JPH03160325A - Method for monitoring lubricating condition of rolling bearing - Google Patents

Method for monitoring lubricating condition of rolling bearing

Info

Publication number
JPH03160325A
JPH03160325A JP29919789A JP29919789A JPH03160325A JP H03160325 A JPH03160325 A JP H03160325A JP 29919789 A JP29919789 A JP 29919789A JP 29919789 A JP29919789 A JP 29919789A JP H03160325 A JPH03160325 A JP H03160325A
Authority
JP
Japan
Prior art keywords
rolling
rolling bearing
bearing
vibration
amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29919789A
Other languages
Japanese (ja)
Inventor
Manda Noda
万朶 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP29919789A priority Critical patent/JPH03160325A/en
Publication of JPH03160325A publication Critical patent/JPH03160325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To easily monitor a lubricating condition even with respect to the bearing incorporated in machine equipment even when an oil film is thick by monitoring the lubricating state of a rolling bearing on the basis of the amplitude of the inherent vibration generated from the rolling bearing during rotation. CONSTITUTION:At first, a rolling bearing 1 is rotated in the predetermined number of rotations while load is applied to the rolling bearing 1 in the axial direction thereof and inherent vibration frequency Fn is calculated from the spring constants Ki, Ke between an inner wheel 2 and rolling bodies 4 as well as between an outer wheel 3 and the rolling bodies 4 and the mass M of the rolling bodies 4. Next, the amplitude at the vibration frequency Fn of the bearing 1 during rotation is calculated and the upper limit value of the amplitude is set. When a vibration level exceeds the upper limit value, it is judged that a lubricating condition is abnormal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、転がり軸受の潤滑状態監視方法の改良に関
し、特に、転がり軸受の内輪と転動体及び外輪と転動体
が弾性接触して形成される振動系の固有振動数に着目し
、その固有振動数における振動振幅により転がり軸受の
潤滑状態を監視する方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in a method for monitoring the lubrication state of a rolling bearing, and particularly relates to a method for monitoring the lubrication state of a rolling bearing, in which an inner ring and a rolling element and an outer ring and a rolling element of a rolling bearing are formed in elastic contact with each other. This paper focuses on the natural frequency of a vibration system and relates to a method for monitoring the lubrication state of a rolling bearing based on the vibration amplitude at that natural frequency.

〔従来の技術〕[Conventional technology]

従来の転がり軸受の潤滑状態監視方法としては、例えば
、特公昭58−40136号公報あるいは実公昭57−
19617号公報に記載されたものが知られている。
Conventional methods for monitoring the lubrication state of rolling bearings include, for example, Japanese Patent Publication No. 58-40136 or Japanese Utility Model Publication No. 57-1982.
The one described in Japanese Patent No. 19617 is known.

これらの従来方法は、いずれも転がり接触部分に電圧を
印加し、油膜の厚さを電気抵抗の値として測定するもの
である。
In all of these conventional methods, a voltage is applied to the rolling contact portion, and the thickness of the oil film is measured as an electrical resistance value.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、このような従来の転がり軸受の潤滑状態
監視方法にあっては、油膜の電気抵抗を測定するために
軸受の内輪と外輪との間に電圧を印加しなければならな
いが、機械設備に組み込まれた軸受の場合には、内輪(
又は軸)が露出している必要があり、内輪(又は軸)が
露出していないために、測定が不可能となる場合が多々
あったまた、軸受の油膜切れが生じて金属接触が起きる
ような状態にならないと、十分な感度で測定できないた
め、潤滑状態がかなり悪い状態でなければ効力を発揮し
ないという問題点があった。
However, in such conventional methods for monitoring the lubrication condition of rolling bearings, a voltage must be applied between the inner and outer rings of the bearing in order to measure the electrical resistance of the oil film, but this method requires that a voltage be applied between the inner and outer rings of the bearing. In the case of bearings with
In many cases, measurement was impossible because the inner ring (or shaft) was not exposed, and the oil film on the bearing ran out, causing metal-to-metal contact. There is a problem in that the method cannot be measured with sufficient sensitivity unless the lubrication condition is in a very poor condition, and therefore it is not effective unless the lubrication condition is extremely poor.

この発明は、このような従来の問題点に着目してなされ
たもので、機械設備に組み込まれた軸受に対しても容易
に適用でき、油膜の厚さが厚い場合でも潤滑状態を容易
に監視できるようにした転がり軸受の潤滑状態監視方法
を提供することを目的とするものである. 〔課題を解決するための手段及び作用〕そこで、この発
明に係わる転がり軸受の潤滑状熊監視方法は、転がり軸
受の内輪と転動体との間及び外輪と転動体との間に形成
される弾性接触のばね定数と、転動体の質量とからなる
振動系の固有振動数を求め、回転中の転がり軸受から発
生するこの固有振動の振幅によってその転がり軸受の潤
滑状態を監視するものであり、振動振幅が大きい場合は
油膜の厚さは薄く、振動振幅が小さい場合は油膜の厚さ
は厚いと判定するものである。
This invention was made by focusing on these conventional problems, and can be easily applied to bearings incorporated in mechanical equipment, making it possible to easily monitor the lubrication state even when the oil film is thick. The purpose of this study is to provide a method for monitoring the lubrication status of rolling bearings. [Means and effects for solving the problem] Therefore, the method for monitoring the lubrication condition of a rolling bearing according to the present invention is to detect the elasticity formed between the inner ring and the rolling element and between the outer ring and the rolling element of the rolling bearing. This method determines the natural frequency of the vibration system consisting of the spring constant of the contact and the mass of the rolling elements, and monitors the lubrication state of the rolling bearing by the amplitude of this natural vibration generated by the rotating rolling bearing. When the vibration amplitude is large, it is determined that the oil film is thin, and when the vibration amplitude is small, the oil film is determined to be thick.

また、その弾性接触振動の固有振動数Fnは、内輪と転
動体との間の弾性接触のばね定数をKi、外輪と転動体
との間の弾性接触のばね定数をKe、転動体の質量壱M
としたときに、 なる式で与えられるものである。
In addition, the natural frequency Fn of the elastic contact vibration is determined by Ki, the spring constant of the elastic contact between the inner ring and the rolling element, Ke, the spring constant of the elastic contact between the outer ring and the rolling element, and the mass of the rolling element, 1. M
When , it is given by the formula.

〔実施例〕〔Example〕

以下、この発明の一実施例を図面を参照して説明する。 An embodiment of the present invention will be described below with reference to the drawings.

まずこの発明の方法を実施する装置の一例の構戒を説明
する. ゜第1図において、転がり軸受1の一例としての玉軸受
は、内輪2と外輪3と転動体4としての複数の玉とを有
する。そして、例えば内輪2をスピンドル軸5に嵌合さ
せるとともに、外輪3は固定し、この外輪3の外周に加
速度振動計6を装着し、その加速度振動計6の検出信号
を周波数分析器(FFT)7に供給する. 次ぎに上記実施例の動作を説明する. 転がり軸受lに所定の軸方向荷重を負荷させながら所定
の回転数で回転させると、第2図に示すように、内輪2
と転動体4との間及び外輪3と転動体4との間は弾性接
触し、各々ばね定数Ki及びKeを有するばねが形成さ
れる。。このばね定数Ki,Keは、軸受の内部設計諸
元及び荷重条件により定まる。この弾性接触している内
輪2と転動体4と外輪3とは弾性接触振動系を形成し、
転動体4の質量をMとすると、その固有振動数Fnは、 で与えられる. また、内輪2と転動体4の間及び外輪3と転動体4との
間に介在する潤滑油の油膜は、この振動系の減衰要素と
して作用する.すなわち、内輪2Lm二轟ムル JL 
A口11+w+−シムト食/’l  r  ▲t   
.削 ▲ム り L禽二羞ち体4との間には減衰Ceが
それぞれ作用し、これらの減衰Ci,Ceは、潤滑油の
油膜の厚さが厚くなると大きな値となり、弾性接触振動
の振幅が小さくなる. また、この振動系の加振源としては、内輪2,外輪3及
び転動体4の各表面の凹凸による接触面圧の交番的な変
動及び転動体4の作動すべりやスピンすべりによる摩擦
現象等が考えられるが、いずれも油膜の存在がこれらの
加振源にも大きな影響を与え、油膜厚さの増加により加
振力は減少する。
First, we will explain the construction of an example of a device that implements the method of this invention. In FIG. 1, a ball bearing as an example of a rolling bearing 1 has an inner ring 2, an outer ring 3, and a plurality of balls as rolling elements 4. Then, for example, the inner ring 2 is fitted onto the spindle shaft 5, the outer ring 3 is fixed, an acceleration vibrometer 6 is attached to the outer periphery of the outer ring 3, and the detection signal of the acceleration vibrometer 6 is transferred to a frequency analyzer (FFT). Supply to 7. Next, the operation of the above embodiment will be explained. When the rolling bearing l is rotated at a predetermined rotational speed while applying a predetermined axial load, the inner ring 2
There is elastic contact between the outer ring 3 and the rolling elements 4, and between the outer ring 3 and the rolling elements 4, forming springs having spring constants Ki and Ke, respectively. . These spring constants Ki and Ke are determined by the internal design specifications and load conditions of the bearing. The inner ring 2, rolling elements 4, and outer ring 3 that are in elastic contact form an elastic contact vibration system,
If the mass of the rolling element 4 is M, its natural frequency Fn is given by: Furthermore, the lubricating oil film interposed between the inner ring 2 and the rolling elements 4 and between the outer ring 3 and the rolling elements 4 acts as a damping element for this vibration system. In other words, inner ring 2Lm Nido Muru JL
A mouth 11+w+-simmut food/'l r ▲t
.. Damping Ce acts between the two conductors 4, and these dampings Ci and Ce become larger values as the lubricating oil film becomes thicker, and the amplitude of the elastic contact vibration decreases. becomes smaller. In addition, the sources of vibration in this vibration system include alternating fluctuations in contact pressure due to unevenness on the surfaces of the inner ring 2, outer ring 3, and rolling elements 4, and friction phenomena due to operational slip and spin slip of the rolling elements 4. It is conceivable that the presence of an oil film has a large effect on these vibration sources, and as the thickness of the oil film increases, the vibration force decreases.

すなわち、油膜の厚さが弾性接触振動に影響するメカニ
ズムは、減衰と加振力の両者が複合したものと考えられ
るが、油膜厚さと弾性接触振動の振幅は密接に関係して
おり、油膜厚さが小であれば、減衰比が小かつ加振力が
大となり、弾性接触振動の振幅が大となる。従って、こ
の弾性接触振動の振幅を測定すれば、油膜厚さすなわち
軸受の潤滑状態の監視が可能となる. 具体例として、外径が62m+、内径が30鵬、幅が1
6mmの玉軸受6206 (JISの呼び番号)を、軸
方向荷重20kgfで負荷すると、固有振動数Fnは(
1)式より約30KHzとなる。この玉軸受を、■自灯
油(40゜Cで粘度が1.3cst)、■#8マシン油
(同じ<8cst),■#68タービン油(同じ<68
cst)の3種の異なった潤滑油で、4000rpn+
で回転させたときの周波数に対する振動加速度の振幅(
G)の関係を示す加速度振動スペクトルを、第3図に示
す。
In other words, the mechanism by which the oil film thickness affects elastic contact vibration is thought to be a combination of both damping and excitation forces, but the oil film thickness and the amplitude of elastic contact vibration are closely related, and the oil film thickness If this is small, the damping ratio will be small and the excitation force will be large, and the amplitude of the elastic contact vibration will be large. Therefore, by measuring the amplitude of this elastic contact vibration, it is possible to monitor the oil film thickness, that is, the lubrication state of the bearing. As a specific example, the outer diameter is 62m+, the inner diameter is 30mm, and the width is 1mm.
When a 6mm ball bearing 6206 (JIS designation number) is loaded with an axial load of 20kgf, the natural frequency Fn is (
From equation 1), it is approximately 30KHz. This ball bearing is heated using: ■ Kerosene oil (viscosity is 1.3 cst at 40°C), ■ #8 machine oil (same <8 cst), ■ #68 turbine oil (same <68
cst) with 3 different lubricating oils, 4000 rpm+
The amplitude of vibration acceleration versus frequency when rotating at
An acceleration vibration spectrum showing the relationship G) is shown in FIG.

この図から明らかなように、転がり軸受には幾つかのピ
ークが現れているが、この中の30Kl{z近辺のピー
クが転動体4と内輪2及び外輪3との間の弾性接触振動
によるものであり、このピークは、他のピークに比べて
潤滑油の粘度すなわち油膜厚さによって、振動加速度の
振幅が大きく変わることがわかる。
As is clear from this figure, several peaks appear in the rolling bearing, among which the peak around 30Kl{z is due to elastic contact vibration between the rolling elements 4 and the inner ring 2 and outer ring 3. It can be seen that the amplitude of the vibration acceleration of this peak changes more greatly depending on the viscosity of the lubricating oil, that is, the thickness of the oil film, than the other peaks.

この理由は、前述したように、弾性接触振動の振動系に
、油膜の減衰比Ci,Ceによる減衰作用が直接的に関
与しているからである。
The reason for this is that, as described above, the damping effect of the damping ratios Ci and Ce of the oil film is directly involved in the vibration system of the elastic contact vibration.

従って、本固有振動数の振動振幅の大きさに上限値を設
定しておき、振動レベルがこの上限値を越えた場合には
、潤滑状態が異常であると判定し、警報を鳴らしたり、
装置の運転を止めたりする。
Therefore, an upper limit value is set for the vibration amplitude of this natural frequency, and if the vibration level exceeds this upper limit value, the lubrication state is determined to be abnormal and an alarm is sounded.
Stop the operation of the equipment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明に係わる転がり軸受の潤
滑状態監視方法によれば、転がり軸受の内輪と転動体と
の間及び外輪と転動体との間に形成される弾性接触のば
ね定数と、転動体の質量とからなる振動系の固有振動数
を求め、回転中の転がり軸受から発生する固有振動の振
幅によってその転がり軸受の潤滑状態を監視するものと
したため、機械設備に組み込まれた転がり軸受に対して
容易に適用できるとともに、また、油膜の厚さに応じて
振動の振幅が変化することを利用しているため、軸受の
油膜が形成されている状態でも、潤滑状態の良否を監視
でき、軸受の異常の予知能力(早期発見能力)が極めて
高く、適正な潤滑油の選定を行うことができるという効
果が得られる。
As explained above, according to the method for monitoring the lubrication state of a rolling bearing according to the present invention, the spring constant of the elastic contact formed between the inner ring and the rolling element and between the outer ring and the rolling element of the rolling bearing, The natural frequency of the vibration system consisting of the mass of the rolling elements is determined, and the lubrication state of the rolling bearing is monitored by the amplitude of the natural vibration generated by the rolling bearing during rotation. It can be easily applied to bearings, and since it takes advantage of the fact that the amplitude of vibration changes depending on the thickness of the oil film, it is possible to monitor the quality of the lubrication state even when an oil film is formed on the bearing. , the ability to predict abnormalities in bearings (early detection ability) is extremely high, and the effect of being able to select an appropriate lubricant can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係わる転がり軸受の潤滑状態監視方
法を実施する装置の一例を示す要部切断正面図、第2図
は転がり軸受の弾性接触振動系を示す模式図、第3図は
周波数と振動振幅との関係を示すグラフである。 l・・・転がり軸受、2・・・内輪、3・・・外輪、4
・・・転動体、5・・・スピンドル軸、6・・・加速度
振動計、7・・・周波数分析器、Ki,Ke・・・弾性
接触振動のばね定数、M・・・転動体の質量、Fn・・
・固有振動数。
Fig. 1 is a cutaway front view of essential parts showing an example of a device implementing the method for monitoring the lubrication condition of a rolling bearing according to the present invention, Fig. 2 is a schematic diagram showing an elastic contact vibration system of a rolling bearing, and Fig. 3 is a frequency It is a graph which shows the relationship between and vibration amplitude. l...Rolling bearing, 2...Inner ring, 3...Outer ring, 4
...Rolling element, 5... Spindle shaft, 6... Acceleration vibrometer, 7... Frequency analyzer, Ki, Ke... Spring constant of elastic contact vibration, M... Mass of rolling element , Fn...
・Natural frequency.

Claims (2)

【特許請求の範囲】[Claims] (1)転がり軸受の内輪と転動体との間及び外輪と前記
転動体との間に形成される弾性接触のばね定数と、前記
転動体の質量とからなる振動系の固有振動数を求め、回
転中の前記転がり軸受から発生する前記固有振動の振動
振幅によって該転がり軸受の潤滑状態を監視する転がり
軸受の潤滑状態監視方法。
(1) Determine the natural frequency of the vibration system consisting of the spring constant of the elastic contact formed between the inner ring and the rolling element and between the outer ring and the rolling element of the rolling bearing, and the mass of the rolling element, A method for monitoring the lubrication state of a rolling bearing, which monitors the lubrication state of the rolling bearing based on the vibration amplitude of the natural vibration generated by the rolling bearing during rotation.
(2)内輪と転動体との間の弾性接触のばね定数をKi
、外輪と転動体との間の弾性接触のばね定数をKe、転
動体の質量をMとしたとき、固有振動数Fnが、 Fn=1/2π√{(Ki+Ke)/M} により求められることを特徴とする請求項1記載の転が
り軸受の潤滑状態監視方法。
(2) The spring constant of the elastic contact between the inner ring and the rolling elements is Ki
, where Ke is the spring constant of the elastic contact between the outer ring and the rolling element, and M is the mass of the rolling element, the natural frequency Fn can be found as follows: Fn=1/2π√{(Ki+Ke)/M} The method for monitoring the lubrication state of a rolling bearing according to claim 1, characterized in that:
JP29919789A 1989-11-17 1989-11-17 Method for monitoring lubricating condition of rolling bearing Pending JPH03160325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29919789A JPH03160325A (en) 1989-11-17 1989-11-17 Method for monitoring lubricating condition of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29919789A JPH03160325A (en) 1989-11-17 1989-11-17 Method for monitoring lubricating condition of rolling bearing

Publications (1)

Publication Number Publication Date
JPH03160325A true JPH03160325A (en) 1991-07-10

Family

ID=17869399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29919789A Pending JPH03160325A (en) 1989-11-17 1989-11-17 Method for monitoring lubricating condition of rolling bearing

Country Status (1)

Country Link
JP (1) JPH03160325A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193879A (en) * 1995-01-19 1996-07-30 Nippon Steel Corp Method for detecting grinding abnormality of roll grinder
CN116415462A (en) * 2023-04-14 2023-07-11 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08193879A (en) * 1995-01-19 1996-07-30 Nippon Steel Corp Method for detecting grinding abnormality of roll grinder
CN116415462A (en) * 2023-04-14 2023-07-11 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing
CN116415462B (en) * 2023-04-14 2023-11-17 哈尔滨工程大学 Double-layer oil film lubrication analysis method and system based on floating bushing

Similar Documents

Publication Publication Date Title
Su et al. On initial fault detection of a tapered roller bearing: frequency domain analysis
US4464935A (en) Shaft vibration evaluation
Meyer et al. An analytic model for ball bearing vibrations to predict vibration response to distributed defects
US10684193B2 (en) Strain based systems and methods for performance measurement and/or malfunction detection of rotating machinery
Schoen et al. Motor bearing damage detection using stator current monitoring
US4528852A (en) Method and instrument for determining the condition of an operating bearing
US10697855B2 (en) Method and assembly for state monitoring of a bearing that supports a planetary gear of a planetary transmission on a planet carrier
US4253326A (en) Apparatus for determining the properties of a lubricant
Marticorena et al. Rolling bearing condition monitoring technique based on cage rotation analysis and acoustic emission
önel et al. Detection of outer raceway bearing defects in small induction motors using stator current analysis
Scherb et al. A study on the smearing and slip behaviour of radial cylindrical roller bearings
JPH03160325A (en) Method for monitoring lubricating condition of rolling bearing
Su et al. Signature analysis of roller bearing vibrations: lubrication effects
Furch et al. Identification of the technical condition of roller bearings by means of vibrodiagnostics and tribodiagnostics
JPH01172622A (en) Detection of anomaly of roller bearing
Natu Bearing fault analysis using frequency and wavelet techniques
Zeashan et al. Antifriction bearing diagnostics in a manufacturing industry—A case study
JP7351142B2 (en) Rolling bearing condition monitoring method and condition monitoring device
Doğan et al. Temperature and vibration condition monitoring of a polymer hybrid ball bearing
Furch et al. Identifying the technical condition of rotating parts by means of vibrodiagnostics
JPH112239A (en) Device to measure various property of rolling bearing
Lacey Using vibration analysis to detect early failure of bearings
Jain et al. Frequency Spectrum Analysis of Various Defects in Rolling Element Bearings Used in Heavy Load and High Speed Machinery
Matsushita et al. Vibration of Rolling Element Bearings
Furch et al. Vibrodiagnostics Used for Evaluating the Technical Condition of a Mechanical Gearbox