JPH03161323A - Molding method for cylindrical structure - Google Patents

Molding method for cylindrical structure

Info

Publication number
JPH03161323A
JPH03161323A JP1301485A JP30148589A JPH03161323A JP H03161323 A JPH03161323 A JP H03161323A JP 1301485 A JP1301485 A JP 1301485A JP 30148589 A JP30148589 A JP 30148589A JP H03161323 A JPH03161323 A JP H03161323A
Authority
JP
Japan
Prior art keywords
resin
peek
peek resin
mandrel
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1301485A
Other languages
Japanese (ja)
Inventor
Maruhiro Sasaki
佐々木 円裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP1301485A priority Critical patent/JPH03161323A/en
Publication of JPH03161323A publication Critical patent/JPH03161323A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To enable simplification of facilities and automation of them besides a reduction of a number of processes, by a method wherein PEEK resin is melted and cured with irradiation of high-density energy while winding a reinforced fiber round a mandrel along with the polyether ether ketone resin (PEEK). CONSTITUTION:High-density energy is applied partly to PEEK resin 10 directly after winding-up of the same round a mandrel with an irradiation device 15 in a chasing manner. With this construction, the PEEK resin 10 is melted in order and integrated with a lower layer part (reinforced fiber) 11 wound up previously. Since the melted part is slipped out of an energy irradiation sphere, the same is cured and a form of a molded product is created.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、例えばロケノトのモータケースに代表される
ような繊維強化ブラスチノク(FRPまたはCFRP)
Mの筒状構造体の成形方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is applicable to fiber-reinforced blastinok (FRP or CFRP) as typified by Rokenoto's motor case, for example.
The present invention relates to a method for molding a cylindrical structure of M.

従来の技術 ロケノトのモータケースのように耐熱性を必要とする繊
維強化プラスチック製の筒状構造体の成形方法としては
、フィラメントワインディング法を基本としたものが知
られている。
BACKGROUND OF THE INVENTION A method based on a filament winding method is known as a method for forming a cylindrical structure made of fiber-reinforced plastic that requires heat resistance, such as the motor case of Rokenoto.

この成形方法は一般に、 ■エボキシ樹脂に代表される熱硬化性樹脂を含浸させた
炭素繊維をワインディングマシーンでマンドレルに巻き
付けるワインディング工程、■マンドレルに巻き付けら
れたものをバギングフィルムと呼ばれる合或樹脂フィル
ムで包み、内部を真空にして熱硬化性樹脂を含浸した炭
素繊維相互の密着性を向上させるとともにボイドを除去
するバギング工程、 ■バギングしたものをオーブンまたはオートクレープと
呼ばれる釜に入れ、熱硬化性樹脂を加熱・硬化させるキ
ュアリング工程、 とを含んでいる。
This molding method generally involves: ■ a winding process in which carbon fiber impregnated with a thermosetting resin, such as epoxy resin, is wound around a mandrel using a winding machine, and ■ the material wound around the mandrel is wrapped in a resin film called bagging film. The bagging process involves wrapping and evacuating the inside of the carbon fibers impregnated with thermosetting resin to improve the adhesion between them and removing voids. ■The bagged material is placed in an oven or a pot called an autoclave, and the thermosetting resin is A curing step of heating and curing the material.

発明が解決しようとする課題 上記のような従来の成形法においては、ワインディング
工程、バギング工程およびキュアリング工程と設備の全
く異なる3つの工程を必要とすることから成形工程の自
動化が困難で、所定の或形品を得るまでに多大な労力と
時間とを要し、成形コストの低減に限界があった。
Problems to be Solved by the Invention In the conventional molding method as described above, it is difficult to automate the molding process because it requires three completely different processes: a winding process, a bagging process, a curing process, and equipment. It takes a great deal of labor and time to obtain a certain shaped product, and there is a limit to the reduction in molding costs.

一方、近年に至り、FRPまたはCFRPの代表的なマ
トリックス樹脂である熱硬化性のエボキン樹脂に代わる
ものとして熱可塑性のPEEK(ポリエーテル・エーテ
ル・ケトン)樹脂が注目されている。PEEK樹脂は耐
薬品性や耐放射性に優れることもさることながら、この
PEEK樹脂をマトリノクス樹脂として用いてFRP化
した場合に破壊靭性および耐衝撃性がエポヰシ樹脂に比
べて格段に高いことに特徴がある。
On the other hand, in recent years, thermoplastic PEEK (polyether ether ketone) resin has attracted attention as an alternative to thermosetting Evokin resin, which is a typical matrix resin for FRP or CFRP. PEEK resin not only has excellent chemical resistance and radiation resistance, but also has the characteristic that when this PEEK resin is used as a matrix resin to make FRP, its fracture toughness and impact resistance are much higher than that of epoxy resin. be.

本発明は上記のようなPErζK樹脂の特性に着[I 
L、成形工程の自動化が容易で成形コストの低減が可能
であり、しかも熱硬化性のものと同等もしくはそれ以上
の機械的特性をもつ筒状構造体を成形することができる
成形方法を提供することを目的とする。
The present invention is based on the characteristics of PErζK resin as described above [I
L. To provide a molding method that can easily automate the molding process, reduce molding costs, and can mold a cylindrical structure with mechanical properties equivalent to or better than thermosetting ones. The purpose is to

課題を解決するための手段 本発明は繊維強化プラスチックからなる筒状構造体を成
形する方法において、連続した強化繊維をPEEK樹脂
とともにマンドレルに巻き付け、この巻き付け作業と併
行して、巻き付けられた直後のPEEK樹脂に局部的に
高密度エネルギを照射してPEEK樹脂を溶融・硬化さ
せながら成形を行うことを特徴とする。
Means for Solving the Problems The present invention is a method for molding a cylindrical structure made of fiber-reinforced plastic, in which continuous reinforcing fibers are wound around a mandrel together with PEEK resin, and in parallel with this winding operation, the It is characterized by performing molding while melting and hardening the PEEK resin by locally irradiating the PEEK resin with high-density energy.

高密度工不ルギとしては例えばレーザビームを使用する
For example, a laser beam is used as the high-density processing material.

作用 本発明によると、マンドレルに巻き付けられた直後のP
 F, E K樹脂を追いかけるように局部的に高密度
エネルギを照射することにより、I) E E K樹脂
が順次溶融して先に巻き付けられた下層部分と一体化さ
れ、その溶融した部分がエネルギ照射域から外れること
により硬化して成形品形状が作り出される。
According to the present invention, the P immediately after being wound around the mandrel
By locally irradiating high-density energy to follow the F and E K resins, the I) E E K resins are sequentially melted and integrated with the lower layer part that was wrapped earlier, and the melted parts are irradiated with energy. When removed from the irradiation area, it hardens to create the shape of the molded product.

実施例 第l図および第2図は本発明の一実施例を示す図である
。lはワインディングマシーンで、ワインディングマシ
ーンlのマンドレル2i;t、制御装置3で駆動制御さ
れるモータ4により矢印X方向に回転駆動される。一方
、ワインディングマシーン1の巻き付けアーム5は、制
御装置3で駆動制御される駆動機構6により上記のマン
ドレル2の動きに同期して矢印Y方向(マンドレル2の
軸方向)に前後移動すると同時に、マンドレル2の軸方
向と上下方向に直交する軸7を中心として矢印Z方向に
揺動する。
Embodiment FIG. 1 and FIG. 2 are diagrams showing an embodiment of the present invention. 1 is a winding machine, and the mandrel 2i; t of the winding machine 1 is rotationally driven in the direction of arrow X by a motor 4 which is controlled by a control device 3. On the other hand, the winding arm 5 of the winding machine 1 is moved back and forth in the direction of arrow Y (in the axial direction of the mandrel 2) in synchronization with the movement of the mandrel 2 by a drive mechanism 6 that is drive-controlled by the control device 3. It swings in the direction of arrow Z around an axis 7 that is orthogonal to the axial direction of 2 and the vertical direction.

そして、巻き付けアーム5の先端のノズル部5aに、マ
トリックス樹脂である熱可塑性のPEEK樹脂10と炭
素繊維11とからなる複合材12を引き通し、マンドレ
ル2の矢印X方向への回転運動と同期して、巻き付けア
ーム5を第1図の矢印Y方向および矢印Z方向へ複合動
作させることにより、複合材12をマンドレル2に上下
層で互いに交差するように巻き付けることになる。
Then, a composite material 12 made of a thermoplastic PEEK resin 10 as a matrix resin and carbon fibers 11 is passed through the nozzle portion 5a at the tip of the winding arm 5, and is synchronized with the rotational movement of the mandrel 2 in the direction of the arrow X. By making the winding arm 5 perform a combined motion in the direction of arrow Y and the direction of arrow Z in FIG. 1, the composite material 12 is wound around the mandrel 2 in upper and lower layers so as to intersect with each other.

15はレーザビーム照射装置であって、制御装置3で駆
動制御される駆動機構16によりヘッド部15aの向き
を制御しながらマンドレル2に巻き付けられる複合材1
2を追尾し、巻き付けられた直後の複合材12に局部的
にレーザビームl7を照射してPEEK樹脂10を溶融
させて硬化させることになる。
Reference numeral 15 denotes a laser beam irradiation device, in which the composite material 1 is wound around the mandrel 2 while controlling the direction of the head portion 15a by a drive mechanism 16 that is driven and controlled by the control device 3.
2, the composite material 12 immediately after being wound is locally irradiated with a laser beam 17 to melt and harden the PEEK resin 10.

ここで、複合材12の具体的な形態を第3図に基づいて
説明すると、同図(a)に示した構造のものは複数本の
炭素繊維11に予めPEEK樹脂10を含浸させて帯状
のブリプレグとしたもの、また同図(b)に示した構造
のものは複数本の炭素繊維11と複数本の紐状のPEE
K樹脂繊維IOAとを別々に形威したものである。さら
に同図(C)に示した構造のものは複数本の炭素繊維l
lと複数本のPEEK樹脂繊維10Aとを予め混在させ
たもの、同図(d)に示した構造のものは複数本の炭素
繊維11を予め単一のPEEK樹脂チューブIOBに挿
入したものである。
Here, the specific form of the composite material 12 will be explained based on FIG. 3. The structure shown in FIG. The one made of Bripreg and the one with the structure shown in the same figure (b) are made of a plurality of carbon fibers 11 and a plurality of string-like PEE
This is a separate form of K resin fiber IOA. Furthermore, the structure shown in the same figure (C) has multiple carbon fibers.
1 and a plurality of PEEK resin fibers 10A are mixed in advance, and the structure shown in the same figure (d) has a plurality of carbon fibers 11 inserted in advance into a single PEEK resin tube IOB. .

同図(a)のいわゆるブリプレグタイプは炭素繊維11
とPEEK樹脂10とが予め一体化されているので、取
り扱いが容易でしかも繊維配合の均一性が良いという利
点があり、また同図(b)のタイプはコスト的には有利
であるものの繊維配合の均一性が良くないという欠点が
ある。さらに、?図(c),(d)のタイプはフス1・
が若干畠くなるものの、いずれも同図(b)のタイプよ
りも繊維配合の均一性が良いという利点がある。
The so-called Bripreg type shown in Figure (a) is carbon fiber 11
Since the and PEEK resin 10 are pre-integrated, it has the advantage of easy handling and good uniformity of the fiber blend.The type shown in Figure (b) is advantageous in terms of cost, but the fiber blend is The disadvantage is that the uniformity is not good. moreover,? The types shown in figures (c) and (d) are Fuss 1.
Both types have the advantage that the uniformity of the fiber blend is better than the type shown in FIG.

したがって、−ヒ記の複数の形嘘の現合材12のなかか
ら成形品の形状や要求特+’hに応じて最適なものを選
択して使用するものとする。
Therefore, from among the plurality of shapes of the present composite material 12 described in -H, the most suitable one is selected and used according to the shape of the molded product and the required characteristics +'h.

以上の実施例によれば、複合材12が春き付けアーム5
からマンドレル2に巷き付けられる際に、レーザビーム
p,t3,rA・j製置l5から発9・1シたレーザビ
ームI7が、段合材12のマンドレル2に巻き付けられ
た直後の部分に11■)部的に,[j(j Q.jされ
、このレーザビームp.<4射により複合材12のI)
 E E K樹脂10または10A.,IOBか溶融さ
れ、その後マンドレル2への合き付け進行に伴って溶融
されたP E E K樹脂10またはIOA.IOBが
レーザビーム17のp,<< rA.5域から外れて硬
化する。このI)E E K樹脂10またはIOA.I
OBの溶融・硬化により、r) E E K樹脂10ま
たはIOA,10Bが炭素繊維1lにしっくりと馴染む
According to the above embodiment, the composite material 12 is attached to the spring attachment arm 5.
When the material is wrapped around the mandrel 2, the laser beam I7 emitted from the laser beam p, t3, rA. ) partially, [j (j Q.j, and this laser beam p.
E E K resin 10 or 10A. , IOB is melted, and then PEEK resin 10 or IOA. IOB is p of laser beam 17, << rA. It hardens outside of the 5 range. This I) E E K resin 10 or IOA. I
By melting and hardening the OB, r) E E K resin 10 or IOA, 10B fits snugly into the carbon fiber 1l.

なお、本発明は前記実施例に限定されるものではなく、
例えば強化繊維として炭素繊維以外の繊維を用いること
も可能であり、またレーザビームに代えて電子ビーム等
の他の高密度工不ルギを用いても良い。
Note that the present invention is not limited to the above embodiments,
For example, it is possible to use fibers other than carbon fibers as reinforcing fibers, and other high-density processing methods such as electron beams may be used instead of laser beams.

発明の効果 以上のように本発明によれば、強化繊維をPEEK樹脂
とともにマンドレルに巻き付けながら、r) E E 
K樹脂を高密度エネルギの魚射て溶融させて硬化させる
ようにしたため、従来の成形方法と比べ工j′li数の
短縮と併せ設備の簡素化ならびにその口動化が可能であ
り、少ない労力と口〜間とで筒状構造体を成形すること
ができることから成形コストの低減に大きく寄与できる
Effects of the Invention As described above, according to the present invention, while winding reinforcing fibers together with PEEK resin around a mandrel,
Since the K resin is melted and hardened by high-density energy injection, compared to conventional molding methods, it is possible to shorten the number of manufacturing steps, simplify the equipment, and make it easier to use. Since the cylindrical structure can be molded between the opening and the opening, it can greatly contribute to reducing the molding cost.

しかも、成形された構造体にあっては熱呵塑性のP E
 E K樹脂をマトリノクス樹脂として用いているため
に、熱硬化性樹脂をマトリックス樹脂として用いた従来
の構造体と同等もしくはそれ以上の機械的特性が得られ
る。
Moreover, the molded structure has a thermoplastic P E
Since EK resin is used as the matrix resin, mechanical properties equivalent to or better than those of conventional structures using thermosetting resin as the matrix resin can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程説明図、第2図は
第1図の要部拡大説明図、第3図は第1図で使用される
複合材の形態を示す説明図である。 I・・・ワインディングマシーン、2・・マンドレル、
10  PEEK樹脂、1〇八・・P E E K樹脂
繊維、1 0 B −.. P E E K樹脂チュー
ブ、11 炭素繊維(強化繊維)、l5・・レーザビー
ム蕪射装置、17・・・レーザビーム。 2:マ冫ドしル 10: PEEKf脂 +0A:PEEK枦脂堆維 10B:PEEK尊1脂テユーフ゛
Fig. 1 is a process explanatory drawing showing one embodiment of the present invention, Fig. 2 is an enlarged explanatory drawing of the main part of Fig. 1, and Fig. 3 is an explanatory drawing showing the form of the composite material used in Fig. 1. be. I...winding machine, 2...mandrel,
10 PEEK resin, 108...PEEK resin fiber, 10 B-. .. PEEK resin tube, 11 carbon fiber (reinforced fiber), l5... laser beam irradiation device, 17... laser beam. 2: Handle 10: PEEK fat + 0A: PEEK resin composition 10B: PEEK resin 1 fat composition

Claims (1)

【特許請求の範囲】[Claims] (1)繊維強化プラスチックからなる筒状構造体を成形
する方法において、連続した強化繊維をPEEK樹脂と
ともにマンドレルに巻き付け、この巻き付け作業と併行
して、巻き付けられた直後のPEEK樹脂に局部的に高
密度エネルギを照射してPEEK樹脂を溶融・硬化させ
ながら成形を行うことを特徴とする筒状構造体の成形方
法。
(1) In a method for molding a cylindrical structure made of fiber-reinforced plastic, continuous reinforcing fibers are wrapped around a mandrel together with PEEK resin, and at the same time as this winding operation, the PEEK resin immediately after being wrapped is locally heated. A method for molding a cylindrical structure, characterized by performing molding while melting and hardening PEEK resin by irradiating density energy.
JP1301485A 1989-11-20 1989-11-20 Molding method for cylindrical structure Pending JPH03161323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1301485A JPH03161323A (en) 1989-11-20 1989-11-20 Molding method for cylindrical structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1301485A JPH03161323A (en) 1989-11-20 1989-11-20 Molding method for cylindrical structure

Publications (1)

Publication Number Publication Date
JPH03161323A true JPH03161323A (en) 1991-07-11

Family

ID=17897477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1301485A Pending JPH03161323A (en) 1989-11-20 1989-11-20 Molding method for cylindrical structure

Country Status (1)

Country Link
JP (1) JPH03161323A (en)

Similar Documents

Publication Publication Date Title
US10052813B2 (en) Method for additive manufacturing using filament shaping
US7258896B2 (en) Preparing composites by using resins
US6027786A (en) Composite materials and method for making them
JPH11505187A (en) Methods and equipment for the production of polymer and composite products
JPS58212921A (en) Molding method of plastic hollow product
US20060169396A1 (en) Method for producing a three-dimensional preform
US11548213B2 (en) Additive manufacturing device, additive manufacturing method, and profile rod therefor
JPH06503767A (en) Process for preparing advanced composite structures and their products
JP6701203B2 (en) Three-dimensional high strength fiber composite member and manufacturing method thereof
US8075719B2 (en) Manufacture of complex composite parts
JPH03161323A (en) Molding method for cylindrical structure
JP2023508837A (en) Systems and methods for additive manufacturing
DK1109657T4 (en) Process for manufacturing closed composite structures and molding apparatus for use in the process
JP6554130B2 (en) Manufacturing method of fiber reinforced composite material
JP2020143742A (en) Manufacturing method of tank
KR20230121606A (en) Reinforcing method for laminates manufactured by continuous fiber deposition
JPH0369344A (en) Manufacture of frp hollow product
CN109049672A (en) 3d printing material and its preparation method and application
Chary et al. Overview of manufacturing pmc's using traditional and 3d printing technology (fdm)
KR101760480B1 (en) A manufacturing method of graphite shafts
JP3162143B2 (en) Method of manufacturing fiber reinforced resin pipe joint
CN116787758A (en) Photo-curing printing method
JPS5856511B2 (en) Molding method for thermosetting materials
JPH04201551A (en) Molding method of fiber reinforced composite
JP3132876B2 (en) Method and apparatus for manufacturing fiber reinforced resin pipe joints