JPH03160370A - Hydrolysis of protein - Google Patents

Hydrolysis of protein

Info

Publication number
JPH03160370A
JPH03160370A JP30002289A JP30002289A JPH03160370A JP H03160370 A JPH03160370 A JP H03160370A JP 30002289 A JP30002289 A JP 30002289A JP 30002289 A JP30002289 A JP 30002289A JP H03160370 A JPH03160370 A JP H03160370A
Authority
JP
Japan
Prior art keywords
acid
tube
test tube
protein
indole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30002289A
Other languages
Japanese (ja)
Inventor
Toyoaki Uchida
豊明 内田
Akira Tsugita
次田 皓
Hiroyuki Yano
裕之 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP30002289A priority Critical patent/JPH03160370A/en
Publication of JPH03160370A publication Critical patent/JPH03160370A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Biological Materials (AREA)

Abstract

PURPOSE:To enable analysis containing a determination of tryptophan by a solid phase-gaseous phase reaction between protein adsorbed on the surface of a solid and an acid mixed vapor produced by vaporizing an acid mixed solution containing chloric acid, trifluoro accetate, thioglycolic acid and water. CONSTITUTION:Valyl darmic acid 1 as one of dipeptide is put into a test tube 2 to dry and into a medium test tube 3. An acid mixed solution 4 containing 7M chloric acid, 10% trifluoroacetate, 20% thioglycolic acid and water is held on the bottom of the tube 3 beforehand. The tubes 3 and 2 are set in the test tube 5 as intact and indole 6 is put onto the bottom of the tube 5 beforehand. Vacuum sealing 7 of a tube is performed in an ampule form cooling the tube 5 by ice and the tube is placed into an oil bath to heat. After the heating, the tube 2 is taken out and the chloric acid, trifluoroacetate and thioglycolic acid are removed sufficiently with a vacuum desiccator. After the drying, chloric acid is put into the tube 2 to dissolve a hydrolysis product and an analysis is conducted with an amino acid analyzer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、タンパク質のアミノ酸&[l戒分析の第一段
階であるタンパク賞の加水分解を行う方法に関する. 〔発明の概要〕 本発明は、タンパク質のア竃ノ酸組戒分析の第一段階で
ある加水分解操作において、固体表面上に吸着したタン
パク質を塩酸、トリフルオロ酢酸、チオグリコール酸お
よび水を含む混合溶液を気化させた酸混合蒸気との固相
・気相反応により加水分解し、この際、前記酸混合蒸気
の供給される空間内にインドールを共存させることによ
り、従来の塩酸とトリフルオロ酢酸を用いる気相法の有
していた高速−性、低汚染性および自動化の容易性に加
えて、現在までの方法では回収が不可能であったトリプ
トファンをも定量可能としたものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for hydrolyzing protein, which is the first step in amino acid analysis of protein. [Summary of the Invention] The present invention provides a method for treating proteins adsorbed on a solid surface with hydrochloric acid, trifluoroacetic acid, thioglycolic acid, and water in a hydrolysis operation that is the first step in the analysis of amino acid composition of proteins. The mixed solution is hydrolyzed by a solid phase/gas phase reaction with the vaporized acid mixed vapor, and at this time, by allowing indole to coexist in the space where the acid mixed vapor is supplied, conventional hydrochloric acid and trifluoroacetic acid can be dissolved. In addition to the high speed, low contamination, and ease of automation possessed by the gas-phase method using the method, this method also makes it possible to quantify tryptophan, which has been impossible to recover with conventional methods.

〔従来の技術〕[Conventional technology]

従来、タンパク質の加水分解は例えば、次のような方法
により行われていた. 第1の方法は共沸点塩酸を用いる液相法であり、最も古
くから用いられているものである(S.ムーア,H.ス
タイン メンツズ イン エンザイモロジ− S.P.
コロビソク,N.O.カブラ偏 1963年 1819
〜831ページ,アカデミックプレス ニューヨーク)
。まず試験管底の乾燥試料に蒸留した共沸点塩酸を加え
、この試験管を水冷しながら減圧下で封管する.次いで
、このアンプルを105℃〜110℃で24時間〜14
4時間加熱する.次にこのアンプルを開青し塩酸を蒸発
除去する. 第2の方法はメルカブトエタンスルホン酸を用いる液相
法であり、特にトリプトファンの定量を目的として用い
られたものである(B.ペンケR.ファレンツィ,K.
コバクス,アナリティカルバイオケ壽ストリー 197
4年 60巻 45〜50ページ).操作法は第1の方
法に準じる。共沸点塩酸の代わりに3Mメルカプトエタ
ンスルホン酸を用い、110±2℃で24時間〜72時
間加熱する。アンプルを開管した後、試料溶液を中和す
る。
Conventionally, protein hydrolysis has been carried out, for example, by the following methods. The first method is a liquid phase method using azeotropic hydrochloric acid and is the oldest method used (S. Moore, H. Steinments in Enzymology, S.P.
Kolobisok, N. O. Cabra bias 1963 1819
~831 pages, Academic Press New York)
. First, add distilled azeotropic hydrochloric acid to the dry sample at the bottom of the test tube, and seal the test tube under reduced pressure while cooling with water. This ampoule was then heated at 105°C to 110°C for 24 hours to 14 hours.
Heat for 4 hours. Next, open the ampoule and remove the hydrochloric acid by evaporation. The second method is a liquid phase method using mercabutoethanesulfonic acid, which was used specifically for the purpose of quantifying tryptophan (B. Penke, R. Farenzi, K.
Kovacs, Analytical Biochemistry Story 197
4th grade, volume 60, pages 45-50). The operating method is the same as the first method. 3M mercaptoethanesulfonic acid is used instead of azeotropic hydrochloric acid and heated at 110±2° C. for 24 to 72 hours. After opening the ampoule, neutralize the sample solution.

第3の方法は、次田らにより報告された塩酸とトリフル
オロ酢酸とを含む#混合蒸気を用いる高速気相法である
.この方法は特開昭61 − 151157号公報に開
示されている。塩酸とトリフルオロ酢酸を含む水溶液を
入れておいた試験管に、あらかじめ底に試料を乾固して
おいた小試験管を入れ、第1,第2の方法と同様に封督
する。158℃で22.5分間〜45分間加熱後、開督
し、小試験管内に残存する酸を減圧除去する. 〔発明が解決しようとする課題〕 共沸点塩酸を用いる液相法には、長時間の加熱が必要で
、疎水性タンパク質の分解が不十分であるという欠点が
あった.メルカブトエタンスルホン酸を用いる液相法も
また長時間の加熱を要し、更に加水分解後に中和するた
めのアルカリ添加操作を必要とする欠点があった.また
液相法共通の欠点として、酸溶液からの汚染が避けられ
ないことが挙げられる.特に試料が微量である際にこの
影響は顕著である.近年、次田らにより報告された高速
気相法は、以上のtJ4B・を克服しているが、共沸点
塩酸法と同様にトリプトファンの定量が不可能であると
いう欠点を有している. (!IBを解決するための手段〕 本発明は前記の欠点を除去するためになされたものであ
り、高速気相法を改良し、固定表面上に吸着したタンパ
ク賞を塩酸、トリフロオロ酢酸、チオグリコール酸およ
び水を含む混合溶液を気化させた酸混合蒸気との固相、
気相反応により加水分解し、この際前記酸混合蒸気の供
給される空間内にインドールを共存させることとした.
〔作用〕 上記のような加水分解法によれば、固体表面上に吸着さ
れたタンパク賞に、塩酸、トリフルオロ酢酸、チオグリ
コール酸および水を含む混合溶液を気化させた酸混合蒸
気が作用し、この酸混合蒸気の供給される空間内にイン
ドールの蒸気を共存させることによってトリプトファン
の分解反応の進行が抑制された条件下でタンパク質のペ
プチド結合の加水分解反応が進行する。また、この加水
分解反応は短時間で完了し、気相法であるため酸混合溶
液からのアξノ酸の汚染はない。
The third method is a high-speed gas phase method using a mixed vapor containing hydrochloric acid and trifluoroacetic acid, which was reported by Tsugita et al. This method is disclosed in Japanese Patent Application Laid-Open No. 151157/1983. A small test tube with a sample previously dried at the bottom is placed in a test tube containing an aqueous solution containing hydrochloric acid and trifluoroacetic acid, and sealed in the same manner as in the first and second methods. After heating at 158°C for 22.5 to 45 minutes, the tube is opened and the acid remaining in the small test tube is removed under reduced pressure. [Problems to be Solved by the Invention] The liquid phase method using azeotropic hydrochloric acid has the disadvantage that long-term heating is required and hydrophobic proteins are insufficiently decomposed. The liquid phase method using mercabutoethanesulfonic acid also had the disadvantage of requiring long heating times and addition of an alkali for neutralization after hydrolysis. A common drawback of liquid phase methods is that contamination from acid solutions is unavoidable. This effect is particularly noticeable when the amount of sample is small. The high-speed gas phase method recently reported by Tsugita et al. overcomes the above tJ4B, but it has the same drawback as the azeotropic hydrochloric acid method in that it is impossible to quantify tryptophan. (!Means for solving IB) The present invention has been made to eliminate the above-mentioned drawbacks, and it improves the high-speed gas phase method and uses hydrochloric acid, trifluoroacetic acid, thiochloride, etc. Solid phase with acid mixed vapor obtained by vaporizing a mixed solution containing glycolic acid and water,
Hydrolysis was carried out by a gas phase reaction, and at this time, indole was allowed to coexist in the space to which the acid mixed vapor was supplied.
[Effect] According to the hydrolysis method described above, an acidic mixed vapor produced by vaporizing a mixed solution containing hydrochloric acid, trifluoroacetic acid, thioglycolic acid, and water acts on the protein adsorbed on the solid surface. By allowing indole vapor to coexist in the space where the acid mixed vapor is supplied, the hydrolysis reaction of the peptide bonds of proteins proceeds under conditions in which the progress of the tryptophan decomposition reaction is suppressed. Furthermore, this hydrolysis reaction is completed in a short time, and since it is a gas phase method, there is no contamination of the ξ-anoic acid from the acid mixed solution.

〔実施例〕〔Example〕

実施例−1 本実施例においては、本発明による加水分解を行う基本
的方法を示す. 第1図(alに示すように、ジベブチドの1つであるバ
リルグルタミンMlを小試験管2に2.2nmol取り
十分乾燥させる.次にこの小試験管2を中試験管3に入
れる.この中試験管3の底にはあらかしめ200μlの
7M塩酸、10%トリフルオロ酢酸、20%チオグリコ
ール酸および水を含む酸混合溶液4が入れられている.
この中試験管3と小試験管2とをそのまま試験管5に入
れる.この試験管5の底にぱあらかしめ、lmgのイン
ドール6が入れられている.そして、この試験管5を氷
で冷却しながら、アンプル形状に真空封管7を行う.封
管した試験管5をオイルバスに入れ25分間加熱する.
加熱後、小試験管2を取り出し、真空デシケータで十分
塩酸、トリフルオロ酢酸あるいはチオグリコール酸を除
去する.乾燥後、小試験管2に120Meの0.0IM
塩酸を入れて加水分解生戊物を溶解し、ア旦ノ酸分析装
置で分析する。
Example-1 In this example, a basic method for carrying out hydrolysis according to the present invention is shown. As shown in Figure 1 (al), take 2.2 nmol of valylglutamine Ml, one of dibebutide, into a small test tube 2 and dry it thoroughly.Next, put this small test tube 2 into a medium test tube 3. At the bottom of test tube 3, approximately 200 μl of acid mixed solution 4 containing 7M hydrochloric acid, 10% trifluoroacetic acid, 20% thioglycolic acid, and water was placed.
Place medium test tube 3 and small test tube 2 directly into test tube 5. 1mg of indole 6 is placed in the bottom of test tube 5. Then, while cooling the test tube 5 with ice, vacuum seal the tube 7 into an ampoule shape. Place the sealed test tube 5 in an oil bath and heat for 25 minutes.
After heating, take out small test tube 2 and thoroughly remove hydrochloric acid, trifluoroacetic acid, or thioglycolic acid in a vacuum desiccator. After drying, add 0.0 IM of 120Me to small test tube 2.
Add hydrochloric acid to dissolve the hydrolyzed raw material, and analyze with an amino acid analyzer.

第2図の曲線aは一定時間(10分)での種々の温度に
おける加水分解率をプロットしたものである。比較のた
め、共沸点塩酸を用いる方法により得られた結果を曲&
Ib,次田らにより報告された高速気相法により得られ
た結果を曲線Cに示した.本実施例より明らかなように
、本発明による方法はタンパク質を加水分解する目的に
かなっており、更にその加水分解反応速度は反応温度を
上げると著しく加速され、共沸点塩酸を用いる方法のそ
れにまさり、高速気相法のそれにほぼ匹敵することがわ
かる. 本発明による加水分解法は、第1図(blに示すように
、第l図ta+に示した方法における酸混合溶液4とイ
ンドール6との位置を交換して実施することもできる。
Curve a in FIG. 2 is a plot of the hydrolysis rate at various temperatures over a fixed period of time (10 minutes). For comparison, the results obtained by the method using azeotropic hydrochloric acid are
Curve C shows the results obtained by the high-speed gas phase method reported by Ib, Tsugita et al. As is clear from this example, the method according to the present invention is suitable for the purpose of hydrolyzing proteins, and furthermore, the rate of hydrolysis reaction is significantly accelerated by increasing the reaction temperature, and is superior to that of the method using azeotropic hydrochloric acid. , which is almost comparable to that of the high-speed gas phase method. The hydrolysis method according to the present invention can also be carried out by exchanging the positions of the acid mixed solution 4 and indole 6 in the method shown in FIG. 1 (ta+), as shown in FIG. 1 (bl).

また第1図fclに示すように、酸混合溶液4を入れた
中試験管3とバリルグルタξン酸工を入れた小試験管と
を試験管5内に並べる形でおくことによっても実施でき
る.また第1図+diに示すように、第1図(Clにお
ける酸混合溶液4とインドール6の位置を交換して実施
することもできる. 実施例−2 本実施例においては、本発明による方法におけるタンパ
ク質を構成するアミノ酸の回収率が、トリプトファンを
含有するタンパク質の組戒分析をする目的にかなうもの
であることを示す.実施例lと同様の方法で20種のア
ミノ酸について加水分解の條件にさらし回収率を求めた
ところ第1表の結果を得た.比較のために次田らによっ
て検討された高速気相法(158℃)による結果も合わ
せて示した.第1表中の数値は166℃で加28後の回
収率をアラニンの値を100%として表している.この
表から明らかなように、本発明による方法は従来の気相
法によっては不可能であったトリプトファンを定量可能
としている.また同時に従来の方法では経時的に回収率
の減少するメチオニンを定置的に回収することができる
. 実施例−3 本実施例においては、チオグリコール酸の添加がトリプ
トファンの回収に効果的であることを示す.実験は実施
例1あるいは2と同様の方法を用いた.タンパク質試料
としてリゾチームを用い、チオグリコール酸の添加量だ
けを変化させた時のトリプトファンの回収率をまとめて
第3図に示した.この図から明らかなように、チオグリ
コール酸の添加によってトリブトファンの回収率は向上
し、20%以上ではほぼ一定になることがわかる。
It can also be carried out by placing a medium test tube 3 containing the acid mixture solution 4 and a small test tube containing barylglutanic acid in a test tube 5, as shown in FIG. In addition, as shown in Figure 1 + di, it is also possible to carry out the experiment by exchanging the positions of the acid mixed solution 4 and indole 6 in Figure 1 (Cl). This shows that the recovery rate of amino acids constituting proteins is suitable for the purpose of structural analysis of proteins containing tryptophan.Twenty amino acids were exposed to hydrolysis conditions in the same manner as in Example 1. When the recovery rate was determined, the results shown in Table 1 were obtained.For comparison, the results from the high-speed gas phase method (158°C) studied by Tsugita et al. are also shown.The values in Table 1 are 166 The recovery rate after addition at 28 °C is expressed with the value of alanine as 100%.As is clear from this table, the method according to the present invention makes it possible to quantify tryptophan, which was not possible using the conventional gas phase method. At the same time, methionine, whose recovery rate decreases over time in conventional methods, can be recovered in a stationary manner.Example 3 In this example, the addition of thioglycolic acid was effective in recovering tryptophan. The experiment was conducted using the same method as in Example 1 or 2. Figure 3 summarizes the tryptophan recovery rate when lysozyme was used as the protein sample and only the amount of thioglycolic acid added was changed. As is clear from this figure, the tributophane recovery rate improves with the addition of thioglycolic acid, and becomes almost constant above 20%.

実施例−4 本実施例においては、本発明による加水分解法における
インドール蒸気の使用がトリプトファンの回収に効果的
であることを示す.実験は実施例lあるいは2と同様の
方法を用いた.タンパク質試料としてリゾチームを用い
、インドールの量を変化させた時のトリブトファンの回
収率をまとめて第4図に示した.この図から明らかなよ
うに、インドールの使用によってトリプトファンの回収
率は向上し0.19以上の使用ではほぼ一定になること
がわかる. 実施例−5 本実施例においては、本発明による加水分解法を種々の
タンパク質に応用した例を示す.実験は実施例1と同様
の方法を用いた。用いたタンパク賞は以下の通りである
. リオグロピン  (第、2表fatに示す)リゾチーム
  (第2表fb)に示す)パパ イ ン  (第2表
fclに示す)結果を第2表fat〜fclにまとめた
。ミオグロビンについては特に比較のために次田らが報
告している高速気相法と、共沸点塩酸を用いる液相法に
よる結果も合わせて第2表Tal〜(C)にまとめた。
Example 4 This example shows that the use of indole steam in the hydrolysis method of the present invention is effective in recovering tryptophan. The experiment used the same method as in Example 1 or 2. Figure 4 shows a summary of the recovery rates of tributophane when the amount of indole was varied using lysozyme as a protein sample. As is clear from this figure, the recovery rate of tryptophan improves with the use of indole and becomes almost constant when 0.19 or more is used. Example 5 This example shows an example in which the hydrolysis method of the present invention is applied to various proteins. The experiment used the same method as in Example 1. The protein awards used are as follows. Lioglopine (shown in Table 2 fat) Lysozyme (shown in Table 2 fb)) Papain (shown in Table 2 fcl) The results are summarized in Table 2 fat to fcl. Regarding myoglobin, the results of the high-speed gas phase method reported by Tsugita et al. and the liquid phase method using azeotropic hydrochloric acid are also summarized in Table 2 Tal~(C) for comparison.

表中のTの項はタンパク質の配列分析から得られた理論
値であり、SerとThrのカツコ内の数値はゼロ時間
外挿値である。この表から明らかなように、トリプトフ
ァンを含むアミノ酸Mi戒値は実験値と理論値がよく一
致しており、本発明によるタンパク質を加水分解する方
法が、タンパク質の正確な組戒分析を行うために非常に
有効であることがわかる。また、タンパク試料の回収率
は100%であった。この結果から、本発明はタンパク
質を定量的に分解していることがわかる。従ってタンパ
ク質の定量にも用いることがわかる。
The term T in the table is a theoretical value obtained from protein sequence analysis, and the values in brackets for Ser and Thr are zero time extrapolated values. As is clear from this table, the experimental value and the theoretical value of the amino acid Mi value containing tryptophan are in good agreement, and the method of hydrolyzing proteins according to the present invention is useful for performing accurate structural analysis of proteins. It turns out to be very effective. Moreover, the recovery rate of the protein sample was 100%. This result shows that the present invention quantitatively degrades proteins. Therefore, it can be seen that it can also be used for protein quantification.

第2表ta+ 第 2表山》 第 2表(Cl 〔発明の効果〕 以上説明したように、本発明の方法によれば、従来の気
相加水分解法の有していた高速性、低汚染性および自動
化の容易性を損なうことなく、困難であったトリプトフ
ァンの定量を含むタンパク質のアミノ酸紐放分折を行う
ことができる.このように本発明による塩酸、トリフル
オロ酢酸、チオグリコール酸、水およびインドールを用
いるタンパク質の気相加水分解法には、従来にない優れ
た点があり、その工業的価値は大である.なお、ここで
使用した用語および説明は、本発明の特徴が維持される
限り、類似のものを除去するものでないことば言うまで
もない.
Table 2 ta + Table 2 Mountain》 Table 2 (Cl [Effects of the Invention] As explained above, the method of the present invention provides high speed and low pollution compared to the conventional gas phase hydrolysis method. Amino acid string dissociation analysis of proteins, including the determination of tryptophan, which has been difficult, can be performed without compromising performance and ease of automation.In this way, hydrochloric acid, trifluoroacetic acid, thioglycolic acid, The gas phase hydrolysis method of proteins using indole and indole has unprecedented advantages and has great industrial value.The terms and explanations used here are used to maintain the characteristics of the present invention. Needless to say, this term does not exclude similar items as long as they are similar.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図+a)〜ldlはそれぞれ本発明に用いる実験容
器の断面図、第2図は本発明の共沸点塩酸を用いる液相
法および高速気相法によるバリルグルタミン酸の温度一
加水分解率曲線図、第3図はりゾチーム中のトリブトフ
ァンの回収率に与えるチオグリコール酸の添加量の影響
図、第4図はリゾチーム中のトリプトファンの回収率に
与えるインド−ル共存量の影響図である。 ・バリルグルタミン酸 ・小試験管 ・中試験管 ・酸混合溶液 ・試験管 ・インドール ・真空封管
Figure 1 +a) to ldl are cross-sectional views of experimental vessels used in the present invention, respectively, and Figure 2 is a temperature-hydrolysis rate curve of valylglutamic acid obtained by the liquid phase method and high-speed gas phase method using azeotropic hydrochloric acid of the present invention. , FIG. 3 is a graph showing the influence of the amount of thioglycolic acid added on the recovery rate of tributophane in lysozyme, and FIG. 4 is a graph showing the influence of the amount of coexisting indole on the recovery rate of tryptophan in lysozyme.・Barylglutamic acid・Small test tube・Medium test tube・Acid mixed solution・Test tube・Indole・Vacuum sealed tube

Claims (5)

【特許請求の範囲】[Claims] (1)固体表面上に吸着したタンパク質(固相)と、塩
酸、トリフルオロ酢酸(CF_3COOH)、チオグリ
コール酸(ジメチルサルファイド−α,α′−ジカルボ
ン酸)および水を含む酸混合溶液を気化させた酸混合蒸
気(気相)との固相−気相反応により前記タンパク質を
加水分解することを特徴とするタンパク質の加水分解方
法。
(1) A mixed acid solution containing protein (solid phase) adsorbed on a solid surface, hydrochloric acid, trifluoroacetic acid (CF_3COOH), thioglycolic acid (dimethylsulfide-α,α′-dicarboxylic acid), and water is vaporized. A method for hydrolyzing proteins, characterized in that the protein is hydrolyzed by a solid phase-gas phase reaction with a mixed acid vapor (gas phase).
(2)酸混合蒸気の供給される空間内にインドールを共
存させることを特徴とする特許請求の範囲第1項記載の
タンパク質の加水分解方法。
(2) The method for hydrolyzing proteins according to claim 1, characterized in that indole is allowed to coexist in the space to which the acid mixed vapor is supplied.
(3)酸混合蒸気の温度は、少なくとも130℃〜20
0℃の間にあることを特徴とする特許請求の範囲第1項
記載のタンパク質の加水分解方法。
(3) The temperature of the acid mixed vapor is at least 130°C to 20°C.
The method for hydrolyzing proteins according to claim 1, characterized in that the temperature is between 0°C.
(4)前記酸混合溶液の組成は、少なくとも塩酸3〜1
2M、トリフルオロ酢酸1〜50%、チオグリコール酸
1〜30%であることを特徴とする特許請求の範囲第1
項記載のタンパク質の加水分解方法。
(4) The composition of the acid mixed solution is at least 3 to 1 part of hydrochloric acid.
2M, trifluoroacetic acid 1-50%, thioglycolic acid 1-30%
Protein hydrolysis method described in section.
(5)前記空間内に共存するインドールの量は0.1〜
10mgであることを特徴とする特許請求の範囲第1項
または第2項記載のタンパク質の加水分解方法。
(5) The amount of indole coexisting in the space is 0.1~
The method for hydrolyzing protein according to claim 1 or 2, wherein the amount is 10 mg.
JP30002289A 1989-11-17 1989-11-17 Hydrolysis of protein Pending JPH03160370A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30002289A JPH03160370A (en) 1989-11-17 1989-11-17 Hydrolysis of protein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30002289A JPH03160370A (en) 1989-11-17 1989-11-17 Hydrolysis of protein

Publications (1)

Publication Number Publication Date
JPH03160370A true JPH03160370A (en) 1991-07-10

Family

ID=17879767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30002289A Pending JPH03160370A (en) 1989-11-17 1989-11-17 Hydrolysis of protein

Country Status (1)

Country Link
JP (1) JPH03160370A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552852A (en) * 1991-08-28 1993-03-02 Seiko Instr Inc Method of determining aminoacid sequence from carboxylic terminal of protein or peptide
WO2000063232A1 (en) * 1999-04-17 2000-10-26 Genevac Limited Methods and apparatus for preventing sample loss

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0552852A (en) * 1991-08-28 1993-03-02 Seiko Instr Inc Method of determining aminoacid sequence from carboxylic terminal of protein or peptide
WO2000063232A1 (en) * 1999-04-17 2000-10-26 Genevac Limited Methods and apparatus for preventing sample loss

Similar Documents

Publication Publication Date Title
Roach et al. The hydrolysis of proteins
Akabori et al. Hydrazinolysis of peptides and proteins. II. Fundamental studies on the determination of the carboxyl-ends of proteins
Konigsberg [51] Subtractive Edman degradation
Spies Determination of tryptophan in proteins
Vallentyne Biogeochemistry of organic matter—II Thermal reaction kinetics and transformation products of amino compounds
Würfels et al. Residues from biological materials after pressure decomposition with nitric acid: Part 1. Carbon conversion during sample decomposition
Mahowald The amino acid sequence around the “reactive” sulfhydryl groups in adenosine triphosphocreatine phosphotransferase
Davidson Hydrolysis of samples for amino acid analysis
JPH03160370A (en) Hydrolysis of protein
Klee Intermediate stages in the thermally induced transconformation reactions of bovine pancreatic ribonuclease A
Sanger Some chemical investigations on the structure of insulin
Yamada et al. Development of an acid hydrolysis method with high recoveries of tryptophan and cysteine for microquantities of protein
Davidson Hydrolysis of samples for amino acid analysis
JP3968385B2 (en) Method for producing amino acid or peptide from protein using supercritical water, food, feed, microbial medium and pharmaceutical containing this protein degradation product
JPH03160369A (en) Hydrolysis of protein
JPS61151157A (en) Hydrolysis of protein
Rose et al. Amino acid sequence determination by glc-mass spectrometry of permethylated peptides. Optimization of the formation of chemical derivatives at the 2-10 nmol level
Han et al. Current developments in stepwise edman degradation of peptides and proteins
Hušek Gas chromatography of cycli amino acid derivatives: A useful alternative to esterification procedures
Nelson et al. The venom of the honeybee (Apis mellifera): Free amino acids and peptides
Matsusaki et al. A method for removal of chloride interference in determination of aluminium by atomic-absorption spectrometry with a graphite furnace
Würz et al. Changes in the Optical Rotation of Proteins after Cleavage of the Disulfide Bonds1, 2
Landers et al. Utility of high resolution capillary electrophoresis for monitoring peptide homo-and hetero-dimer formation
Falcone et al. Studies concerning the mechanism of action of acetoacetyl succinic thiophorase by use of O18
FEDERICI et al. IS THE ALKALINE CLEAVAGE OF DISULFIDE BONDS IN PEPTIDES AN α‐β ELIMINATION REACTION OR A HYDROLYSIS?