%R K−1の温室度
調整された部屋に24時間以上放置後、“テンシロン 
U T T, − 4 1,”型引張試験機(オリエン
テック(■)製)を用い、試長25cm,引張速度30
ern/分で測定
[Field of Industrial Use] The present invention relates to a multilayer composite fiber suitable for industrial material use, particularly as a rubber reinforcing material. For more details, see high strength,
A core component and sheath that have excellent mechanical properties such as high modulus and improved dimensional stability, and also cause deterioration in adhesion to rubber, heat resistance in rubber, and durability of core-sheath composite fibers. It is an object of the present invention to provide a multi-layer composite fiber for use in rubber reinforcing materials, which has improved interface peeling with other components. [Prior art] Poly(ethylene-1,2-diphenoxyethane-1),
P'-dicarboxylate) polyester ether fibers have high modulus, high strength, high elastic modulus, and high heat resistance in rubber, and are therefore widely used in various industrial material applications. In particular, the development of applications for rubber reinforcing materials and levers for tire cords, power transmission belts, conveyor bells, etc. is progressing. In the past, many attempts have been made to improve the adhesion to rubber, which is a drawback of fibers such as polyethylene, non-terephthalate, and polyester ether. Composite fibers that are coated and have appropriate physical properties are disclosed in JP-A-1-972.
It is described in Publication No. 11. JP-A-1-972il
The publication describes a composite &a fiber, which is a composite fiber having a polyester core and a nylon 66 sheath, and in which the degree of polymerization of each polymer and the proportion of the core polymer are specified. [Problems to be Solved by the Invention] Although the composite fiber described in JP-A-1-97211 has considerably improved adhesion, durability, etc., it cannot be used in some applications, such as tires for passenger cars that run at high speed. However, even better durability and ride comfort were required. In addition, polymers such as polyethylene terephthalate l/=}- and polyester ether have poor compatibility with polyamides such as nylon 6 and nylon 6G, so if they are produced using a normal yarn-making method, they will have a core-sheath composite structure. It was easy to peel and break at the interface between both bolamers, and it did not have sufficient durability for practical use. During the rolling process, tire cord processing process such as twisting and dipping, tire vulcanization process, and repeated 12 elongation compression fatigue during tire running, the core-sheath interface is destroyed, which is expected from the original core-sheath composite fiber. The problem is that performance cannot be obtained. The purpose of the present invention is to overcome the problems of the prior art, which has excellent adhesion to rubber, has high modulus and dimensional stability superior to polyester, and has the following characteristics: The object of the present invention is to provide a composite fiber suitable for reinforcing rubber, which has heat resistance (hereinafter referred to as heat resistance in rubber) and fatigue resistance. Particularly, the object is to provide a composite fiber that provides sufficient durability against the peeling of the volima at the core-sheath composite interface (2), which has not been achieved with conventional techniques. [Means and actions for solving the problem] This book The structure of the invention is that, in a multilayer composite fiber, the innermost layer is made of poly(ethylene-ethylene).
1,2-diphenoxyethane-P,■)'-dicarboxylate), the outermost layer is made of polyamide, and the polyester ether is formed between the innermost layer and the outermost layer. An intermediate layer is formed in which polyamide and polyamide are dispersed and mixed in phase h, and at least 3
It is a composite fiber consisting of layers, A. The polyester ether component forming the innermost layer has an intrinsic viscosity [η] of 0, 7 or more, and a birefringence of 170×10
-' or more, the density is 1,365 g/ern" or more, and the proportion of the entire composite fiber is 30-90% by weight; B. The polyamide fraction forming the outermost layer is sulfuric acid Viscosity (η') is 2.8 or more, birefringence (Δn) is 45X10
C. The polyester ether and polyamide forming the intermediate layer are dispersed and mixed in a weight ratio of 30:70 to 70:30. The multi-layered composite fiber has a strength of 6.0 g/denier or more, an elongation of 20% or less, an initial tensile resistance of 90 g/denier or more, and a 150°C dry heat shrinkage rate of 5% or less. The multilayer structure composite fiber according to the present invention has the above structure,
In particular, regarding the durability of the core-sheath composite interface, which is the object of the present invention and which could not be achieved with the prior art, the peeling durability of the core-sheath composite interface between the innermost layer component (hereinafter referred to as the core component) and the outermost layer component (hereinafter referred to as the sheath component) is particularly important. This can be achieved by appropriately providing an intermediate layer in which the core component and the sheath component are mutually dispersed and mixed.
It also has high modulus and dimensional stability that surpasses polyester.
and significantly improved heat resistance in rubber, etc., can be achieved by combining the characteristics of the polyester fibers and polyamide fiber portions forming the core and sheath within a specific range. The contents and effects of each element constituting the present invention will be explained in detail below. The core component of the multilayer composite fiber according to the present invention is substantially poly(ethylene-1,2-diphenoxyethane-P,P'
-dicarboxylate), and copolymerized with less than 10 mol% of a third component other than bis-1,2-(para-carboxyphenoxy)ethane and ethylene glycol in the polymer chain. including those that have been In order to obtain the strength of the multilayer composite fiber according to the present invention of 6.0 g/denier or more, the intrinsic viscosity [η] of the core component polyester ether fiber is set to 0.0 g/denier. 7 or more, preferably 0
.. It has a high viscosity of 8 or more. The polyamide that is the sheath component is polybramid, polyhexamethylene adipamide, polytetramethylene adipamide,
Polyhexamethylene sebamide, polyhexamethylene dodecamide, and other common polyamides can be used, and polymers obtained by blending or partially copolymerizing the above-mentioned polymers can also be used, but polyhexamethyleneazibamide is particularly preferred. The polyamide sheath component bolima is also made to have a high degree of polymerization in order to obtain a high-strength conjugate fiber required for industrial use, and has a sulfuric acid relative viscosity (ηr) of 2.8 or more, preferably 3.0 or more. It is preferred that the polyamide partially contain a copper salt and other organic or inorganic compounds as thermal antioxidants. In particular, copper salts such as copper iodide, copper acetate, copper chloride, and copper stearate are used in an amount of 30 to 500 ppm as copper, potassium iodide,
Alkali metal halide such as potassium bromide is 0.01~
It is preferable that the content of phosphorus is 0.51 ift% and/or 10 to 500 ppm of organic or inorganic phosphorus compounds. The intermediate layer provided between the core component and the sheath component of the multilayer composite fiber according to the present invention is formed by dispersing and mixing the core component polymer and the sheath component polymer in a weight ratio of 30:70 to 70:30. The portions of the layer that have a ratio outside this range are considered to be the core component and the sheath component, respectively. The intermediate layer preferably has an area of 5 to 30% of the total cross-sectional area of the filament. If the intermediate layer, which is a mutually dispersed mixture of the core component and the sheath component, exceeds 30% of the total cross-sectional area of the filament, the characteristics of the core-sheath composite fiber of the present invention, such as modulus, dimensional stability, heat resistance in rubber, etc. Improvements may not be sufficient. On the other hand, if it is less than 5%, although the improvement effect of core-sheath interface peeling durability, which is a feature of the present invention, is recognized, it may not reach the point where there is a significant difference. The proportion of polyester ether as a core component of the multilayer composite fiber according to the present invention is 30 to 90% by weight, and the proportion of polyamide as a sheath component is 10 to 70% by weight. A portion of each of these proportions is mixed to form an intermediate layer. If the core component is less than 30% by weight, the desired modulus and dimensional stability of the composite fiber cannot be achieved to a level superior to that of conventional polyester fibers. On the other hand, when the core content exceeds 90% by weight, the intermediate layer and sheath layer become thinner, and improvements in the durability of the core-sheath composite interface, the adhesion between the composite fiber and rubber, and the heat resistance in the rubber occur. It's not enough. The multilayer composite fiber according to the present invention is characterized in that both the polyester ether core fiber and the polyamide sheath fiber are highly oriented and crystallized. In other words, the birefringence of the polyester ether cored fiber is 170X10-"
That's all. If it is less than 170 x 10-', the strength of the composite fiber is 6. 0g
It is not possible to achieve L below /d. On the other hand, the polyamide sheath or split fiber has a highly oriented birefringence of 45 x 10-1 or more, preferably 50 x 1,0'' or more.If the birefringence is less than 45 x 10-'', the composite fiber has a high initial tensile resistance. cannot be obtained. The density of the polyester ether powder is 1.365 or more, preferably i,380 or more. The dimensional stability of the composite fiber and the heat resistance in rubber cannot be improved unless the density exceeds the specified value. The density of the polyamide sheath component is also 1,135g/e m' or more, 1.140g/c
It is preferable that it is highly crystallized with m3 or more. The multilayer structure composite fiber according to the present invention characterized by i-1 as described above has a high strength of 6.0 g/denier or more and 90 g/denier.
It has an initial tensile resistance of denier or higher, and an elongation of 20%.
It is as follows. More preferable (composite fiber properties of 7 are strength 7, O
g/denier or more, initial tensile resistance of 1.00 g/denier or more, and elongation of 8 to 1.6%, which can be achieved by appropriately combining the above conditions. The composite fiber according to the present invention having the following two characteristics is produced by the novel method shown below. The polymer of the polyester ether core component of the multilayer composite fiber according to the present invention has an intrinsic viscosity [η] of 0.7 or more, usually 0. 8 or more substantially poly(ethylene-1.2-
Diphenoxyethane-P,P'-dicarboxylate)
A volima consisting of is used. The polyamide sheath component volima has a sulfuric acid relative viscosity (ηr) of 2.
A polymer with a high polymerization degree of 8 or more, usually 3.0 or more is used. The antioxidant is usually added during the polymerization or spinning process. The intermediate layer formed between the core component and the sheath portion is formed by a weight ratio of the core component borimer and the sheath portion bolamer at a weight ratio of 30:70 to 70.
In order to stably make the intermediate layer mixed with each other at a ratio of 70:30 to 5 to 30% of the total cross-sectional area of the filament, it is necessary to Blend and melt each (method of compounding within a lump sum, ■ After melting the core component z3 and sheath polymer respectively,
A method in which the core component and part of the sheath or sheath polymer are introduced into a kneading device installed before the back introduction part, kneaded, and compounded in the nozzle; ■ After melting the core and sheath polymers respectively, There is a method in which the material is introduced into a die pack and compounded while being kneaded in the die, or a part of the bolymer near the core-sheath composite interface is kneaded after being compounded in the die. For example, in the case of method (2) above, a polyester ether borimer is used as the core, a polyamide bolymer is used as the sheath, and an intermediate layer is formed in which the core and sheath are mutually dispersed and mixed. , three extruder-type spinning machines are used for melt spinning the blended polymer. A core component polyester ether polymer, a sheath component polyamide polymer, and a blend polymer to form an intermediate layer in which the core component polymer and the sheath component polymer are mutually dispersed and mixed are melted using three extruders. The polyester ether and polyamide polymer are mutually inserted between the composite spinning bag and the composite spinning nozzle). Spun as a three-layer composite fiber with polyamide dispersively mixed in the middle layer and the sheath component. In the case of method (2) above, the core and sheath parts are melted using two extruders, one part of each part is mixed at a predetermined mixing ratio, and a kneading device installed before the bag introduction part is used. The core component volima and the sheath component volima are mutually dispersed and mixed (2
After forming a molten polymer, it is introduced into a composite spinning bag and passed through a composite spinning nozzle to form a polyester ether core, an intermediate layer in which polyester ether and polyamide polymer are mutually dispersed and mixed between the core component and the sheath component, and a sheath component. It is also possible to spin a composite fiber with one or three layers of polyamide. In the case of the above method (■), the core bolumina and the sheath component volima are divided into 2 parts.
Each component is melted using a base extruder, introduced into a composite bag, and a portion of each component is kneaded in the bag so that the core component and sheath component are mutually mixed. Le ink II -y J-
Polyester ether core,
Spun as a three-layer composite fiber with an intermediate layer of polyester ether and polyamide mutually dispersed and mixed between the core and sheath components, and polyamide as the sheath component, or melt the core and sheath components. Guide the volima directly to the compound nozzle,
A part of both of the bolimers is passed through a porous metal filter provided in the base to form a molten bollima in which the core component and the sheath component are mutually dispersed and mixed, thereby performing cross-wire and compounding at the same time. It is possible to spin a three-layer composite fiber comprising an intermediate layer in which polyester ether and polyamide polymer are mutually dispersed and mixed in the middle, and polyamide in the sheath component. The spinning speed is 1000 m/min or more, preferably 150 m/min.
The speed shall be 0 m/min or higher. 10cm directly below the spinneret
200°C or more over a distance of 1 m, preferably 200°C or more
A heating atmosphere of 50° C. or more and 400° C. or less is created by providing a heat retaining cylinder and a heating cylinder. After passing through the above-mentioned heated atmosphere, the spun yarn is quenched and solidified with cold air, and after being applied with an oil agent, it is taken off at a take-off port that controls the spinning speed. Control of the heating atmosphere directly below the spinneret is extremely important in order to maintain the stringiness during high-speed spinning of the present invention. The taken-off undrawn yarn is usually drawn continuously without being wound once, or the undrawn yarn is once wound and then drawn in a separate process. In the multilayer composite fiber according to the present invention, the peeling durability of the core-sheath composite interface is significantly improved due to the shape of the intermediate layer in which the core polymer and the sheath component polymer are mutually dispersed and mixed, and thereby the fatigue resistance is significantly improved. be done. It should be noted that the modulus and dimensional stability of the composite fiber are significantly improved by high-speed spinning of 1000 m/min or more, preferably 1500 m/min or more, as described above. Perhaps the difference in spinning tension between the polyamide sheath component and the polyester ether component the core component, and the difference in stretching behavior between the polyamide component and the polyester ether component, can be explained by the differences between the core component and the sheath component polymer. It is thought that the above effect is remarkable due to the gradual absorption by the mixed intermediate layer. Next, the undrawn yarn is continuously heated to 170°C or higher, preferably 2°C.
It is hot rolled at a temperature of 00 to 240°C. The stretching is carried out in two or more stages, preferably three or more stages, and the stretching ratio is 1.
It is in the range of 4 to 5.0 times, preferably 1.4 to 4.0 times. The fiber thus obtained has the characteristics of the multilayer composite fiber of the present invention. The definitions and measurement methods of each fiber characteristic and cord characteristic of the multilayer composite fiber according to the present invention are as follows. Characteristics of polyester ether core component fiber (a) Intrinsic viscosity [η]: A sample was dissolved in orthomerolphenol and measured at 25°C using an Ostwald viscometer. (b) Density: Measured at 25° C. using a density gradient tube prepared with carbon tetrachloride as a heavy liquid and n-heptane as a light liquid. The polyamide sheath component of the sample was dissolved and removed with formic acid, and the polyester ether core fiber component was measured. (c) Birefringence: Using a transmission quantitative microscope manufactured by Carl Zeiss Jena (East Germany), the average birefringence observed from the side of the fiber was determined by the interference fringe method. For the sample, the polyamide component, which is the main component of the sheath, was dissolved and removed with formic acid, and the polyester core fiber portion was measured. Characteristics of polyamide sheath component fibers (a) Relative viscosity of sulfuric acid (ηr): 0.25 g of a sample was dissolved in 25 cc of 98% sulfuric acid and measured at 25°C using an Ostwald viscometer. (Expression) Birefringence: Using a transmission quantitative interference microscope manufactured by Carl Zeiss Jena Co., Ltd., only the polyamide sheath portion was measured at 211 intervals from the side of the fiber toward the center using the interference M method17, and the average value was calculated. I asked for it. (c) Preparation: The density of the composite fiber and polyester ether core fiber fraction was measured, and the density of the polyamide fiber fraction was calculated using the composite ratio. Characteristics of composite fibers (a) Strength, elongation, and initial tensile resistance Strength, elongation, and initial tensile resistance are determined according to the definition and measurement method of JIS-L1017. The specific conditions are as follows. Take the sample into a rough shape, leave it in a temperature-controlled room at 20°C and 65% R K-1 for more than 24 hours, and then
U T T, - 4 1,'' type tensile testing machine (manufactured by Orientec (■)), sample length 25 cm, tensile speed 30
Measured in ern/min

【7た。 (口)密度: 前記ポリエステルエーテル4・′;戊分繊維の特性(口
)項の場合と同様に測定した。 (ハ)乾熱収縮率二 試料を総状にとり、20℃、65%RHの温室度調整き
れた部屋に24時間以上放置後、試料のO,Ig/dに
相当する荷重を掛けて測定j7た長さL0の試料を無緊
張状態で150@Cのオーブン中で30分間処理する。 処理後のサンプルを風乾し、上記温湿度調整室で24時
間以上放置{7、再び上記荷重を掛けて測定【7た長ざ
Lから次式によって算出した。 乾熱収縮率(%)・(L.−L)/I.6X 100複
合繊維コードの特性 (イ)強度、伸度、初期引張り抵抗度:前記複合繊維の
特性(イ)の項の場合と同様に測定l7た。中間伸度は
下記式で定める強力を示す時の伸度をいう。 (6.75X D X n ) / (1500X2)
 K g但し、D二延仲糸織度 n:合撚糸数 例えば、延伸糸織度】、500デニール糸を2本合撚糸
したコード1 0 0 0/2は6.    75Kg
の時の伸度が中間伸度である。 (口)乾熱収m率= 熱処理温度を177℃とした以外は前記複合繊維の特性
の(ハ)場名と同様に測定した。 (ハ)GY疲労寿命: J IS−L1017−1.3.2、】、A法に準拠し
た。但しtlbげ角度は90°とした。 (二)GD疲労: J Is−L10].7−4.3.2.2に準1!13
t,た。但(7伸長6.3%、圧縮J,2.6%とした
。 (ホ)接着性: JIS−L1017−3.3.1A法によった。 (へ)耐熱接着性: 加硫時の熱処理をj70℃で60分とし,た以外上記(
ホ)項と同様の方法で評価した。 (ト)ゴム中耐熱性: ゴムシート上に並べたディップコードを、別に用意した
ゴムシ一トでザンドイッチ状に挟み、170℃に加熱し
たブ1ノス機で50kg/cm”の圧力下で3時間熱処
理した。処理前後のコード強力を測定し、強力保持率を
求めて耐疲労性の尺度タl2た。 〔実施例〕 実施例1 極限粘度(η〕0、9のポリエステルエーテル、および
沃化銅0.02重量%と沃化カリウム0.1重量%を含
むポリへキザメチレンアジパミド(N66:硫酸相対帖
度ηr3.4)をそれぞれ40Φエクストルダー型紡糸
機で溶融し、および上記ポリエステルエーテルと」二記
N66を5:5の重量割合でブレンドしたボリマは30
Φエクストルダー型紡糸機で溶融し、3種のボリマを複
合パックに導き、3層芯鞘複合紡糸口金より芯部にポリ
エステルエーテル、芯或分と鞘成分の境界層に芯成分ポ
リエステルエーテルと鞘成分ポリアミドが相互に分散混
合した中間層、鞘戊分にポリアミドの複合繊維として紡
出した。芯成分及び芯鞘成分の相互に分散混合した中間
層及び、芯、鞘或分の割合は表1のようにした。口金は
孔径0,6mmΦ、孔数120ホールを用いた。ボリマ
温度はポリエステルエーテルを295℃、ポリエステル
エーテルとN66の混合ボリマを293℃、N66を2
90℃でそれぞれ溶融し、紡糸パック温度を295℃と
して紡糸した。口金直下には20cmの加熱筒を取り付
け、筒内雰囲気温度を320℃となるように加熱した。 筒内雰囲気温度とは口金面より10cm下の位置で、且
つ最外周糸条よりlcm離れた位置で測定した雰囲気温
度である。加熱筒の下には長さ40cmの環状型チムニ
ーを取り付け、糸条の周囲より25℃で40m/分の冷
風を糸条に直角に吹き付け、冷却した。ついで油剤を付
与した後、表1に示した速度で回転する引取ロールで糸
条速度を制御した後一旦巻取ることなく連続して延伸し
た。 延伸は4対のネルソン型ロールによって3段延伸した後
、2対のネルソンロール間で3%のリラックスを与えな
がら熱処理して巻取った。引取ロール温度を60℃、第
1延伸ロール温度を120℃、第2延伸ロール温度を1
90℃、第3延伸ロール温度を230℃、延伸後の張力
調整ロールは非加熱とし、1段延伸倍率は全延伸倍率の
70%、残りを2段階に分けて配分し、延仲した。紡糸
速度、全延伸倍率等を変化させて製糸したが、延伸糸の
繊度が約500デニールとなるよう紡糸速度、延伸倍率
に対応させて吐出量を変化させた。得られた延伸糸は3
本合糸して1500デニールとした。 製糸条件、得られた延伸糸特性、及び繊維構造パラメー
ターは表1に示す通りであった。また市販のタイヤコー
ド用ポリエチレンテレフタレート(PET)繊維(15
00−288−702C)、およびナイロン66繊維(
1260−204−1781)の特性についての測定結
果も合せて表1に示した。 実施例2 実施例1で得た延伸糸、およびPET繊維を、それぞれ
上撚り及び下撚りを反対方向に40T/ l O c 
mづつかけて1 5 0 0/2の生コードとした。但
し、N66繊維は撚り数を39T/10cmとし、1 
2 6 0/2の生コードとした。 本発明に係る高耐久性複合繊維からなる生コードはリツ
ラ−社製ディッピング機によって常法によって接着剤付
与及び熱処理をしてディップコードとした。ディップ液
は20%のレゾルシン、ホルマリン、ラテックスよりな
る接着剤或分を含み、接着剤成分がコードに約4%付着
するよう調整した。熱処理は225℃で80秒、ディッ
プコードの中間伸度が5%となるようストレッチをかけ
ながら処理した。 N66繊維からなる生コードは本発明複合繊維の場合と
同様の熱処理条件で、また中間伸度は通常のN66タイ
ヤコードに適用される約9%となるようストレッチして
処理した。 またPET繊維からなる生コードは常法により2浴接着
処理を行い、熱処理は240℃、120秒行い、中間伸
度は通常のPETタイヤコードに適用される約5%とな
るようストレッチして処理した。 かくして得られたディップコードについてゴム中耐熱性
、接着性、耐疲労性等のタイヤコード特性を同時に評価
し、その結果を表2に示した。 本発明複合繊維ディップコードは従来のポリエステルデ
ィップコードを凌ぐハイモジュラス、寸法安定性を有し
、かつ著しく改良されたゴム中耐疲労性、及び耐熱性、
耐熱接着性を有する高強力ディップコードであることを
示している。 (以下余白) 本゜リエスin−テC$”llOチレ:J・l+2−J
−7t.’4:’19:’−PH66:fイロノ−66 PO:1リエステル 一ン゛力八本1ノレート) 表2 [発明の効果] 本発明に係る多層構造複合繊維は従来のポリエステル繊
維に比較してゴム中耐熱性、接着性、特に高温履歴を受
けた後の耐熱接着性、及び耐疲労性が苦しく改良され、
極めて高い耐久性を有するものであり、またポリエステ
ル繊維でも達成できなかったハイモジュラスと寸法安定
性を1k備した多層構造複合繊維である。 本発明に係る多層構造複合繊維は、例えばタイヤコード
として用いるとタイヤ走行時の耐久性が極めて良好とな
るとεもに、タイヤ走行時に受ける繰り返し伸張圧縮疲
労による芯鞘界面の破壊がなく高い耐久性を有する。 よって比較的大型のライトトラック、及び1・ラック、
バス用のタイヤコードと1,て、またレーシングカーや
高速走行する乗用車のように、高速耐久性の要求される
タイヤ補強用コード素材として最適である。 また本発明に係る多層構造複合繊維は−1二記優れた特
徴を有するので、タイヤコード以外のゴム補強材、例え
ば伝動ベルト、ゴムホース、空気バネ等と]7ては勿論
、一般の産業資材用途、例えば纏糸、シートベル1・、
魚網、ローブ等に有用である。
[7. (Ex) Density: Measured in the same manner as in the above-mentioned polyester ether 4.'; Characteristics (ex) of the woven fiber. (c) Dry heat shrinkage rate Two samples were taken in a general shape, left in a temperature-controlled room at 20°C and 65% RH for more than 24 hours, and then measured by applying a load equivalent to the O, Ig/d of the sample. A sample of length L0 is processed under tension in an oven at 150@C for 30 minutes. The sample after treatment was air-dried and left in the above temperature and humidity control room for 24 hours or more {7, then the above load was applied again and measured [7] Calculated from the length L using the following formula. Dry heat shrinkage rate (%) (L.-L)/I. Characteristics of 6X100 composite fiber cord (a) Strength, elongation, initial tensile resistance: Measured in the same manner as in the above characteristics of composite fiber (a). Intermediate elongation refers to the elongation at which strength is shown as determined by the formula below. (6.75X D X n ) / (1500X2)
K g However, D two-drawn medium yarn weave n: number of yarns combined and twisted, for example, drawn yarn weave], cord 1 0 0 0/2 made of two 500 denier yarns combined and twisted is 6. 75Kg
The elongation at the time is the intermediate elongation. (1) Dry heat yield = Measured in the same manner as in (3) of the properties of composite fibers except that the heat treatment temperature was 177°C. (c) GY fatigue life: Compliant with JIS-L1017-1.3.2, A method. However, the tlb angle was set to 90°. (2) GD fatigue: J Is-L10]. 7-4.3.2.2 quasi 1!13
T,ta. However, (7 elongation was 6.3%, compression J was 2.6%. (e) Adhesiveness: According to JIS-L1017-3.3.1A method. (f) Heat-resistant adhesiveness: during vulcanization The heat treatment was carried out at 70℃ for 60 minutes, except for the above (
Evaluation was made in the same manner as in section e). (g) Heat resistance in rubber: Dip cords lined up on a rubber sheet were sandwiched between separately prepared rubber sheets in a sandwich shape, and heated to 170°C under a pressure of 50 kg/cm for 3 hours. The cord strength was measured before and after the treatment, and the strength retention rate was determined to determine the fatigue resistance. [Example] Example 1 Polyester ether with intrinsic viscosity (η) of 0 and 9, and copper iodide Polyhexamethylene adipamide (N66: sulfuric acid relative thickness ηr 3.4) containing 0.02% by weight and 0.1% by weight of potassium iodide was melted in a 40Φ extruder type spinning machine, and the above polyester ether was melted. Volima blended with N66 at a weight ratio of 5:5 is 30
Melt with a Φ extruder type spinning machine, introduce the three types of bolimar into a composite pack, and use a three-layer core-sheath composite spinneret to form polyester ether in the core, and polyester ether as the core component and the sheath in the boundary layer between the core and sheath components. It was spun as a polyamide conjugate fiber with an intermediate layer, a sheath and a sheath in which the component polyamides were dispersed and mixed with each other. Table 1 shows the intermediate layer in which the core component and the core-sheath component are dispersed and mixed with each other, and the proportions of the core and sheath. The cap used had a hole diameter of 0.6 mmΦ and 120 holes. The polymer temperature is 295℃ for polyester ether, 293℃ for mixed polymer of polyester ether and N66, and 295℃ for N66.
Each was melted at 90°C and spun at a spinning pack temperature of 295°C. A 20 cm heating cylinder was attached directly below the mouthpiece, and the atmosphere inside the cylinder was heated to 320°C. The atmosphere temperature inside the cylinder is the atmosphere temperature measured at a position 10 cm below the mouth surface and 1 cm away from the outermost peripheral thread. An annular chimney with a length of 40 cm was installed under the heating cylinder, and cold air was blown at 25° C. at 40 m/min from around the yarn at right angles to the yarn to cool it. After applying an oil agent, the yarn speed was controlled with a take-up roll rotating at the speed shown in Table 1, and then the yarn was drawn continuously without being wound up. The film was stretched in three stages using four pairs of Nelson rolls, then heat-treated between two pairs of Nelson rolls while being relaxed by 3%, and then wound up. The take-up roll temperature is 60°C, the first stretching roll temperature is 120°C, and the second stretching roll temperature is 1.
The temperature of the third stretching roll was 230°C, the tension adjustment roll after stretching was not heated, the first stage stretching ratio was 70% of the total stretching ratio, and the remainder was divided into two stages for stretching. The yarn was produced by varying the spinning speed, total draw ratio, etc., and the discharge amount was changed in accordance with the spinning speed and draw ratio so that the fineness of the drawn yarn was about 500 denier. The obtained drawn yarn is 3
The yarn was doubled to a denier of 1,500. The spinning conditions, the obtained drawn yarn properties, and the fiber structure parameters are as shown in Table 1. In addition, commercially available polyethylene terephthalate (PET) fiber for tire cords (15
00-288-702C), and nylon 66 fiber (
1260-204-1781) are also shown in Table 1. Example 2 The drawn yarn and PET fiber obtained in Example 1 were twisted and twisted in opposite directions at 40T/lOc.
Multiply by m to obtain a raw code of 1 5 0 0/2. However, the number of twists for N66 fiber is 39T/10cm, and 1
The raw code was 2 6 0/2. The raw cord made of the highly durable composite fiber according to the present invention was made into a dipped cord by applying an adhesive and heat-treating it in a conventional manner using a dipping machine manufactured by Ritzler. The dip liquid contained a portion of an adhesive consisting of 20% resorcinol, formalin, and latex, and was adjusted so that about 4% of the adhesive component adhered to the cord. The heat treatment was carried out at 225° C. for 80 seconds while stretching the dip cord so that the intermediate elongation was 5%. The raw cord made of N66 fibers was subjected to heat treatment conditions similar to those for the composite fibers of the present invention, and was stretched so that the intermediate elongation was approximately 9%, which is applied to ordinary N66 tire cords. In addition, the raw cord made of PET fibers is subjected to a two-bath adhesive treatment using a conventional method, heat treated at 240°C for 120 seconds, and stretched so that the intermediate elongation is approximately 5%, which is applied to ordinary PET tire cord. did. The thus obtained dipped cord was simultaneously evaluated for tire cord properties such as heat resistance in rubber, adhesion, and fatigue resistance, and the results are shown in Table 2. The composite fiber dipped cord of the present invention has high modulus and dimensional stability superior to conventional polyester dipped cords, and has significantly improved fatigue resistance and heat resistance in rubber.
This shows that it is a high-strength dip cord with heat-resistant adhesive properties. (Left below) Hon゜Liess in-te C$”llO Chile: J・l+2-J
-7t. '4:'19:'-PH66: f irono-66 PO: 1 polyester, 8 strands, 1 oleate) Table 2 [Effects of the invention] The multilayer composite fiber according to the present invention is superior to conventional polyester fibers. The heat resistance and adhesion properties in rubber, especially the heat resistance adhesion properties and fatigue resistance after being subjected to high temperature history, have been significantly improved.
It is a multilayer composite fiber that has extremely high durability and has a high modulus and dimensional stability of 1K, which was not possible even with polyester fibers. When the multilayer composite fiber according to the present invention is used as a tire cord, for example, it has extremely good durability during tire running, and also has high durability because the core-sheath interface does not break due to repeated stretching and compression fatigue during tire running. has. Therefore, a relatively large light truck and 1 rack,
It is ideal as a tire reinforcement material for bus tire cords, as well as tire reinforcement cords for racing cars and high-speed passenger cars that require high-speed durability. Furthermore, since the multilayer composite fiber according to the present invention has the excellent characteristics listed in (1) and (2), it can be used not only in rubber reinforcing materials other than tire cords, such as power transmission belts, rubber hoses, air springs, etc., but also in general industrial materials. , for example, thread, seat bell 1.
Useful for fishing nets, robes, etc.

Claims (1)

【特許請求の範囲】 多層構造複合繊維において、最内層がポリ (エチレン−1,2−ジフェノキシエタン−P,P’−
ジカルボキシレート)を主成分とするポリエステルエー
テルからなり、最外層がポリアミド成分からなり、前記
最内層と最外層との間に前記ポリエステルエーテルとポ
リアミドとが相互に分散混合された中間層が形成され、
少なくとも3層からなる複合繊維であり、 A、前記最内層を形成するポリエステルエーテル成分は
、極限粘度〔η〕が0.7以上、複屈折(Δn)が17
0×10^−^3以上、密度が1.365g/cm^3
以上の特性を有し、複合繊維全体に占める割合が30〜
90重量%であり、 B、前記最外層を形成するポリアミド成分は硫酸相対粘
度(ηr)が2.8以上、複屈折 (Δn)が45×10^−^3以上、密度が1.135
g/cm^3以上であり、 C、前記中間層を形成するポリエステルエーテルとポリ
アミドとの混合比が30:70〜70:30重量比の割
合で相互に分散混合されており、 前記複合繊維の強度が6.0g/デニール以上、伸度が
20%以下、初期引張り抵抗度が90g/デニール以上
、150℃乾熱収縮率が5%以下であることを特徴とす
る多層構造複合繊維。
[Claims] In the multilayer composite fiber, the innermost layer is poly(ethylene-1,2-diphenoxyethane-P,P'-
dicarboxylate), the outermost layer is made of a polyamide component, and an intermediate layer in which the polyester ether and polyamide are mutually dispersed and mixed is formed between the innermost layer and the outermost layer. ,
A composite fiber consisting of at least three layers, A. The polyester ether component forming the innermost layer has an intrinsic viscosity [η] of 0.7 or more and a birefringence (Δn) of 17
0x10^-^3 or more, density 1.365g/cm^3
It has the above characteristics and accounts for 30 to 30% of the total composite fibers.
B. The polyamide component forming the outermost layer has a sulfuric acid relative viscosity (ηr) of 2.8 or more, a birefringence (Δn) of 45×10^-^3 or more, and a density of 1.135.
g/cm^3 or more; C. The polyester ether and polyamide forming the intermediate layer are mutually dispersed and mixed at a weight ratio of 30:70 to 70:30; A multilayer composite fiber having a strength of 6.0 g/denier or more, an elongation of 20% or less, an initial tensile resistance of 90 g/denier or more, and a 150° C. dry heat shrinkage rate of 5% or less.
JP29658289A 1989-11-15 1989-11-15 Conjugate fiber of multilayered structure Pending JPH03161515A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29658289A JPH03161515A (en) 1989-11-15 1989-11-15 Conjugate fiber of multilayered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29658289A JPH03161515A (en) 1989-11-15 1989-11-15 Conjugate fiber of multilayered structure

Publications (1)

Publication Number Publication Date
JPH03161515A true JPH03161515A (en) 1991-07-11

Family

ID=17835414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29658289A Pending JPH03161515A (en) 1989-11-15 1989-11-15 Conjugate fiber of multilayered structure

Country Status (1)

Country Link
JP (1) JPH03161515A (en)

Similar Documents

Publication Publication Date Title
EP0311386B1 (en) High-tenacity conjugated fiber and process for preparation thereof
EP2439319B1 (en) Poly(ethyleneterephthalate) tire-cord, their preparation method and tire comprising the same
EP2257664B1 (en) Undrawn polyethylene terephthalate (pet) fiber, drawn pet fiber, and tire-cord comprising the same
JPH01282306A (en) Industrial polyester fiber
US9359696B2 (en) Method for manufacturing poly(ethyleneterephthalate) drawn fiber, poly(ethyleneterephthalate) drawn fiber and tire-cord
JPH03152215A (en) High-strength and highly durable conjugate fiber
JPH03161515A (en) Conjugate fiber of multilayered structure
JPS60185833A (en) Polyester fiber dip code for reinforcing rubber
JP2817269B2 (en) Core-sheath composite fiber
JP2659724B2 (en) Manufacturing method of high strength composite fiber
JPH03294519A (en) Sheath-core conjugate fiber
JPH03161517A (en) Conjugate fiber
JPH03161514A (en) Highly durable conjugate fiber
JP2647661B2 (en) Composite fiber with high strength
JPH0274612A (en) Conjugate fiber having high tenacity
JPH03294518A (en) Conjugate fiber
JPH03146714A (en) Conjugated fiber
JPH0274610A (en) Conjugate fiber having high tenacity and excellent durability
JPH08199426A (en) Highly strong polyamide fiber and its production
JPH03161518A (en) Sheath-core conjugate fiber
JPH04343712A (en) Sheath-core type conjugate yarn
JPH03161516A (en) Sheath-core type conjugate fiber
JPH0274611A (en) Conjugate fiber having excellent durability
KR910004458B1 (en) High-tenacity conjugated fiber and process for preparation thereof
JPH0440449B2 (en)