JPH03161023A - Treatment of hydrogen sulfide-containing non-condensed gas - Google Patents

Treatment of hydrogen sulfide-containing non-condensed gas

Info

Publication number
JPH03161023A
JPH03161023A JP1297697A JP29769789A JPH03161023A JP H03161023 A JPH03161023 A JP H03161023A JP 1297697 A JP1297697 A JP 1297697A JP 29769789 A JP29769789 A JP 29769789A JP H03161023 A JPH03161023 A JP H03161023A
Authority
JP
Japan
Prior art keywords
gas
hydrogen sulfide
condensed gas
pipe
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1297697A
Other languages
Japanese (ja)
Inventor
Sanae Kawazoe
川添 早苗
Koichi Araki
荒木 公一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1297697A priority Critical patent/JPH03161023A/en
Publication of JPH03161023A publication Critical patent/JPH03161023A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To remove high or low concn. H2S with high efficiency by burning hydrogen sulfide-containing non-condensed gas to convert H2S in the gas to SO2, and cooling the SO2-containing gas under pressure to liquefy SO2 while discharging the remaining non-condensed gas out of the system. CONSTITUTION:The hydrogen sulfide-containing non-condensed gas discharged from a geothermal energy utilizing plant through piping 11 and a condenser 12 is burnt in a combustor 28 to convert H2S in the gas to SO2. This SO2- containing gas is cooled by a cooler 31 and subsequently compressed by a compressor 36 to be guided to a liquefying device 38 to be compressed, cooled and liquefied and introduced into a SO2 reservoir 44 from the bottom part 42 of the device 38 to be recovered and stored as liquid SO2 to be utilized as an industrial raw material. The non-condensed gas from which SO2 is separated in the liquefying device 38 is discharged out of the system from piping 45. As a result, H2S from low concn. to high concn. can be removed with high efficiency.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、地熱発電プラントその他の地熱利用プラント
に適用される硫化水素含有不凝結ガスの処理方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for treating non-condensable gas containing hydrogen sulfide, which is applied to geothermal power plants and other geothermal utilization plants.

〔従来の技術〕[Conventional technology]

通常、地熱発電は、地下から熱水と共に噴出する蒸気を
取シ出し、この蒸気を作動流体としてタービンに流過さ
せて発電する方法により行なわれている。そして、この
タービン流過後の蒸気は、凝縮器にて冷却水により凝縮
される。この時、凝縮器内の圧力を凝縮水の飽和圧力程
度筐で減少するために、真空ポンプによって抽気を行な
う0抽気される不凝結ガスは、上記の蒸気中に、通常0
. 1〜数多、稀に数10%含まれて釦り、その組成は
、通常、90嘩以上が炭酸ガスで、その他におよそ数嘩
の硫化水素、痕跡程度の窒素ガス、酸素ガス、水素ガス
等から成っている。この不凝結ガスは、現在その1ま放
出されているが、近年、地熱エネルギーの開発が世界的
匝促進されつつある中で、硫化水素の動植物等の生態系
へ与える影響が懸念されるようになり、数年後には規制
される傾向にある。
Generally, geothermal power generation is performed by extracting steam ejected from underground together with hot water and passing this steam through a turbine as a working fluid to generate electricity. The steam after passing through the turbine is condensed with cooling water in a condenser. At this time, in order to reduce the pressure inside the condenser to the saturated pressure of the condensed water, the vacuum pump performs extraction.
.. The composition is usually more than 90% carbon dioxide, with about a few hydrogen sulfide, traces of nitrogen gas, oxygen gas, and hydrogen gas. It consists of etc. This non-condensable gas is currently being released, but in recent years, as the development of geothermal energy has been gaining momentum around the world, concerns have been raised about the impact of hydrogen sulfide on ecosystems such as animals and plants. There is a tendency for this to become regulated in the next few years.

一方、石油精製工業、天然ガス工業、都市ガス工業、そ
の他各種工業から排出される廃ガス中の硫化水素を処理
する方法として次のような多くの方法が開発され、実用
化されている0 (1)  クラウス法を基本反応としたものクラウス法
、パーソンズ硫黄回収プロセス、ウーデ硫黄回収プロセ
ス、コンブリモ硫黄回収プロセス、アモコ法等多数の応
用プロセスがあ?O これらの基本反応は、H,S (D 1/3を酸化して
SO,とし、骸SO,と残poH,Sとを反応させてS
単体を回収するもので、次の式で表わされる。
On the other hand, many methods have been developed and put into practical use to treat hydrogen sulfide in waste gas discharged from oil refining, natural gas, city gas, and other industries. 1) What is the basic reaction based on the Claus process? There are many applied processes such as the Claus process, Parsons sulfur recovery process, Ude sulfur recovery process, Combrymo sulfur recovery process, Amoco process, etc. O These basic reactions are as follows: H, S (D 1/3 is oxidized to SO, and the skeleton SO is reacted with the remaining poH, S to form SO.
It is used to recover a simple substance and is expressed by the following formula.

1/3 H,S + 1/2 0, − 1/3 So
, + 1/3 H,0(燃焼による酸化) 2/3 H,S + 1/3 8024 S + 2/
3 H,0(触媒■よる分解) (2)吸収法 (1)  シーボード式脱硫プロセス 吸収塔でH,Sをソーダ灰溶液に吸収させ、再生塔で空
気を吹き込んでH,8を放散させ、再生されたソーダ灰
溶液は吸収塔に循環使用し、放散された凝縮H,Sは上
記クラウス法等で処理する。
1/3 H, S + 1/2 0, - 1/3 So
, + 1/3 H,0 (oxidation by combustion) 2/3 H,S + 1/3 8024 S + 2/
3 H,0 (decomposition by catalyst ■) (2) Absorption method (1) Seaboard type desulfurization process H, S is absorbed into soda ash solution in an absorption tower, and H, 8 is diffused by blowing air in a regeneration tower. The regenerated soda ash solution is recycled to the absorption tower, and the diffused condensed H and S are treated by the above-mentioned Claus method or the like.

三菱化或法 吸収塔でH,8をソーダ灰溶液κ吸収させ、再生塔で液
中に懸濁させた酸化鉄触媒によりH,Sを8単体として
遊離させ、回収する方法で、上記シーボード式の改良法
であり、S単(II) 体のr過機が必要である。
The above-mentioned Seaboard is a method in which H and 8 are absorbed by a soda ash solution κ in a Mitsubishi Chemical absorption tower, and H and S are liberated and recovered as 8 using an iron oxide catalyst suspended in the liquid in a regeneration tower. This is an improved method of Eq., and requires an S simple (II) r-transformer.

(1)BASFプロセス 液中へ分散させた活性炭にH,Sを吸着させる。吸着さ
れ九H,8は空気で酸化されSを分離する。このSは硫
化アンモニアκより活性5炭から抽出され、活性炭はr
過機で分離、回収し、再利用する。
(1) H and S are adsorbed on activated carbon dispersed in the BASF process liquid. The adsorbed 9H and 8 are oxidized with air and S is separated. This S is extracted from activated 5 carbon from ammonia sulfide κ, and activated carbon is r
Separate, collect and reuse using a filter.

Qv)  I,F.P.ANTIPOLプo セス(F
UGAPOLl50) 吸収塔でH,Sをアンモニア溶液に吸収させ、放散塔で
NH,とH,8を放散させ、NH,は回収して再利用し
、H,Sは反応塔でクラウス反応を行なわせ、S(液体
)を回収する0 (v)  SHELL ADIP  プo−t=x吸収
塔でH,8をアミノジイソブロパノール酸性溶液に吸収
させ、再生塔でH,8を放散させ、クラウス反応炉でH
,Sを処理し、Sを回収する。
Qv) I,F. P. ANTIPOL Process (F
UGAPOL150) H and S are absorbed into ammonia solution in an absorption tower, NH, and H,8 are diffused in a stripping tower, NH is recovered and reused, and H and S are subjected to Claus reaction in a reaction tower. , S (liquid) is recovered 0 (v) SHELL ADIP po-t=x absorption tower absorbs H, 8 into the aminodiisopropanol acidic solution, H, 8 is diffused in the regeneration tower, and Claus reaction is performed. H in the furnace
, S and recover S.

(3)乾式法 都市ガス製造等K釦ける二次脱硫用として微量の硫化水
素の除去に適してかり、その方法は、脱硫塔でH,Sを
酸化鉄吸着剤K吸着させるものである。この吸着剤の再
生は、水を散布して大気にさらすと、硫化鉄が酸化鉄へ
再生され、元素状Sが表面に析出する0 〔発明が解決しようとする課題〕 しかしながら、これらの既存のプロセスを、前記した地
熱発電プラントの不凝結ガスの処理に適用するには、次
のような問題点がある0(a)  乾式法 適用対象ガス濃度が1,0 0 0 ppm以下と極め
て低く、シかも吸着剤の再生および補給が必要である。
(3) Dry process This method is suitable for removing trace amounts of hydrogen sulfide for secondary desulfurization in city gas production, etc., and the method involves adsorbing H and S with an iron oxide adsorbent K in a desulfurization tower. To regenerate this adsorbent, when water is sprayed and exposed to the atmosphere, iron sulfide is regenerated into iron oxide, and elemental S is precipitated on the surface. [Problem to be solved by the invention] However, these existing There are the following problems in applying the above-mentioned process to the treatment of non-condensable gas in geothermal power plants: (a) The concentration of the gas to which the dry process is applicable is extremely low, at 1,000 ppm or less; It may also be necessary to regenerate and replenish the adsorbent.

(b)  その他の方法 (1)いずれもガス量が大量である場合にメリットがあ
るが、地熱発電プラントからは通常少量のガスの排出量
しかなく、このような少量のガスの場合には不適当であ
る0 (It)  プラントが複雑で人手を要する。地熱発電
プラントでは、10,000kW以上の発電所でも数名
の運転員しか訃らず、しかも通常の発電所κ比べると低
温低圧(〜200℃,〜2oata)であるので、簡単
なプロセスであることが必要である。
(b) Other methods (1) Both have advantages when the amount of gas is large, but geothermal power plants usually emit only a small amount of gas, and in the case of such a small amount of gas, it is disadvantageous. Appropriate 0 (It) The plant is complex and requires manpower. In geothermal power plants, only a few operators die even at power plants of 10,000 kW or more, and it is a simple process because the temperature is low and low pressure (~200°C, ~2 oata) compared to normal power plants. It is necessary.

(1)  建設費が高い。例えば、クラウス法では地熱
発電所全建設費の約1割程度を要し、壕た稀薄ガスを処
理する場合は予め数多以上に凝縮する必要があり、これ
に要する装置の建設費が加算される。
(1) Construction costs are high. For example, the Claus method requires about 10% of the total construction cost of a geothermal power plant, and when processing diluted gas in a trench, it must be condensed in advance into several quantities, and the construction cost of the equipment required for this is added. Ru.

■ ランニングコストが比較的高い。■ Running costs are relatively high.

本発明は、以上の諸点に鑑みてなされたもので、(1)
少量のガス量でも処理可能なこと、(2)  ガス中に
含筐れるH,Sは、低濃度から高濃度呟で処理可能なこ
と、 (3)既存の簡単なプロセスを利用できること、(4)
運転に要する人手が少なくてすむこと、(5)建設費が
安いこと、 (6)  ランニングコストが安いこと、などを満足す
る硫化水素含有不凝結ガスの処理方法を提供しようとす
るものである。
The present invention has been made in view of the above points, and includes (1)
(2) H and S contained in the gas can be treated at low to high concentrations; (3) Existing simple processes can be used; (4) )
The present invention aims to provide a method for processing non-condensable gas containing hydrogen sulfide that satisfies the following requirements: (5) low construction costs; (6) low running costs; less manpower required for operation;

〔課題を解決するための手段〕[Means to solve the problem]

すなわち本発明の硫化水素含有不縦結ガスの処理方法は
、 (1)地熱利用プラントから排出される硫化水素含有不
凝結ガスを燃焼させて該ガス中の硫化水素なSO,に転
換し、 (2)  このSO,を含むガスを加圧、冷却してSO
,を液化し、 (3)  残りの不凝結ガスは系外へ排出させるように
した。
That is, the method for treating uncondensed gas containing hydrogen sulfide of the present invention is as follows: (1) Burning uncondensed gas containing hydrogen sulfide discharged from a geothermal utilization plant to convert it into hydrogen sulfide, SO, in the gas; 2) Pressurize and cool the gas containing SO.
, and (3) the remaining non-condensable gas was discharged outside the system.

〔作用〕[Effect]

H,8は空気の存在下で容易に燃焼して高い効率で80
. 4C転化でき、しかも或る濃度以上では燃焼熱で自
燃する性質を有している。本発明では、地熱利用プラン
トから排出される硫化水素含有不凝結ガス中の硫化水素
を燃焼させることによって、これが容易に、かつ高い効
率でこれがSO,に転換される。
H,8 burns easily in the presence of air and burns 80 with high efficiency.
.. It can convert 4C, and has the property of self-combusting due to the heat of combustion at a certain concentration or higher. In the present invention, by burning hydrogen sulfide in the hydrogen sulfide-containing noncondensable gas discharged from a geothermal utilization plant, it is easily and highly efficiently converted into SO.

SO,は常温近くの温度で加圧、冷却操作により容易に
液化する。従って、前記のSO,を含むガスを加圧、冷
却することによって、容易に他の不凝結ガス成分である
CO2, N,, O!, H,等のガスと高度に分離
できる。
SO, is easily liquefied by pressurization and cooling operations at a temperature near room temperature. Therefore, by pressurizing and cooling the gas containing SO, it is easily converted into other non-condensable gas components such as CO2, N,, O! , H, etc. can be highly separated.

従って、本発明によれば、硫化水素をSO,に転換して
液化させて他の不凝結ガス成分と容易に高い効率で分離
することができ、この不凝結ガスは何の規制を受けるこ
となく大気へ放出することができる。
Therefore, according to the present invention, hydrogen sulfide can be converted into SO, liquefied, and easily separated from other non-condensable gas components with high efficiency, and this non-condensable gas is not subject to any regulations. Can be released into the atmosphere.

〔実施例〕〔Example〕

第1図は、本発明方法を従来の地熱発電プラントκ適用
したー実施例の系統図である。
FIG. 1 is a system diagram of an embodiment in which the method of the present invention is applied to a conventional geothermal power plant.

添付図面κおいて、熱水井戸1から噴出した熱水は、配
管2を経て気液セパレータ3に到り、蒸気と熱水とκ分
離される。このうち熱水は、配管4を経て熱水還元ボン
プ5により配管6、還元井戸7を介して再び地中へ還元
される。一方、蒸気は、配管8を経てタービン9に到り
、該タービン9を動かし、タービン9で駆動される発電
機1oによって電気を発生させる。
In the attached drawing κ, hot water ejected from a hot water well 1 passes through a pipe 2 and reaches a gas-liquid separator 3, where it is separated into steam and hot water. Of these, the hot water is returned to the ground via a pipe 4, a hot water return pump 5, a pipe 6, and a return well 7. On the other hand, the steam reaches the turbine 9 via the pipe 8, moves the turbine 9, and generates electricity by the generator 1o driven by the turbine 9.

タービン9を出た蒸気は、配管11を経てコン?ンサ1
2に到る。コンデンサ12には、冷却塔13で冷却され
た冷却水か配管14、冷却水ポンプl5、配管l6を経
て送られて来て■いる。
The steam leaving the turbine 9 passes through the pipe 11 to the condenser. Nsa 1
Reach 2. Cooling water cooled by a cooling tower 13 is sent to the condenser 12 via a pipe 14, a cooling water pump 15, and a pipe 16.

このコンデンサl2が直触式の場合、上記の蒸気は該コ
ンデンサ12の内部で上記冷却水と直接接触して冷却さ
れ、温水となる。該温水は、配管17を経て温水槽l8
に一旦貯溜され、その後、配管19、温水ボンプ20、
配管21を経て冷却塔13に送られ、冷却水として循環
使用される。
When the condenser 12 is of a direct contact type, the steam is cooled by direct contact with the cooling water inside the condenser 12, and becomes hot water. The hot water passes through piping 17 to hot water tank l8.
The water is temporarily stored in the pipe 19, the hot water pump 20,
The water is sent to the cooling tower 13 via piping 21 and is used for circulation as cooling water.

なか、冷却塔13では、必要に応じて配管22から冷却
用水を補給し、配管23からブローダウンして、系内の
水収支を行ない、同時に溶解或分の濃縮を防止している
In the cooling tower 13, cooling water is replenished from the piping 22 as necessary and is blown down from the piping 23 to balance the water balance within the system and at the same time prevent some concentration from dissolving.

コンデンサl2が表面式の場合、通常、冷却水はコンデ
ンサ12内に設けられた多数の管群の内部を通過して配
管17を経て温水檜18に到り、一方蒸気は管群の外部
を通過中に冷却されて液体の水となって配管24より外
部へ取り出される。
When the condenser 12 is a surface type, normally cooling water passes through a large number of tube groups provided in the condenser 12 and reaches the hot water cylinder 18 via piping 17, while steam passes through the outside of the tube group. The liquid water is cooled inside, becomes liquid water, and is taken out from the pipe 24.

なか、この水は少量の不凝結ガス(H,S,CO■等)
を含む以外は他の無機塩分を殆んど含んでいない?で、
鋭気処理により純水にして種々の用途に使用される。
Inside, this water contains a small amount of non-condensable gas (H, S, CO, etc.)
Does it contain almost no other inorganic salts? in,
It is purified by air treatment and used for various purposes.

また、上記の蒸気に伴なわれてコンデンサー2に入った
不凝結ガスは、配管25、抽気ボンプ26、配管27を
経て燃焼器28に送られ、配管29から導入される空気
により同不凝結ガス中に含1れるH,8が燃焼される。
Further, the non-condensable gas that has entered the condenser 2 along with the above steam is sent to the combustor 28 via the piping 25, the bleed pump 26, and the piping 27, and the non-condensable gas is transported by the air introduced from the piping 29. H,8 contained therein is combusted.

この時、不凝結ガス中のH,Sの濃度が低い場合は、補
助パーナな使用して炎の中で加熱燃焼させる必要がある
が、H,Sの濃度か高い場合、特に15多以上の場合は
、点火時のみ補助バーナが必要であとは自己の燃焼熱に
より燃焼を維持できる。なか、この燃焼によりH,8は
下記の反応式に従ってSO2に転換する。
At this time, if the concentration of H and S in the non-condensable gas is low, it is necessary to use an auxiliary parner to heat and burn it in a flame, but if the concentration of H and S is high, especially if the In this case, an auxiliary burner is required only at the time of ignition, and combustion can then be maintained using its own combustion heat. During this combustion, H,8 is converted to SO2 according to the reaction formula below.

3 H,S + TO, − H,0 + So■上記燃焼
器28を出た燃焼廃ガスは、配管30を経て、冷却器3
1に導ひかれる。該冷却器31に釦いては冷却水は配管
32より内部冷却管33を経て配管34により外部へ排
出され、この間に配管30により冷却器31に導入され
た燃焼廃ガスは常温付近まで冷却される。この冷却され
た燃焼廃ガスは、配管35を経て圧縮器36により加圧
、圧縮された後、配管37より液化器38に導入される
。該液化器38は、加圧、圧縮された燃焼廃ガスを冷却
するための冷却水入口配管39、内部冷却管40,出口
配管41を備えており、燃焼廃ガス中のSO,は、液化
器38で加圧、冷却、液化されて同冷却器底部42にた
1る。
3 H, S + TO, - H, 0 + So
I am guided by 1. When the cooler 31 is buttoned, the cooling water is discharged from the pipe 32 to the outside through the internal cooling pipe 33 and the pipe 34, and during this time, the combustion waste gas introduced into the cooler 31 through the pipe 30 is cooled to around room temperature. . This cooled combustion waste gas passes through a pipe 35, is pressurized and compressed by a compressor 36, and is then introduced into a liquefier 38 through a pipe 37. The liquefier 38 is equipped with a cooling water inlet pipe 39, an internal cooling pipe 40, and an outlet pipe 41 for cooling the pressurized and compressed combustion waste gas, and the SO in the combustion waste gas is At 38, it is pressurized, cooled, and liquefied, and is deposited in the bottom section 42 of the same cooler.

液化の圧力と温度の関係は、常温付近では、次の通りで
ある。
The relationship between liquefaction pressure and temperature near normal temperature is as follows.

温度(’C)     20   30   40液化
圧力( atw )  3.23   4.50   
6.13従って、冷却器38内の温度を20℃に設定し
た場合には、系内は、3.23atwになるように圧縮
器36で加圧される。SO2以外のCot, 0,, 
N!唄よびH2等のガスは、これらの温度、圧力範囲で
は液化せずガスの状態で存在するので、容易にSO,の
みが液化分離されるととκなる。
Temperature ('C) 20 30 40 Liquefaction pressure (atw) 3.23 4.50
6.13 Therefore, when the temperature inside the cooler 38 is set to 20° C., the inside of the system is pressurized by the compressor 36 to 3.23 atw. Cot other than SO2, 0,,
N! Since gases such as SO and H2 do not liquefy in these temperature and pressure ranges and exist in a gaseous state, it is easy to liquefy and separate only SO.

冷却器38で液化したS02は冷却器底部42より配管
43を経て80,17ザーバ44へ導入され液体SO,
として回収・貯蔵され、ナイロン原料その?の工業用原
料として利用される〇一方冷却器38内でSO■を分離
した不凝結ガスは配管45より糸外へ排出される。
The S02 liquefied in the cooler 38 is introduced from the cooler bottom 42 through the pipe 43 to the reservoir 44, where it becomes liquid SO,
Collected and stored as nylon raw material? On the other hand, the non-condensable gas from which SO■ has been separated in the cooler 38 is discharged from the pipe 45 to the outside of the thread.

以上の通り、本実施例では、地熱利用プラントから排出
される硫化水素含有不凝結ガス中の硫化水素をSO,に
転換し、これを冷却・加圧して液化することによって、
同不凝結ガス中の硫化水素を高い効率で容易に分離除去
することができ、残りの硫化水素を含まない不凝結ガス
を外部へ排出することができる。
As mentioned above, in this example, hydrogen sulfide in the hydrogen sulfide-containing noncondensable gas discharged from a geothermal utilization plant is converted to SO, and this is liquefied by cooling and pressurizing.
Hydrogen sulfide in the non-condensable gas can be easily separated and removed with high efficiency, and the remaining non-condensable gas that does not contain hydrogen sulfide can be discharged to the outside.

管た、本実施例を実施する装置は、燃焼器28、冷却器
31、液化器38等からなるコンパクトのものであり、
かつその製造コストは安価である。
In addition, the device for carrying out this embodiment is a compact device consisting of a combustor 28, a cooler 31, a liquefier 38, etc.
Moreover, its manufacturing cost is low.

なk1前記の実施例では、不凝結ガス中のH2S濃度が
低い場合に、補助バーナで加熱燃焼させるようにしてい
るが、圧力スイング式ガス吸着装置等によってH,Sを
濃縮した上で燃焼させるようにしてもよい。
In the above embodiment, when the H2S concentration in the non-condensable gas is low, the auxiliary burner is used to heat and combust it, but H and S are concentrated using a pressure swing type gas adsorption device and then combusted. You can do it like this.

〔発明の効果〕〔Effect of the invention〕

本発明は次の効果を奏することができる。 The present invention can have the following effects.

?1)地熱利用プラントから排出される硫化水素含有不
凝結ガス中のH!Sを燃焼によりSO,に転換し、さら
にこれを加圧、冷却してSO,を液体として分離回収す
ることができるoしかも、このような比較的簡単なプロ
セスにより、低濃度から高濃度1でのH,8を高い効率
で除去することができるので、通常比較的遠隔地に立地
される地熱利用プラントに適用するの■優れている0(
2)  H,8の燃焼用の補助バーナ用燃料( H,S
が高濃度で自燃する場合は点火用のみでよい)、ユーテ
ィリティーとしての低圧圧縮機用電力および冷却水以上
のものを必要としない0 (3)回収したSO,は、硫酸、ナイロン、その他の工
業用基礎原料として広く需要があり、かつ低圧で液化し
ているので貯蔵や輸送に便利である0
? 1) H in non-condensable gas containing hydrogen sulfide discharged from geothermal utilization plants! It is possible to convert S into SO through combustion, and then pressurize and cool it to separate and recover SO as a liquid. Moreover, with such a relatively simple process, it is possible to convert SO from low to high concentrations. H,8 can be removed with high efficiency, so it is excellent to apply to geothermal utilization plants that are usually located in relatively remote areas.
2) Fuel for auxiliary burner for combustion of H,8 (H,S
(3) Recovered SO can be used for sulfuric acid, nylon, and other industrial purposes. It is widely demanded as a basic raw material for industrial use, and is convenient for storage and transportation because it liquefies at low pressure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概略系統図である01・・
・熱水井戸、 3・・・気液セパレータ、7・・・還元
井戸、 9・・・タービン、10・・・発電機、  1
2・・・コンデンサ、3・・・冷却塔、 18・・・温
水槽、8・・・燃焼器、 31・・・冷却器、6・・・
圧縮機、 38・・・液化器、4・・・S02リザーパ
FIG. 1 is a schematic system diagram of an embodiment of the present invention.
・Hot water well, 3... Gas-liquid separator, 7... Reduction well, 9... Turbine, 10... Generator, 1
2... Condenser, 3... Cooling tower, 18... Hot water tank, 8... Combustor, 31... Cooler, 6...
Compressor, 38... Liquefier, 4... S02 reservoir.

Claims (1)

【特許請求の範囲】[Claims]  地熱利用プラントから排出される硫化水素含有不凝結
ガスを燃焼させて該ガス中の硫化水素をSO_2に転換
し、このSO_2を含むガスを加圧、冷却してSO_2
を液化し、残りの不凝結ガスを系外へ排出させることを
特徴とする硫化水素含有不凝結ガスの処理方法。
The hydrogen sulfide-containing non-condensable gas discharged from a geothermal utilization plant is combusted to convert the hydrogen sulfide in the gas into SO_2, and this SO_2-containing gas is pressurized and cooled to produce SO_2.
A method for treating non-condensable gas containing hydrogen sulfide, which comprises liquefying the hydrogen sulfide and discharging the remaining non-condensable gas to the outside of the system.
JP1297697A 1989-11-17 1989-11-17 Treatment of hydrogen sulfide-containing non-condensed gas Pending JPH03161023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297697A JPH03161023A (en) 1989-11-17 1989-11-17 Treatment of hydrogen sulfide-containing non-condensed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297697A JPH03161023A (en) 1989-11-17 1989-11-17 Treatment of hydrogen sulfide-containing non-condensed gas

Publications (1)

Publication Number Publication Date
JPH03161023A true JPH03161023A (en) 1991-07-11

Family

ID=17849987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297697A Pending JPH03161023A (en) 1989-11-17 1989-11-17 Treatment of hydrogen sulfide-containing non-condensed gas

Country Status (1)

Country Link
JP (1) JPH03161023A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863513A (en) * 1990-11-28 1999-01-26 The Boc Group Plc Treatment of gas
JP2007197262A (en) * 2006-01-27 2007-08-09 Rikogaku Shinkokai Sulfurous acid gas recovery method and sulfurous acid gas recovery plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5863513A (en) * 1990-11-28 1999-01-26 The Boc Group Plc Treatment of gas
JP2007197262A (en) * 2006-01-27 2007-08-09 Rikogaku Shinkokai Sulfurous acid gas recovery method and sulfurous acid gas recovery plant

Similar Documents

Publication Publication Date Title
ES2397500T3 (en) Elimination of acid gases in a gasification power generation system with hydrogen production
CA1126931A (en) Hydrogen sulfide concentrator for acid gas removal systems
US4085199A (en) Method for removing hydrogen sulfide from sulfur-bearing industrial gases with claus-type reactors
US6117404A (en) Apparatus and process for recovering basic amine compounds in a process for removing carbon dioxide
US4053554A (en) Removal of contaminants from gaseous streams
JP5134578B2 (en) CO2 recovery apparatus and method
TWI751430B (en) Acid gas treatment
US3733393A (en) Purification of combustion products before discharge into the atmosphere
CN105327599B (en) The processing method of molten sulfur degasification exhaust gas
US8641802B2 (en) Method for treating a process gas flow containing CO2
WO2010122830A1 (en) Co2 recovery device and co2 recovery method
US4797141A (en) Method for obtaining CO2 and N2 from internal combustion engine or turbine generated gases
CN106219499B (en) Desulfurization and sulfur recovery technology
WO2009003238A1 (en) Improvements in the recovery of carbon dioxide
US8940261B2 (en) Contaminant-tolerant solvent and stripping chemical and process for using same for carbon capture from combustion gases
CN109810740A (en) One kind being used for sulfur-containing gas Development & Multipurpose use system and technique
CN205381962U (en) Molten sulfur degasification system
CN106115632B (en) Improve the device and its recovery method of sulfur recovery rate
CN109943375A (en) A kind of device and its technique for sulfur-containing gas individual well desulfurization relieving haperacidity
US3825657A (en) Process for the cracking of sulfuric acid
RU2080908C1 (en) Method of isolating hydrogen sulfide from gas
US3656275A (en) Process for the removal and concentration of a component gas from a multi-gaseous stream
CN102869856A (en) Process for producing power from a sour gas
CN209952482U (en) Device for purifying yellow phosphorus tail gas
JP4287915B2 (en) Method and apparatus for treating hydrogen sulfide in gas