JPH03160200A - Air blower - Google Patents
Air blowerInfo
- Publication number
- JPH03160200A JPH03160200A JP29862889A JP29862889A JPH03160200A JP H03160200 A JPH03160200 A JP H03160200A JP 29862889 A JP29862889 A JP 29862889A JP 29862889 A JP29862889 A JP 29862889A JP H03160200 A JPH03160200 A JP H03160200A
- Authority
- JP
- Japan
- Prior art keywords
- thin piece
- air
- piece
- blowing direction
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007664 blowing Methods 0.000 claims abstract description 116
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 238000005452 bending Methods 0.000 description 23
- 238000000034 method Methods 0.000 description 15
- 239000002184 metal Substances 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 12
- 238000005192 partition Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000009423 ventilation Methods 0.000 description 6
- 240000002853 Nelumbo nucifera Species 0.000 description 5
- 235000006508 Nelumbo nucifera Nutrition 0.000 description 5
- 235000006510 Nelumbo pentapetala Nutrition 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 210000005069 ears Anatomy 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 2
- 239000010902 straw Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- SEPPVOUBHWNCAW-FNORWQNLSA-N (E)-4-oxonon-2-enal Chemical compound CCCCCC(=O)\C=C\C=O SEPPVOUBHWNCAW-FNORWQNLSA-N 0.000 description 1
- LLBZPESJRQGYMB-UHFFFAOYSA-N 4-one Natural products O1C(C(=O)CC)CC(C)C11C2(C)CCC(C3(C)C(C(C)(CO)C(OC4C(C(O)C(O)C(COC5C(C(O)C(O)CO5)OC5C(C(OC6C(C(O)C(O)C(CO)O6)O)C(O)C(CO)O5)OC5C(C(O)C(O)C(C)O5)O)O4)O)CC3)CC3)=C3C2(C)CC1 LLBZPESJRQGYMB-UHFFFAOYSA-N 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- 241000446313 Lamella Species 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 210000000554 iris Anatomy 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
Landscapes
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、空気等の送風を目的とする送風器?ご間し、
特に従来のファンのように回転羽根を有せず、往復運動
する薄片によって送風する小型の送風器に関する.
[従来技術コ
従来の回転羽根を有するファンはモータを用いて回転羽
根を回転していた.モータの軸にはベアリングが使用さ
れるがベアリングは寿命が1〜2万時間しかなく、この
ためファンの定期的な交換が必要であった.
[本発明が解決しようとする問題点コ
本発明はモータを用いないで送風を行なう機器を提供す
るものである.
[問題点を解決するための手段コ
第1の請求項は、湾曲に変形の可能な、又は傾斜可能な
薄片を、往復運動させて、往復運動の方向と垂直な方向
に送風を行なう送風器に位置するように、往復の両方向
の移動時に、薄片の移動方向の面の一部分又は全部分を
送風方向に傾斜させる、送風器である.
第2の請求項は、湾曲に変形の可能な、又は傾斜可能な
薄片を、往復運動させて、往復運動の方向と垂直な方向
に送風を行なう送風器に位置するように、a.iii片
を移動するか、変形又は傾斜して、薄片の移動方向と反
対側の面に、薄片の送風方向側の部分から送風方向側の
部分に向かって、気圧の低い領域を次々に作り、送風方
向と反対の方向わら気体を引込み、加速して運動の慣性
を付け、
b.引込んだ気体の慣性によって、気体を送風方向に送
り出し、
C.薄片が往復の一方向への移動を終わり、逆喰I81
A本κ工1ハ牧齢t朋岐ナス燈じ一a1払んだ気体が送
風方向に送り出されるまで待ってから、移動を行なう、
送風器である.
第3の請求項は、請求項(1)又は(2)の送風器に位
置するように、薄片の送風方向側の端部分を往復運動さ
せる手段と、薄片の送風方向側の端部分を往復運動させ
る手段と、を有し、薄片の往復の両方向の移動時に、薄
片の送風方向側の端部分が、送風方向側の往復の両方向
の移動時に対して前方に位置するように、送風方向側の
端部分を、送風方向側の端部分より先行して移動させる
、送風器である.
第4の請求項は、請求項(1)又は(2)の送風器に位
置するように、薄片を往復運動させる手段と、薄片を湾
曲又は傾斜させる手段と、を有し、薄片の往復の両方向
の移動時に、薄片の送風方向側の端部分が、送風方向側
の往復の両方向の移動時よこ対して前方に位置するよう
に、薄片を湾曲又は傾斜させる、送風器である.
館にハ傳槽慣l→ 躊ψ濱/lNtF7+/ウ)の讃風
器に位置するように、薄片を、移動させると共に湾曲又
は傾斜させる手段、を有し、薄片の往復の両方向の移動
時に、薄片の送風方向側の鴫部分が、送風方向側の喘部
分より、移動方向に対して前方に位置するように、薄片
を湾曲又は傾斜させる、送風器である.
第6の請求項は、請求項(3)の送風器に位置するよう
に、薄片の送風方向側の端部分を往復運動させる手段と
、薄片の送風方向側の端部分を往復這動させる手段と、
に、圧電素子を含み、圧電素子に電圧を印加することに
より、薄片の喝部分を往復運動させる、送風器である.
第7の請求項は、請求項(4)の送m器に位置するよう
に、薄片を湾曲又は傾斜させる手段に圧電素子を含み、
往復運動させる手段に圧電素子を含み、a.tl曲又は
傾斜させる手段の圧電素子に電圧を印加することにより
、薄片を湾曲に変形、又は傾斜させ、薄片を湾曲に変形
、又は傾斜させることにより、薄片の移動方向の面の一
部分又は全部分を送風方向に傾斜させ、
b.往復運動させる手段に含まれる圧電素子に電圧を印
加することにより、薄片を往復運動させる、
送風器である.
[実施例]
[第1の請求項の実施例]
第1図は第1の請求項の第1の実施例の送風器の斜視図
であり、1枚の薄片1を上下に往復運動させ、往復運動
の方向と垂直な送風方向に送風する.
送風する対象は空気等の気体であるが、本発明は液体等
の流体全てに使用することもできる.以下の説明では、
空気を送風するものとして説明する.
第2図は第1の実施例の送風器の動作を示し、第1図の
薄片Iの横から見た状態を薄片2で表し、蓮片2を時間
を追って図示している.破線は薄片2の動作位置を比較
するための補助線である.iI片2の送風方向側の前方
の端部分と、送風方向側の後方の端部分が、上下に移動
する。[Detailed Description of the Invention] [Industrial Application Fields] The present invention relates to a blower for blowing air, etc. Thank you for your time,
In particular, it relates to a small air blower that does not have rotating blades like conventional fans, but blows air by reciprocating thin pieces. [Prior art] Conventional fans with rotating blades used a motor to rotate the rotating blades. Bearings are used on the motor shaft, but the lifespan of the bearings is only 10,000 to 20,000 hours, so regular replacement of the fan was necessary. [Problems to be solved by the present invention] The present invention provides a device that blows air without using a motor. [Means for solving the problem] The first claim is an air blower that causes a thin piece that can be curved or tilted to reciprocate and blows air in a direction perpendicular to the direction of the reciprocating movement. This is an air blower in which a part or all of the surface of the thin piece in the moving direction is inclined in the air blowing direction during reciprocating movement in both directions so that the thin piece is located at The second claim provides a method for reciprocating a thin piece that can be deformed into a curve or that can be tilted so as to be located in an air blower that blows air in a direction perpendicular to the direction of the reciprocating movement. (iii) by moving, deforming or tilting the piece, creating regions of low atmospheric pressure one after another on the surface opposite to the direction of movement of the thin piece from the part of the thin piece on the side of the blowing direction to the part on the side of the blowing direction; drawing straw gas in a direction opposite to the blowing direction and accelerating it to give it inertia of motion; b. By the inertia of the drawn gas, the gas is sent out in the blowing direction, C. After the flake has finished its reciprocating movement in one direction, Gyakue I81
This is a blower that waits until the gas is sent out in the blowing direction before moving. The third claim is a means for reciprocating the end portion of the thin piece on the side of the blowing direction, and a means for reciprocating the end portion of the thin piece on the side of the blowing direction so as to be located in the blower of claim (1) or (2). and means for moving the thin piece, such that when the thin piece moves back and forth in both directions, the end portion of the thin piece on the side of the air blowing direction is positioned forward with respect to when the thin piece moves back and forth in both directions. This is an air blower in which the end part of the air blower moves ahead of the end part on the side of the air blowing direction. A fourth claim includes means for reciprocating the thin piece and means for curving or tilting the thin piece, so as to be located in the air blower of claim (1) or (2), and means for reciprocating the thin piece. This air blower curves or tilts the thin piece so that when moving in both directions, the end portion of the thin piece on the side of the blowing direction is located in front of the side when moving back and forth in the blowing direction. The building has a means for moving and curving or tilting the thin piece so that it is positioned in the sanator of the fan tank, and when the thin piece is moved back and forth in both directions. This is an air blower in which the thin piece is curved or tilted so that the bottom part of the thin piece on the side of the blowing direction is located forward in the direction of movement than the bottom part of the thin piece on the side of the blowing direction. A sixth claim is a means for reciprocating the end portion of the thin piece on the side of the blowing direction, and a means for moving the end portion of the thin piece on the side of the blowing direction in a reciprocating manner so as to be located in the blower of claim (3). and,
This is an air blower that includes a piezoelectric element, and by applying a voltage to the piezoelectric element, the part of the thin piece moves back and forth. A seventh claim includes a piezoelectric element in the means for curving or tilting the thin piece so as to be located in the transmitter of claim (4),
the reciprocating means includes a piezoelectric element; a. By applying a voltage to the piezoelectric element of the bending or tilting means, the flake is curved or tilted, and by curved or tilted, a part or all of the surface of the flake in the moving direction is tilted in the direction of air blowing, b. This is an air blower that causes a thin piece to reciprocate by applying voltage to a piezoelectric element included in the reciprocating means. [Embodiment] [Embodiment of the first claim] Fig. 1 is a perspective view of a blower according to a first embodiment of the first claim, in which one thin piece 1 is moved up and down reciprocatingly, Air is blown in the direction perpendicular to the direction of reciprocating motion. Although the object to be blown is gas such as air, the present invention can also be used for all fluids such as liquids. In the following explanation,
Let's explain it as something that blows air. FIG. 2 shows the operation of the air blower of the first embodiment, and the state of the thin piece I in FIG. 1 viewed from the side is represented by a thin piece 2, and the lotus piece 2 is illustrated over time. The broken line is an auxiliary line for comparing the operating position of thin piece 2. The front end portion of the iI piece 2 on the ventilation direction side and the rear end portion on the ventilation direction side move up and down.
つまり、
第2図(a)、前方一一下、後方一一下.第2図(b)
、前方一一下、後方一一上.第2図(C)、前方−一上
、後方一一上.第2図(d)、前方一一上、後方一一下
.第2図(e)、前方一一下、後方一一下,という位置
に移動する.
往復の再方向の移動時に、薄片2の移動方向の面は送風
方向に傾斜しており、薄片2の送風方向に向いた面で空
気を送風方向に押し出す.これによって送風が行なわれ
る.
次に第1の請求項の第2の実施例を説明する.第3図は
第2の実施例の薄片の横から見た状態を時間を追って図
示して、動作を表している.第2の実施例の薄片は、動
作していない時には第1の実施例と同mに第1図のよう
に平らな板状であるが、送風動作時には第3図に示すよ
うに湾曲する.
往復の両方向の移動時に、薄片の移動方向の面は送風方
向に傾斜しており、薄片の送風方向に向いた面で空気を
送風方向に押し出す。これによって送風が行なわれる.
第2の実施例は薄片の移動方向の面が反っているが、逆
に移動方向と反対の面が反った場合でも送風できる.
更に、第4図の第3の実施例に示すように、薄片がS字
形或いは逆S字形に反っても、往復の両方向の移動時に
、移動方向の薄片の面の一部分又は全部分が送風方向に
傾斜していれば送風できる.第5図は第4の実施例で、
薄片の反りが、或る方向への移動開始時には移動方向と
逆の面が反っているが、移動の中途から移動方向の面が
反るように、薄片の反りを制御した場合である.薄片は
跳ね返るような動きをする.このように反りを制御する
ことにより、空気の逃げが少なくなり、送風の効率が良
くなる.
第2図から第5図迄の実施例は、開放された空気中に薄
片を置いて動作させる例であるが、第6図は上方と下方
が壁で閉じられた空間で薄片を動作させる、第5の実施
例である.
薄片の動作は第2図の実施例と全く同じであるが、壁で
上下を塞ぐことにより、上下への空気の逃げがなくなり
、送風の効率が良くなる.上下の壁の内、下又は上の壁
だけ塞ぐだけでも効率は向上する.
tR7図は2枚の薄片を仕切板を挟んで置き、上下を壁
で塞いで、2枚の薄片を第2図の実施例と全く同じ動作
をさせた第6の実施例である.第7図の実施例は第6図
の実施例の2倍の送風の効率が得られる.2枚の薄片は
同期して動く必要はないが、2枚の薄片を連結し、同期
して動かせば、1組の駆動手段で駆動できる.
第7図は薄片が2枚の例であるが、仕切板を挟んで2枚
以上の薄片を動作させることによって、薄片の枚数分の
送風効果が得られる.
第8図は2枚の薄片を用いた第7の実施例である.2枚
の薄片は各々第2図の薄片と同じ動きをするが、互いの
タイミングが半周期ずれている。In other words, Figure 2 (a), 11 lower front, 11 lower rear. Figure 2(b)
, 11 lower front, 11 upper rear. Figure 2 (C), front - 1st above, rear 11th above. Figure 2(d), front 11 upper, rear 11 lower. Move to the position 11 below the front and 11 below the rear as shown in Figure 2(e). During the reciprocating movement, the surface of the thin piece 2 in the direction of movement is inclined in the direction of air blowing, and the surface of the thin piece 2 facing the direction of air pushes out air in the direction of blowing air. This blows air. Next, a second embodiment of the first claim will be explained. FIG. 3 shows the state of the thin piece of the second embodiment viewed from the side over time to illustrate its operation. When the second embodiment is not in operation, the flake is flat as in the first embodiment, as shown in FIG. 1, but when it is in operation, it is curved as shown in FIG. 3. During the reciprocating movement in both directions, the surface of the flake in the direction of movement is inclined toward the blowing direction, and the surface of the flake facing the blowing direction pushes out air in the blowing direction. This blows air. In the second embodiment, the surface of the thin piece in the direction of movement is warped, but even if the surface opposite to the direction of movement is warped, air can still be blown. Furthermore, as shown in the third embodiment of FIG. 4, even if the flake is warped in an S-shape or an inverted S-shape, during both reciprocating movements, part or all of the face of the flake in the direction of movement is in the air blowing direction. Air can be blown if the slope is . FIG. 5 shows a fourth embodiment,
This is a case where the warpage of the flake is controlled so that at the beginning of movement in a certain direction, the surface opposite to the direction of movement is warped, but halfway through the movement, the surface in the direction of movement is warped. The flakes move as if they are bouncing back. By controlling the warp in this way, air escape is reduced and air blowing efficiency is improved. The embodiments shown in Figs. 2 to 5 are examples in which the flakes are placed in open air and operated, but in Fig. 6, the flakes are operated in a space closed by walls on the upper and lower sides. This is the fifth example. The operation of the flakes is exactly the same as in the embodiment shown in Figure 2, but by blocking the top and bottom with walls, there is no upward or downward escape of air, improving the efficiency of air blowing. Efficiency can be improved by blocking only the lower or upper walls of the upper and lower walls. Figure tR7 shows a sixth embodiment in which two thin pieces are placed with a partition plate in between, the top and bottom are closed with walls, and the two thin pieces operate exactly the same as the embodiment shown in Figure 2. The embodiment shown in FIG. 7 has twice the air blowing efficiency as the embodiment shown in FIG. 6. The two thin pieces do not need to move synchronously, but if the two thin pieces are connected and moved synchronously, they can be driven by one set of driving means. Although FIG. 7 shows an example in which there are two thin pieces, by operating two or more thin pieces with a partition plate in between, the air blowing effect corresponding to the number of thin pieces can be obtained. Figure 8 shows a seventh embodiment using two thin pieces. Each of the two flakes moves in the same way as the flake in Figure 2, but their timings are shifted by half a cycle.
薄片を仕切る仕切板は必要ない.
第9図、第10図は各々3枚、4枚の薄片を用いた実施
例である.gJ合う各々の薄片が互いに半周期ずれて第
2図の薄片と同じ動きをする.第2図〜第10図は薄片
の移動距離か薄片の傾きと等しい例であったが、第11
図は移動距離が薄片の傾きより、大きい例である.
又、薄片の傾きを移動距離より大きくしても送風するこ
とができる.
尚、第6図加ら第11図に示す壁で上下を塞がれた実施
例に於いても、薄片を第3図から第5図に示すように湾
曲させて動作させて、送風することができる.
又、第8図から第11図の実施例で、上下の壁を取り除
いても送風することができる.但し送風の効率は低下す
る.
[第2の請求項の実施例コ
第1の請求項は、空気を送風方向に押出す送風器である
が、第2の請求項では、押出すと共に、a.送風方向の
反対の方向から空気を引込み、b.引込むことによって
引込んだ空気が得た運動の慣性を利用して、引込んだ空
気を送風方向に送り出す、
という動作を行なう送MHに関する.
第12図は第2の請求項の実施例で、薄片3の動作を時
間を追って表した図である.雲のような図形4は薄片3
に引込まれた空気を表し、矢印は空気の動きを表す.破
線は薄片3の動作位置を比較するための補助線である.
第12図(b)では薄片3の送風方向側の端部分が上に
移動し、薄片3の移動方向と反対側の面(下側の面)の
、移動前の位置に、空気4が引込まれる.
空気が引込まれるのは、薄片3の移動によって移動前の
位置の気圧が低くなり、送風方向と反対の方向加ら空気
が押込まれるためである.第12図(c)では、第12
図(b)で引込まれた空気の移動速度を失わず、加速す
るように、薄片3を変形して、より送風方向側に気圧の
低い領域を作りだし、空気を引込む.
このように次々とス圧の低い領域を送風方向側に作り出
し、引込まれた空気を加速し、空気の移動の慣性を増す
.
第12図(e)では、薄片3を跳ね反らせて気圧の低い
領域を作っている.
薄片3はこれ以上気圧の低い領域を移動方向と反対側の
面(下側の面)に作ることができない.このため次の第
12図(f)では、跳ね反らせた薄片3の送風方向側の
先端部分を真っすぐに戻し、薄片3の先端部分迄引込ま
れた空気を叩くように送風方向に押出す.
第12図(f)の状態で、慣性の付いた空気が薄片3の
下面を通過し、送風方向へ移動するまで、暫ろくの間、
薄片3の移動と変形の動作を停止する.
これで薄片の往復運動の半周期が終了する.空気の移動
が弱まったなら、第12図(g)以降の次の半周期の動
作を開始する.
一般に空気を押出すと、押された空気は拡散しようとす
る.一方、気圧を低くして空気を引込むと、一箇所に集
中するように移動する.このため、空気を押出すより気
圧を低くして引き込む方が、効率良く空気を移動できる
.
第2の請求項の送風器は開放された空間で薄片を動作さ
せても、上下が壁で閉じられた空間で動作させても、送
風の効率が良い.
上記の実施例では第12図(e)で薄片3を跳ね反らせ
ているが、跳ね反らせず、第12図(d)から第12図
(f)i:移ることもできる.但し、跳ね反らせた方が
効率が良い.
[第3の請求項の実施例]
第3の請求項は、第2図〜第12図の実施例を具体的に
実現する1番目の方法である.第2図に位置するように
、薄片2の送風方向側の端部分を往復運動させる手段と
、薄片の送風方向側の端部分を往復運動させる手段と、
を有し、それぞれの手段を時間的にずらして動作させれ
ば、薄片2は第2図の動きを行なう.
時間的なずれは、送風方向側の端部分を、送風方向側の
端部分の移動より、先行して移動させるように行なう.
但し、先行しすぎて薄片の送風方向側の端部分が、送風
方向側の端部分より移動方向に対して後方にならないよ
うにする.第3の請求項は、薄片の送風方向側の端部分
と、反対側の端部分とを往復運動させるので、第3図〜
第5図や第12図のように菖片を湾曲するには、薄片が
適度な弾性を有する必要がある.又、第7図のように複
数枚の薄片に同一の動作をさせるには、全薄片を連結し
て一組の手段で往復運動させる.一組の手段とは、送風
方向側の端部分を駆動する手段と、反対側の端部分を駆
動する手段とで構威される.
更に、第8図のように2枚の薄片を異なった動作をさせ
るには、2組の往復運動させる手段が必要である.
第9図と第10図のように、隣合った薄片が半周期ずれ
た動きをする場合は、一枚おきの薄片を連結し、2組の
往復運動させる手段で駆動する.次に、具体的な実施例
を説明する.
第13図は第3の請求項の第1の実施例で、第13図(
a)は送風器の斜視図、第13図(b)は横から見た図
である.Ts片l1を2枚の上側支持片14と、2枚の
下側支持片15で支え、12と13の固定板に取付けて
いる.
支持片14は駆動手段16によって固定板12側へ折り
曲げられたり、固定板13側へ折り戻され、このため薄
片11の送風方向側の熔部分は、上下へ往復運動する.
支持片15は駆動手段l7によって固定板13側へ折り
曲げられたり、固定板12側へ折り戻され、薄片11の
送風方向側の端部分は、上下へ往復運動する.
16と17の駆動手段は次のように動作する.a.駆動
手段16一一戻、駆動手段17一一曲、b.駆動手段1
6−一戻、駆動手段17一一戻、C.駆動手段16一一
曲、駆動手段17一一戻、d.駆動手段16−一曲、駆
動手段17一一曲、e.駆動手段16−一戻、駆動手段
17一一曲.戻は支持片を折り戻す動きを示し、曲は折
り曲げる動きを示す.
この動作によって薄片11は第2図のように動き、送風
方向へ送風することができる.12と13の固定板は、
第6図の壁の役目をする.
第14図は第2の実施例で、薄片21には24と25の
鉄片が取付けられ、ばねで半固定されている.薄片21
の送風方向側の端部分は、26と28の電磁石で上下に
振られ、送風方向側の端部分は、27と29の電磁石で
上下に振られる.る.
26〜29の電磁石に流す電流lこよって、薄2lの送
風方向側の端部分が、送風方向の往復の両方向の移動時
に対して前方に位置すように、薄片21を動tfi)せ
ば、薄片21は第2のように動き、送風すことができる
.
第15図(b)は第3の実施例で、3枚の薄を一本の軸
に放射状に組合せてあり、軸には3〜34の、薄片を軸
の円周に沿って捻る手段が箇所設けられている.
3枚の薄片の送風方向側の端部分は捻る手段2によって
捻られ、送風方向側の端部分捻る手段34によって捻ら
れる.捻ることによて薄片は円周方向に移動する.
34の捻る手段を32の捻る手段より先行し゜動作させ
れば、薄片31の送風方向側の1部分は、薄片31の送
風方向側の端部分より、1動方向に対して前方に位置す
る.第15図(b)の送風器を上から見れば、薄片31
は!2図のi片2と同様な動きをする.従って薄片31
で送1することができる.
3枚の薄片は32と34の捻る手段によって同様に捻ら
れるので、3枚の薄片で送風できる.軸に取付ける薄片
の枚数を増せば送風の量も増す.更に、第15図(a)
に示すような仕切板36を取付けた簡35に、第15図
(b)の薄片31を取付けた軸を挿入し、第15図(C
)のように組合せれば、1It7図に示した仕切板で区
切った薄片と同じ構成となり、送風の効率が良くなる.
第15図(b)の捻る手段33は、第5図で説明したよ
つに薄片を跳ね返るように動かすための手段である.又
、第12図(C)のように薄片の中央部を湾曲して空気
を引込むための手段である.捻る手段34が捻りの回転
を始めた当初は、捻る手段33は動作しないが、捻る手
段34が捻り終わったならば、捻る手段32が動作を開
始する以前に、捻る手段33は捻る手段34の回転角度
迄、捻れる.
尚、第3の請求項でいう、端部分を往復運動させる手段
というのは、その手段が薄片に与える力の作用点が薄片
の端部分にあるという、限定された意味ではない.その
手段が与える力によって鱈接に生じる運動が、端部分を
往復運動させる運重である、という意味である.
従って、例えば第1の実施例の上側支持片14と、下側
支持片15が薄片11の端でなく、端より少し中央aこ
寄っていても、送風効果は得られるC第4の請求項の実
施例]
第4の請求項は第2図〜第12図の実施例を具体的に実
現する2@目の方法である.
第4の請求項は、薄片を往復運動させる手段と薄片を湾
曲又は傾斜させる手段と、を有し、湾曲又は傾斜させる
手段によって、薄片の移動方向の面の一部分又は全部分
を送風方向に傾斜させる、送JIL器である.
往復運動させる薄片の部分は、第3の請求項では送風方
向側の端部分と送風方向側の端部分の2箇所であったが
、第4の請求項では特に躍定されない1箇所の部分であ
る.
例えば第2図の薄片2の動作は、送風方向側のfi!部
分を往復運動させながら、厘片2をM斜手段で傾斜させ
ても実現できるし、送風方向側の端部分を往復運動させ
ながら、薄片2を傾斜手段で傾斜させても実現できる.
更に、薄片2の中央部を往復運動させても実現できる.
第16図は第4の請求項の第1の実施例で、薄片41の
中央部分を2枚の支持片43によって支えている.支持
片43は固定板42に取付けられていて、駆動手段44
によって固定板42側へ折り曲げられたり、薄片4l側
へ折り戻され、このため薄片41の中央部分は、上下へ
往復運動する.駆動手段45は薄片41を傾斜させる手
段である.iI片41を上へ移動する時は、駆動手段4
5によって薄片41を送風方向側へ傾斜させる.iI片
41を下へ移動させる時は、薄片4】を送風方向側へ傾
斜させる.つまり送風方向側の端部分が、送風方向側の
往復の両方向の移動時ζこ対して前方に位置するように
傾斜させる.この方法によって薄片41は第2図の薄片
2と同じ勅冬尤1 謀Iaナλ7↓侃アもス
次Iこ薄片を湾曲させる手段の一例を説明する.第17
図(a)の47は弾性を有する薄い金属片であり、48
は圧電素子である.圧電素子48はその両端が金属片4
7にスポット溶接等の方法で固定されている.
よく知られているように圧電素子は電圧を印加すると伸
張収縮する.
第17図の圧電素子48に電圧を印加すれば、圧電素子
は伸張収縮し、圧電素子の両端が固定されている金属片
は、第17図(b)や第17図(C)のように湾曲する
.
第17図の組合せを湾曲させる手段として用いて薄片に
張り付けるか、或いは、圧電素子を湾曲させる手段とし
て用いて、薄片を弾性のある金属片で構成し、薄片に圧
電素子を張り付ける.第18図は湾曲する薄片を用いた
第4の請求項の第2の実施例で、第15図で説明した実
施例と類似の送m器である.
第18図は、3枚の薄片を一本の軸に放射状に組合せて
あり、軸には薄片53を捻る手段54が1箇所段けられ
ている.
捻る手段54によって薄片53を捻ると、第18図の送
風器を上から見れば、薄片53は往復運動する.捻る動
作と同時に、送風方向側の端部分が、送風方向側の往復
の両方向の移動時に対して前方に位置するように薄片5
3を湾曲させれば、第3図の薄片と類似の動きをする.
従って薄片53で送風することができる.
第18図の3枚の薄片の枚数を増せば、送風量も増すし
、第15図(a)のfill35と紹合せれば送風の効
率が増す.
向、第4の請求項の薄片を湾曲又は傾劇させる手段は、
結果として薄片の端部分を移動させる.例えば第16図
の実施例に位置するように、駆動手段45は薄片41を
傾斜させると同時に、薄片41の送風方向側の端部分を
移動させる.従って、巨視的に見ればjfr4の請求項
の送風器は第3の請求項に含まれる.しかし、その手段
が与える力によって直接に生じる運動は、薄片を傾斜さ
せる運動であり、この相違点が第4の請求項の特徴であ
[第5の請求項の実施例コ
第5の請求項は、第2図〜第12図の実施例を具体的に
実現する3番目の方法である.第5の請求項は、移動さ
せると共に湾曲又は傾斜させる手段で、薄片を駆動する
.
第4の請求項は、薄片を往復運動させる手段と、薄片を
湾曲又は傾斜させる手段とで、薄片を駆動していて、薄
片を往復運動させる手段と、薄片を湾曲又は傾斜させる
手段とが、物理的に分離されていた.
しかし、第5の請求項では、移動させる手段と湾曲又は
傾斜させる手段は物理的に分離できず、移動させると共
に湾曲又は傾斜させる手段、として一体書こなっている
.この点が第5の請求項と第4の請求項の違いである.
第5の請求項の第1の実施例の・送風器の斜視図を第1
9図に示す.
第19図の薄片201の側面は耳のように突き出してい
る.この部分を耳部と呼び、第19図に示すように20
2の符号を付る.耳部202は支持片203と支持片2
04で支えられている.203と204の支持片は第1
7図のような金属片と圧電素子で構成され、電気的に湾
曲可能である.支持片203の送風方向の端と支持片2
04の送風方向と反対の端は固定されている.このため
203と204の支持片が湾曲すると耳部202は上下
へ移動する.
支持片203は、支持片204より弾性が有り、電ス的
に湾曲した状態で外部加ら力が加わると、力によって変
形し湾曲する.
第20図は第1の実施例の送風器の動作を示し、第19
図の耳部202と、203と204の支持片の横から見
た状態を表し、時間を追って図示している.破線は耳部
202の位置を比較するための補助線である.
第20図(a)では、支持片203と支持片204の双
方が電気的に同じ程度に下に向かって湾曲し、耳部20
2を水平に保持する.このため薄片201も水平に保た
れる.
第20図(a)から第20図(d)までは、“持片20
3には第20図(a)と同じ電a的信』が加えられ続け
る.
一方、支持片204には、第20図(a)で1下方に湾
曲しているが、上方に湾曲するように1気的信号が時間
と共に変化し、v.20図(b) 一第20図(d)に
示すように支持片204は上ノに向かって湾曲する.
このため、支持片203は支持片204によ−て無理や
り変形され、第20図(b)〜第20δ(d)に示すよ
うに、支持片204に引きずらtるように上方ニ湾曲す
る.
203と204の支持片に支えられた耳部2C2は、支
持片204のmgR的湾曲の力と、支持月203のa械
的弾性Iこよって定まる傾斜角度で傅劇したまま、下か
ら上に移動する.従って薄片201も送風方向に傾斜し
たまま上方に移動する.薄片201は第11図の(a)
から(d)までこのように動く.
第20図(e)で、支持片203は上方に湾曲するよう
電気的信号が加えられ、支持片204と同じ程度に湾曲
する.このため耳部202は水平に保たれ、薄片201
も水平に保たれる.以上で半周期の動作は完了し、続い
て第20図(f)〜tIC20図(i)の残りの半周期
の動作を行なう.ii片201は第11図のように動き
、送風方向に送風することができる.
上記の方法は、耳部202の移動と傾斜の両方を支持片
204が全て行なっており、移動手段と傾斜手段を分離
できない.従って第20図の実施例は、第4の請求項の
移動手段と傾斜手段を分離できる方法に該当しない.
もし、支持片203を力で無理やり曲げず、支持片20
4より少し遅れて、支持片203を電貿的に曲げて動作
させれば、支持片203が薄片の送風方向側の端部分を
往復運動させる手段となり、支持片204が薄片の送風
方向側の端部分を往復運動させる手段となり、第3の請
求項と同一の方法になる.
この方法であっても、動作の状!lは第20図の(a)
〜(1)と全く同一となる.
即ち、第19図の構威で、203と204の支持片の電
気的駆動方法により第3の請求項になったりfi5の請
求項になる.
尚、支持片203は支持片204より弾性を要求され、
又、支持片203は送風方向に伸縮する必要が有るので
、支持片203の送風方向側の固定位置近くの部分や耳
部202との接続部を波打つように曲げたりして、柔軟
性を持たせる.第20図の支持片204は圧電素子の例
を述べたが、電気的に湾曲させることができる素子であ
れば他の素子で駆動することもできる.又、支持片20
3は、a.弾性が有り、b.二つの安定点を持つ素子、
であれば他の素子で駆動することもできる.
例えば、磁性素子を張り付けた弾性の有る金属片を支持
片(203Aと付する)として用い、薄片の上下に電磁
石を取付けて支持片203Aの駆動手段としても良い.
は下側の電磁石で支持片203Aを下に吸引する.第2
0図(e)では、上側の電磁石で支持片203Aを上に
吸引する.第20図(a)〜第20図(d)では、下側
の電磁石の吸引力と支持片の弾性のため支持片203A
は支持片204に引きずられるようにして上へ移動する
.このため耳部202は、ili風方向書こ傾斜したま
ま、下から上に移動し、薄片も同様の動きをし、送風す
ることができる.
又、ばね等の機械的手段で、上端と下端で安定でその中
途では以前の位liに対して復帰しようとする機構を、
支持片(203Bと付する)として用いても良い.
このような支持片203Bを、支持片204で引きずる
ように上下へ移動させる.
第20図(a)では支持片203Bは下端の安定位置に
ある.支持片203Bは第20図(b)から第20図(
d)までは上に引っぱられると下へ戻ろうとするが、そ
れ以上上へ引っぱられると、安定する.このように機械
的手段でも支持片203と同様の機能を果たせる.
第21図(a)は、第2の実施例で、薄片211に21
5と216の湾曲させる手段を張り付け、第5図や第1
2図のように薄片を跳ね反らすようにした例である.
v.21図(b)は、第3の実施例で、耳部に湾曲させ
る手段222を張り付け、第21図(a)と同様に薄片
を跳ね反らすようにした例である.1R2と第3の実施
例も第1の実施例と同様に、送風方向側の支持片(第2
の実施例の213と、第3の実施例の223)を或る方
向に湾曲するように電気信号を加えたまま、送風方向側
の支持片(1IE2の実施例の214と、第3の実施例
の224)を他方向に向かって電気的に湾曲させ、送風
方向側の支持片の湾曲を強制的に変える.第21図(c
)の第4の実施例は、第18図と類似の例で、軸に取付
けられた薄片231を、234と235の捻る手段で、
円周方向に捻って回転させる.薄片231の軸への取付
け部232と中間部233は円周方向の捻りに対して弾
性を有する部分である.
第4の実施例の捻る手段234が第20図の支持片20
3に相当し、捻る手段235が支持片204に相当する
.
送風方向側の捻る手段234を或る方向に捻ったまま、
送風方向側の捻る手段235を電気的に他方向に捻る.
薄片231の軸への取付け部232は捻る手段235に
引きずられるようにして捻られ、回転する、薄片231
を上力》ら見ると、傾斜した状態で移動する.
[第6の請求項の実施例]
第6の請求項は、第3の請求項の二つの往復運動させる
手段に、圧電素子を用いた送風器である.第22図(b
)は第6の請求項の第1の実施例で、コの字形に組合わ
された4枚の薄片の集合体61を、62と63の圧電素
子を含む支持片で支えている.支持片62の上端と支持
片63の下端は固定されている.
62と63の支持片に電圧を印加すると、支持片は湾曲
し、薄片の集合体61は上下動する.支持片62は薄片
の集合体6Iの送風方向側の端部分を上下動し゜、支持
片63は薄片の集合体61の送風方向側の端部分を上下
動する.送風方向側の端部分を、送風方向側の端部分よ
り先行して移動させれば、薄片の集合体61によって送
風できる.
各薄片の間に第22図(a)に示すコの字形に組合わさ
れた3枚の仕切板64を挿入し、第22図(c)のよう
に実線で示した薄片と破線で示した仕切板を交互に組合
せると、第7図で示した薄片と仕切板の組合わせと同じ
となり、送風の効率が増す.
第23図は第22図(b)の支持片の別の例で、第23
図(a)は湾曲した支持片の例である.第23図(b)
は板状の支持片の例である.支持片71の中央部と薄片
の集合体61はスポット溶接等の方法によって接続され
ている.このため支持片71は湾曲させることができる
.72〜74の支持片も支持片71と同様に湾曲できる
.第23図(C)は方形の支持片の例である.
何れの支持片も圧電素子を含み、電圧を印加すると、湾
曲し、薄片の集合体61を上下動する.各薄片の間に仕
切板64を挿入する.
第23図の支持片は一部を省略することもできる.例え
ば第23図(a)の67と69の支持片は、66と68
の支持片の駆動力が強ければ省略できる.
第24図は第6の請求項の1R2の実施例で、薄片81
に82と83の板状の支持片が取付けられている.82
と83の支持片は圧電素子を含み、電圧を印加すると、
湾曲し、薄片81を上下動する.支持片82は送風方向
側の端部分を上下動し支持片83は送風方向側のt#部
分を上下動する.
薄片81の送風方向側の端部分を、送風方向側の13i
8FM分より先行して移動させれば、蓮片8】で送風で
きる.
又、薄片84と薄片85にも薄片81と同様に圧電素子
を含む支持片が取付けられている.各薄片は各支持片を
湾曲させることにより個別に上下動できる.
3枚の薄片が第9図に示した3枚の薄片と同様な動きを
するように、3枚の薄片に取付けられた支持片に印加す
る電圧を個別に制御すると、仕切板なしで第24図の送
風器は効率良く送風できる尚、薄片81と薄片85は同
一の動きをするので連結して一組の支持片で駆動するこ
ともできるが、第24図の実施例では製造の容昌さ力)
ら各薄片毎に支持片を設けている.
[第7の請求項の実施例]
第7の請求項の送風器は、薄片を湾曲又は傾斜させる手
段と、往復運動させる手段とに圧電素子を含み、圧電素
子に電圧を印加することにより薄片の移動方向の面の一
部分又は全部分を送風方向に傾斜させて、薄片を往復運
動させる.圧電素子は、第17図の説明でも明らかなよ
うに薄い平板状に成形可能であり、薄片と組合せても、
外形が殆ど大きくならない.このため送ffi器を小さ
くすることができる.
第25図(a)は第7の請求項の第1の実施例で、湾曲
させる手段93の張合わされた薄片9】を支持片92で
支え、支持片92の先端を固定している.
支持片92がa:&運動させる手段であり、支持片92
は圧電素子を含み、支持片に電圧を印加すると、湾曲す
る.第25図(b)はその状態を送風方向側から見た図
で、実線と破線に示すように、蓮片91は往復運動する
.
湾曲させる手段93は圧電素子で作られていて、湾曲さ
せる手段93に電圧を印加すると、第25図(C)に示
すように薄片91は上下に湾曲する.支持片92と湾曲
させる手段93に印加する電圧を制御して薄片91を第
3図に示すように動カ)せば送風することができる.
第26図(a)は、第2の実施例で、薄片91に張付け
られた湾曲させる手段95を支持片94で支えている.
支持片94は第1の実施例と同様に圧電素子を含み、湾
曲させる手段95を往復運動させる.
湾曲させる手段95は、圧電素子で作られていて電圧の
印加によって湾曲する.il片91には裂目が入れられ
ているので、湾曲させる手段95が湾曲すると薄片91
は傾斜する.
支持片94と湾曲させる手段95に印加する電圧を制御
して薄片91を第2図に示すように動かせば4mするこ
とができる.湾曲させる手段95は薄片91の表面に張
付けられているが、裏面に張付けてもよい.
第26図(b)は第26図(a)と同様に支持片96で
往復運動させ、湾曲させる手段97で薄片91を傾刺さ
せる.第26図(b)の薄片91書とは裂目が入ってい
ないが、湾曲させる手段97と薄片91の間に台座を挟
み、傾斜可能にしている.
第26図(C)は支持片98を一枚の板状にした例であ
る.支持片98は円弧の形に上下に反る.1R26図(
d)は支持片100を傾斜させて取付けた例である.
第26図(e)は支持片102を湾曲して取付番ナた例
である,支持片102を湾曲して取付けることにより台
座が不要となる.電圧を印加することにより支持片10
2の反りをより湾曲させたり、反りを直線となるよう戻
すことにより、薄片91は往復運動する.m曲させる手
段103は薄片91と一体化して成形されている.薄片
91には裂目が刻まれているため、湾曲させる手段10
3を湾曲すると、薄片91は傾斜する.
第26図(b)〜(e)の各支持片と湾曲させる手段は
圧電素子を含み、電圧を印加すると湾曲1ト !
尚、第25図と第26図の実施例は、1枚の薄片を駆動
する例であるが、第22図に示したように、コの字形に
棋数の薄片を組合せて、仕切板を挿入し、組合せた薄片
の最上部の薄片と最下部の薄片を、第25図又は第26
図の支持片と湾曲させる手段とで駆動することにより、
送風の効率を上げることができる.
又、薄片を禎数枚重ね、各薄片を第8図〜第10図のよ
うに隣合った薄片を半周期ずらして動かすことにより、
送風の風量を増すことができる.1R27図は、第6の
請求項と第7の請求項を同時に実施した例で、支持片1
12と支持片113は第6の請求項で説明したように、
薄片111の送風方向側の端部分と送風方向側の端部分
を往復運動させる.Wl曲させる手段114は薄片11
1に張り付けられていて、薄片111を湾曲させる.
112と113の支持片は圧電素子を含み、湾曲させる
手段114は圧電素子で作られている。There is no need for a partition plate to separate the thin sections. Figures 9 and 10 show examples using three and four thin pieces, respectively. Each of the flakes that match gJ is shifted by half a cycle from each other and moves in the same way as the flakes in Figure 2. Figures 2 to 10 are examples in which the moving distance of the flake is equal to the inclination of the flake.
The figure shows an example in which the moving distance is greater than the slope of the thin section. Also, air can be blown even if the inclination of the flakes is greater than the distance traveled. In addition, even in the embodiment in which the upper and lower sides are blocked by walls shown in FIGS. 6 to 11, the thin pieces can be bent and operated as shown in FIGS. 3 to 5 to blow air. Can be done. Furthermore, in the embodiments shown in Figures 8 to 11, ventilation can be provided even if the upper and lower walls are removed. However, the efficiency of air blowing will decrease. [Example of the second claim] The first claim is a blower that pushes out air in the blowing direction, but the second claim is a blower that pushes out air and a. drawing in air from a direction opposite to the blowing direction; b. This article relates to a feeding MH that performs the operation of sending out the drawn air in the blowing direction by utilizing the inertia of motion obtained by the drawn air. FIG. 12 is an embodiment of the second claim, and is a diagram showing the operation of the thin piece 3 over time. Cloud-like figure 4 is flake 3
represents the air drawn in, and the arrow represents the movement of the air. The broken line is an auxiliary line for comparing the operating position of the thin piece 3. In FIG. 12(b), the end portion of the thin piece 3 in the air blowing direction moves upward, and air 4 is drawn into the position before movement on the surface (lower surface) on the opposite side of the moving direction of the thin piece 3. It will be included. The reason why the air is drawn in is because the movement of the thin piece 3 lowers the air pressure at the position before movement, and air is forced in from the direction opposite to the direction of air blowing. In FIG. 12(c), the 12th
As shown in Figure (b), the thin piece 3 is deformed so that the moving speed of the air that is drawn in is not lost but is accelerated, creating an area with lower pressure closer to the direction of the air flow, and drawing in the air. In this way, areas with low gas pressure are created one after another in the direction of air flow, accelerating the drawn air and increasing the inertia of air movement. In Fig. 12(e), the thin piece 3 is bent to create an area of low atmospheric pressure. Thin piece 3 cannot create an area of lower atmospheric pressure on the surface opposite to the direction of movement (lower surface). For this reason, in the next Figure 12(f), the tip of the deflected thin piece 3 on the side in the blowing direction is returned straight, and the air drawn up to the tip of the thin piece 3 is pushed out in the blowing direction as if by hitting. In the state shown in FIG. 12(f), the air with inertia passes through the lower surface of the thin piece 3 and moves in the blowing direction for a while.
Stop the movement and deformation of thin piece 3. This completes a half cycle of the flake's reciprocating motion. Once the air movement has weakened, the next half-cycle operation starting from Figure 12(g) begins. Generally, when air is pushed out, the pushed air tends to diffuse. On the other hand, if you lower the atmospheric pressure and draw in air, it will concentrate in one place and move. For this reason, it is more efficient to move air by lowering the pressure and drawing it in rather than pushing it out. The air blower according to the second claim has good air blowing efficiency whether the thin piece is operated in an open space or in a space closed by walls on the top and bottom. In the above embodiment, the thin piece 3 is warped in FIG. 12(e), but it can also be moved from FIG. 12(d) to FIG. 12(f)i without being warped. However, it is more efficient to bounce it. [Embodiment of the third claim] The third claim is a first method for specifically realizing the embodiments of FIGS. 2 to 12. As shown in FIG. 2, means for reciprocating the end portion of the thin piece 2 on the side in the blowing direction; and means for reciprocating the end portion of the thin piece on the side in the blowing direction;
If each means is operated at a different time, the thin piece 2 will move as shown in FIG. The time lag is made so that the end portion on the side of the air blowing direction is moved before the end portion on the side of the air blowing direction.
However, be careful not to go too far ahead so that the end of the thin piece on the side of the air blowing direction is behind the end of the thin piece on the side of the air blowing direction with respect to the direction of movement. According to the third claim, since the end portion of the thin piece on the side of the air blowing direction and the end portion on the opposite side are reciprocated, as shown in FIGS.
In order to curve the irises as shown in Figures 5 and 12, the flakes must have appropriate elasticity. In addition, in order to make a plurality of thin pieces perform the same operation as shown in FIG. 7, all the thin pieces are connected and reciprocated by a set of means. One set of means consists of a means for driving the end portion on the side in the air blowing direction and a means for driving the end portion on the opposite side. Furthermore, in order to make the two flakes move differently as shown in FIG. 8, two sets of reciprocating means are required. As shown in Figures 9 and 10, when adjacent lamellas move half a cycle apart, every other lamina is connected and driven by two sets of reciprocating means. Next, a specific example will be explained. FIG. 13 shows a first embodiment of the third claim, and FIG.
13(a) is a perspective view of the blower, and FIG. 13(b) is a side view. The Ts piece l1 is supported by two upper support pieces 14 and two lower support pieces 15, and is attached to fixed plates 12 and 13. The support piece 14 is bent toward the fixed plate 12 side or folded back toward the fixed plate 13 side by the drive means 16, so that the welded portion of the thin piece 11 on the side in the air blowing direction reciprocates up and down. The support piece 15 is bent toward the fixed plate 13 side and folded back toward the fixed plate 12 side by the driving means 17, and the end portion of the thin piece 11 on the side of the air blowing direction moves reciprocating up and down. The driving means 16 and 17 operate as follows. a. Drive means 16-1 return, drive means 17-1 return, b. Drive means 1
6-1 return, drive means 17-1 return, C. Drive means 16-1, drive means 17-1 return, d. Drive means 16 - one song, drive means 17 - one song, e. Drive means 16 - one return, drive means 17 - one turn. Return indicates the movement of folding back the support piece, and curve indicates the movement of bending. This action causes the thin piece 11 to move as shown in Figure 2, allowing air to be blown in the direction of air. The fixed plates 12 and 13 are
It serves as the wall in Figure 6. FIG. 14 shows a second embodiment, in which iron pieces 24 and 25 are attached to the thin piece 21 and semi-fixed with a spring. Thin piece 21
The end portion on the side of the air blowing direction is swung up and down by electromagnets 26 and 28, and the end portion on the side of the air blowing direction is swung up and down by electromagnets 27 and 29. Ru. If the thin piece 21 is moved (tfi) so that the end portion of the thin piece 2l on the side of the air blowing direction is located forward when moving in both directions of the air blowing direction, the current l applied to the electromagnets 26 to 29 is The thin piece 21 moves in a second manner and can blow air. FIG. 15(b) shows the third embodiment, in which three sheets are combined radially around a single shaft, and the shaft has 3 to 34 means for twisting the sheets along the circumference of the shaft. There are designated locations. The end portions of the three thin pieces on the side in the air blowing direction are twisted by the twisting means 2, and the end portions on the side in the air blowing direction are twisted by the twisting means 34. By twisting, the flakes move in the circumferential direction. If the twisting means 34 is operated before the twisting means 32, the portion of the thin piece 31 on the side of the air blowing direction is located forward of the end portion of the thin piece 31 on the side of the air blowing direction with respect to the one movement direction. If you look at the blower in FIG. 15(b) from above, you can see that the thin piece 31
teeth! It moves in the same way as i-piece 2 in Figure 2. Therefore, flake 31
You can send 1 with . Since the three flakes are twisted in the same way by the twisting means 32 and 34, air can be blown using the three flakes. If you increase the number of thin pieces attached to the shaft, the amount of air blown will also increase. Furthermore, Fig. 15(a)
Insert the shaft to which the thin piece 31 of FIG. 15(b) is attached to the simple 35 to which the partition plate 36 as shown in FIG. 15(C) is attached.
), the configuration is the same as the thin strips separated by partition plates shown in Figure 1It7, and the efficiency of air blowing is improved.
The twisting means 33 shown in FIG. 15(b) is a means for moving the flakes so as to bounce them as explained in FIG. Also, as shown in Fig. 12(C), the central part of the thin piece is curved to draw in air. Initially, when the twisting means 34 starts twisting, the twisting means 33 does not operate, but once the twisting means 34 has finished twisting, the twisting means 33 rotates the twisting means 34 before the twisting means 32 starts its operation. It can be twisted up to the rotation angle. Note that the term "means for reciprocating the end portion" in the third claim does not mean that the point of application of the force exerted by the means on the thin piece is at the end portion of the thin piece. This means that the movement that occurs in the cod joint due to the force exerted by the means is the force that causes the end portion to move back and forth. Therefore, even if, for example, the upper support piece 14 and the lower support piece 15 of the first embodiment are not located at the ends of the thin piece 11 but are slightly closer to the center a than the ends, the air blowing effect can still be obtained. Embodiment] The fourth claim is a second method for specifically realizing the embodiment of FIGS. 2 to 12. A fourth claim includes means for reciprocating the thin piece and means for curving or tilting the thin piece, and the means for curving or tilting causes a part or all of the surface of the thin piece in the moving direction to be tilted in the blowing direction. It is a sending JIL device. In the third claim, the parts of the thin piece to be reciprocated are two parts, the end part on the side of the air blowing direction and the end part on the side of the air blowing direction, but in the fourth claim, it is one part which is not particularly defined. be. For example, the movement of the thin piece 2 in FIG. 2 is fi! on the side of the air blowing direction. This can be achieved by tilting the thin piece 2 with an M diagonal means while reciprocating the parts, or by tilting the thin piece 2 with a tilting means while reciprocating the end part on the side of the air blowing direction. Furthermore, this can be achieved by reciprocating the central portion of the thin piece 2. FIG. 16 shows a first embodiment of the fourth claim, in which the central portion of the thin piece 41 is supported by two supporting pieces 43. The support piece 43 is attached to the fixed plate 42 and the driving means 44
The thin piece 41 is bent toward the fixing plate 42 side or folded back toward the thin piece 4l side, so that the central portion of the thin piece 41 reciprocates up and down. The driving means 45 is a means for tilting the thin piece 41. When moving the iI piece 41 upward, the driving means 4
5, the thin piece 41 is tilted toward the air blowing direction. When moving the iI piece 41 downward, tilt the thin piece 4] toward the air blowing direction. In other words, the end portion on the side of the air blowing direction is tilted so that it is located forward when moving in both directions of the air blowing direction. By this method, the thin piece 41 is the same as the thin piece 2 in FIG. 17th
47 in figure (a) is a thin elastic metal piece, and 48
is a piezoelectric element. The piezoelectric element 48 has metal pieces 4 at both ends.
It is fixed to 7 using methods such as spot welding. As is well known, piezoelectric elements expand and contract when voltage is applied. When a voltage is applied to the piezoelectric element 48 in Fig. 17, the piezoelectric element expands and contracts, and the metal piece to which both ends of the piezoelectric element are fixed becomes as shown in Fig. 17(b) and Fig. 17(C). Curved. The combination shown in FIG. 17 is used as a means for curving the thin piece, or the piezoelectric element is made of an elastic metal piece, and the piezoelectric element is stuck on the thin piece. FIG. 18 shows a second embodiment of the fourth claim using a curved flake, and is a transmitter similar to the embodiment described in FIG. 15. In FIG. 18, three thin pieces are combined radially around a single shaft, and a means 54 for twisting the thin pieces 53 is provided at one point on the shaft. When the thin piece 53 is twisted by the twisting means 54, the thin piece 53 moves reciprocatingly when the blower shown in FIG. 18 is viewed from above. At the same time as the twisting operation, the thin piece 5 is moved so that the end portion on the side of the air blowing direction is positioned forward with respect to the reciprocating movement in both directions on the side of the air blowing direction.
If 3 is curved, it will move similar to the flake in Figure 3.
Therefore, air can be blown using the thin piece 53. Increasing the number of the three thin plates shown in Fig. 18 will increase the amount of air flow, and if they are combined with fill 35 in Fig. 15 (a), the efficiency of air blowing will increase. The means for curving or tilting the thin piece according to the fourth claim,
As a result, the edges of the flakes are moved. For example, as in the embodiment shown in FIG. 16, the driving means 45 tilts the thin piece 41 and simultaneously moves the end portion of the thin piece 41 on the side of the air blowing direction. Therefore, from a macroscopic perspective, the blower in claim jfr4 is included in the third claim. However, the movement directly caused by the force exerted by the means is a movement that tilts the flakes, and this difference is a feature of the fourth claim. This is the third method for specifically implementing the embodiments shown in FIGS. 2 to 12. The fifth claim is a means for moving and curving or tilting the thin piece. A fourth claim is a means for reciprocating the thin piece, and a means for curving or tilting the thin piece, the means for driving the thin piece, and the means for reciprocating the thin piece and the means for curving or tilting the thin piece, They were physically separated. However, in the fifth claim, the means for moving and the means for curving or tilting cannot be physically separated, and are written as a unit for moving and curving or tilting. This point is the difference between the fifth claim and the fourth claim. A perspective view of the blower according to the first embodiment of the fifth claim is shown in the first embodiment.
It is shown in Figure 9. The side surface of the thin piece 201 in FIG. 19 protrudes like an ear. This part is called the ear part, and as shown in Fig.
Add the sign 2. The ear part 202 is connected to the support piece 203 and the support piece 2.
It is supported by 04. The support pieces 203 and 204 are the first
It is composed of a metal piece and a piezoelectric element as shown in Figure 7, and can be electrically bent. The end of the support piece 203 in the ventilation direction and the support piece 2
The end of 04 opposite to the air blowing direction is fixed. Therefore, when the support pieces 203 and 204 are bent, the ear portion 202 moves up and down. The support piece 203 is more elastic than the support piece 204, and when an external force is applied to the support piece 203 in an electrically curved state, the support piece 203 deforms and curves due to the force. FIG. 20 shows the operation of the blower of the first embodiment;
The ears 202 and support pieces 203 and 204 shown in the figure are shown as viewed from the side, and are illustrated over time. The broken line is an auxiliary line for comparing the position of the ear portion 202. In FIG. 20(a), both the support piece 203 and the support piece 204 are electrically curved downward to the same degree, and the ear portion 20
Hold 2 horizontally. Therefore, the thin piece 201 is also kept horizontal. From FIG. 20(a) to FIG. 20(d), “holding piece 20
3 continues to be added with the same message as in Figure 20(a). On the other hand, although the supporting piece 204 is curved downward by 1 in FIG. 20(b) - As shown in FIG. 20(d), the support piece 204 is curved toward the top. Therefore, the support piece 203 is forcibly deformed by the support piece 204, and curves upward as if being dragged by the support piece 204, as shown in FIGS. 20(b) to 20(d). The ear part 2C2 supported by the support pieces 203 and 204 moves from bottom to top while operating at an inclination angle determined by the mgR bending force of the support piece 204 and the mechanical elasticity I of the support moon 203. Moving. Therefore, the thin piece 201 also moves upward while remaining inclined in the air blowing direction. The thin piece 201 is shown in FIG. 11(a).
It moves like this from to (d). In FIG. 20(e), an electrical signal is applied to the support piece 203 to curve it upward, and the support piece 203 curves to the same extent as the support piece 204. Therefore, the ears 202 are kept horizontal, and the thin pieces 201
is also kept horizontal. This completes the half-cycle operation, and then the remaining half-cycle operations shown in FIGS. 20(f) to 20(i) are performed. The ii piece 201 moves as shown in FIG. 11 and can blow air in the direction of air. In the above method, the supporting piece 204 performs both the movement and tilting of the ear portion 202, and the moving means and the tilting means cannot be separated. Therefore, the embodiment shown in FIG. 20 does not fall under the method of separating the moving means and the tilting means according to the fourth claim. If you do not forcibly bend the support piece 203,
If the supporting piece 203 is bent and operated electrically a little later than 4, the supporting piece 203 becomes a means for reciprocating the end portion of the thin piece on the side of the airflow direction, and the supporting piece 204 moves the end portion of the thin piece on the side of the airflow direction. This is a means for reciprocating the end portion, and is the same method as in the third claim. This method even works! l is (a) in Figure 20
~(1) is exactly the same. That is, in the structure shown in FIG. 19, depending on the method of electrically driving the support pieces 203 and 204, the third claim or fi5 claim can be obtained. Note that the support piece 203 is required to be more elastic than the support piece 204,
In addition, since the support piece 203 needs to expand and contract in the direction of air flow, the part of the support piece 203 near the fixed position on the side of the air flow direction and the connection part with the ear part 202 are bent in a wavy manner to make it flexible. Let. Although the supporting piece 204 in FIG. 20 is an example of a piezoelectric element, it can be driven by any other element as long as it can be electrically bent. Also, the support piece 20
3 is a. has elasticity; b. An element with two stable points,
If so, it can be driven by other elements. For example, an elastic metal piece to which a magnetic element is attached may be used as the support piece (designated 203A), and electromagnets may be attached to the top and bottom of the thin piece to serve as driving means for the support piece 203A. The lower electromagnet attracts the support piece 203A downward. Second
In Figure 0(e), the upper electromagnet attracts the support piece 203A upward. In FIGS. 20(a) to 20(d), the supporting piece 203A is
moves upward as if being dragged by the support piece 204. Therefore, the ears 202 move from bottom to top while remaining tilted in the wind direction, and the thin pieces move in the same manner, allowing air to be blown. Also, by using mechanical means such as springs, we can create a mechanism that is stable at the upper and lower ends and returns to its previous position in the middle.
It may also be used as a support piece (designated 203B). The supporting piece 203B is dragged up and down by the supporting piece 204. In FIG. 20(a), the support piece 203B is in a stable position at the lower end. The support piece 203B is shown in FIGS. 20(b) to 20(
If it is pulled upward up to d), it will try to return downward, but if it is pulled upward any further, it will stabilize. In this way, mechanical means can also perform the same function as the support piece 203. FIG. 21(a) shows the second embodiment, in which 21
Attach the bending means of 5 and 216, and
As shown in Figure 2, this is an example in which the flakes are made to bounce. v. FIG. 21(b) shows a third embodiment in which a bending means 222 is attached to the ear portion and the thin piece is bent in the same way as in FIG. 21(a). 1R2 and the third embodiment, as well as the first embodiment, the support piece (second
While applying an electric signal to bend the support pieces (213 in the example 1IE2 and 223 in the third example) in a certain direction, Example 224) is electrically bent in the other direction to forcibly change the curvature of the support piece on the side of the air blowing direction. Figure 21 (c
) is similar to FIG. 18, in which a thin piece 231 attached to a shaft is twisted by twisting means 234 and 235,
Twist and rotate in the circumferential direction. The attachment portion 232 of the thin piece 231 to the shaft and the intermediate portion 233 are portions that have elasticity against twisting in the circumferential direction. The twisting means 234 of the fourth embodiment is the support piece 20 of FIG.
3, and the twisting means 235 corresponds to the support piece 204. While twisting the wind blowing direction side twisting means 234 in a certain direction,
The twisting means 235 on the side of the air blowing direction is electrically twisted in the other direction.
The attaching portion 232 of the thin piece 231 to the shaft is twisted and rotated by being dragged by the twisting means 235.
If you look at it from above, it will move at an angle. [Embodiment of the sixth claim] The sixth claim is an air blower in which a piezoelectric element is used for the two reciprocating means of the third claim. Figure 22 (b
) is the first embodiment of the sixth claim, in which an assembly 61 of four thin pieces combined in a U-shape is supported by supporting pieces 62 and 63 containing piezoelectric elements. The upper end of the support piece 62 and the lower end of the support piece 63 are fixed. When a voltage is applied to the support pieces 62 and 63, the support pieces curve and the thin piece assembly 61 moves up and down. The support piece 62 moves up and down the end portion of the thin piece assembly 6I on the side of the air blowing direction, and the support piece 63 moves up and down the end portion of the thin piece assembly 61 on the side of the air blowing direction. If the end portion on the side of the air blowing direction is moved in advance of the end portion on the side of the air blowing direction, air can be blown by the aggregate 61 of thin pieces. Three partition plates 64 combined in a U-shape as shown in FIG. 22(a) are inserted between each thin piece, and the thin pieces shown by solid lines and the partitions shown by broken lines are inserted as shown in FIG. 22(c). If the plates are alternately combined, the result will be the same as the combination of thin pieces and partition plates shown in Figure 7, and the efficiency of air blowing will increase. FIG. 23 is another example of the support piece shown in FIG. 22(b).
Figure (a) is an example of a curved support piece. Figure 23(b)
is an example of a plate-shaped support piece. The central portion of the support piece 71 and the thin piece assembly 61 are connected by a method such as spot welding. Therefore, the support piece 71 can be curved. Support pieces 72 to 74 can also be curved in the same way as support piece 71. Figure 23(C) is an example of a rectangular support piece. Each support piece includes a piezoelectric element, and when a voltage is applied, it curves and moves the thin piece assembly 61 up and down. A partition plate 64 is inserted between each thin piece. Part of the support piece shown in Figure 23 can be omitted. For example, the support pieces 67 and 69 in FIG.
It can be omitted if the driving force of the supporting piece is strong. FIG. 24 is an embodiment of 1R2 of the sixth claim, in which the thin piece 81
Plate-shaped support pieces 82 and 83 are attached to the. 82
The support pieces 83 and 83 include piezoelectric elements, and when a voltage is applied,
It curves and moves the thin piece 81 up and down. The support piece 82 moves up and down at the end portion on the side of the air blowing direction, and the support piece 83 moves up and down on the t# portion on the side of the air blowing direction. The end portion of the thin piece 81 on the side of the ventilation direction is connected to 13i on the side of the ventilation direction.
If you move it ahead of 8FM, you can blow air with Lotus Piece 8]. Also, support pieces containing piezoelectric elements are attached to the thin pieces 84 and 85, similarly to the thin piece 81. Each thin piece can be moved up and down individually by curving each supporting piece. If the voltage applied to the support pieces attached to the three thin pieces is individually controlled so that the three thin pieces move in the same way as the three thin pieces shown in FIG. The blower shown in the figure can blow air efficiently.Since the thin pieces 81 and 85 move in the same way, they can be connected and driven by a set of support pieces, but in the embodiment shown in FIG. force)
A supporting piece is provided for each thin section. [Embodiment of the seventh claim] The air blower according to the seventh claim includes a piezoelectric element in the means for curving or tilting the thin piece and the means for reciprocating the thin piece, and the thin piece is moved by applying a voltage to the piezoelectric element. A part or all of the surface in the direction of movement of the thin piece is tilted in the direction of the air flow to cause the thin piece to reciprocate. As is clear from the explanation of FIG. 17, the piezoelectric element can be formed into a thin flat plate shape, and even when combined with a thin piece,
The external size does not become large at all. Therefore, the transmitter can be made smaller. FIG. 25(a) shows a first embodiment of the seventh aspect, in which a thin piece 9 of a bending means 93 is supported by a support piece 92, and the tip of the support piece 92 is fixed. The support piece 92 is a:& movement means, and the support piece 92
contains a piezoelectric element, and when a voltage is applied to the support piece, it bends. FIG. 25(b) is a diagram of this state viewed from the direction of air flow, and the lotus piece 91 moves back and forth as shown by solid lines and broken lines. The bending means 93 is made of a piezoelectric element, and when a voltage is applied to the bending means 93, the thin piece 91 bends up and down as shown in FIG. 25(C). Air can be blown by controlling the voltage applied to the support piece 92 and the bending means 93 to move the thin piece 91 as shown in FIG. FIG. 26(a) shows a second embodiment in which a bending means 95 attached to a thin piece 91 is supported by a support piece 94.
The support piece 94 includes a piezoelectric element as in the first embodiment, and causes the bending means 95 to reciprocate. The bending means 95 is made of a piezoelectric element and bends when a voltage is applied. Since the thin film 91 is creased, when the bending means 95 bends, the thin film 91
is inclined. By controlling the voltages applied to the support piece 94 and the bending means 95 and moving the thin piece 91 as shown in FIG. 2, the length can be increased to 4 m. Although the curving means 95 is attached to the front surface of the thin piece 91, it may also be attached to the back surface. In FIG. 26(b), similarly to FIG. 26(a), the supporting piece 96 is moved back and forth, and the thin piece 91 is tilted by the bending means 97. The thin piece 91 shown in FIG. 26(b) does not have a crevice, but a pedestal is sandwiched between the bending means 97 and the thin piece 91, making it tiltable. FIG. 26(C) shows an example in which the support piece 98 is shaped like a single plate. The support piece 98 is curved vertically in an arc shape. 1R26 figure (
d) is an example in which the support piece 100 is installed at an angle. FIG. 26(e) is an example in which the mounting number is reduced by bending the support piece 102. By mounting the support piece 102 in a curved manner, a pedestal becomes unnecessary. By applying a voltage, the support piece 10
By making the warp of 2 more curved or returning the warp to a straight line, the thin piece 91 moves back and forth. The bending means 103 is molded integrally with the thin piece 91. Since the thin piece 91 is cut with a fissure, the means 10 for bending the thin piece 91
3, the thin piece 91 becomes inclined. Each of the supporting pieces and the bending means shown in FIGS. 26(b) to (e) includes a piezoelectric element, and when a voltage is applied, the bending unit bends once! The embodiments shown in FIGS. 25 and 26 are examples in which one thin piece is driven, but as shown in FIG. 25 or 26.
By driving with the support piece shown in the figure and the means for curving,
Air blowing efficiency can be increased. Also, by stacking several thin pieces and moving each thin piece by shifting the adjacent thin pieces by half a period as shown in Figures 8 to 10,
The air volume can be increased. Figure 1R27 is an example in which the sixth and seventh claims are implemented at the same time, and the support piece 1
12 and the support piece 113, as explained in the sixth claim,
The end portion of the thin piece 111 on the side of the air blowing direction and the end portion on the side of the air blowing direction are caused to reciprocate. The means 114 for bending Wl is the thin piece 11
1 to curve the thin piece 111. The support pieces 112 and 113 contain piezoelectric elements, and the bending means 114 are made of piezoelectric elements.
支持片113を支持片112より先行させて駆動ずる。The support piece 113 is driven in advance of the support piece 112.
又、或る方向への移動開始時には蓮片111の移動方向
と逆の面を反らせ、移動の中途カ)ら移動方向の面が反
るように、薄片の反りを湾曲させる手段114で制御す
る.
このように湾曲することにより薄片111は第5図や第
12図に示すような跳ね反る動きをし、送風の効率が良
くなる.
1R28図(a)は第27図の支持片と薄片を一枚の金
属片で構成した例で、金属片121上に122と123
の圧電素子を張り付け、圧電素子の両端を金属片に固定
している.
薄片121には124と125の圧電素子を張り付け、
薄片121に跳ね反る動きをさせる.このように湾曲さ
せる手段を2つ以上取付け、薄片を2箇所以上で湾曲さ
せることもできる.又、第28図(b)は第24図に示
した第6の請求項の実施例を一枚の金属片で構威した例
で、金属片126上に127と128の圧電素子を張り
付けている。更に、第28図(a)と同様に、薄片12
6に跳ね反る動きをさせるために、圧電素子129〜1
31を張り付けている.129〜131の圧電素子は千
鳥状に並べられ、薄片126の湾曲を細かく制御できる
。Further, the warpage of the lotus piece 111 is controlled by a means 114 for curving so that at the start of movement in a certain direction, the surface opposite to the movement direction of the lotus piece 111 is warped, and in the middle of the movement, the surface in the movement direction is warped. .. By curving in this way, the thin piece 111 makes a bouncy movement as shown in FIGS. 5 and 12, improving the efficiency of air blowing. Figure 1R28 (a) is an example in which the support piece and thin piece in Figure 27 are made of one metal piece, with 122 and 123 placed on metal piece 121.
A piezoelectric element is attached, and both ends of the piezoelectric element are fixed to metal pieces. Piezoelectric elements 124 and 125 are attached to the thin piece 121,
Make the thin piece 121 bounce. It is also possible to attach two or more means for curving in this way and to curve the thin piece at two or more places. Moreover, FIG. 28(b) is an example in which the embodiment of the sixth claim shown in FIG. There is. Furthermore, as in FIG. 28(a), the thin piece 12
6, piezoelectric elements 129 to 1
31 is attached. The piezoelectric elements 129 to 131 are arranged in a staggered manner, allowing fine control of the curvature of the thin piece 126.
第28図のように送風器を一枚の金属片と圧電素子で構
成することにより、製造が容昌で安価となる.
[発明の効果〕
第1の請求項は、薄片によって空気を送風方向に押出す
ようにした送風器で、従来のファンのようにベアリング
を使用していないので、定期交換が必要ない.
第2の請求項は、薄片によって空気を送風方向側の方向
から引込むようにした送風器で、開放された空間で使用
しても、第1の請求項の送風器より効率良く送風できる
.
第3の請求項は、第1の請求項と第2の請求項を実現す
るための1番目の方法である.第4の請求項は、第1の
請求項とtR2の請求項を実現するための2番目の方法
である.第5の請求項は、第1の請求項と第2の請求項
を実現するための3番目の方法である.第6の請求項は
、第3の請求項の薄片を往復運動させる手段に、圧電素
子を用いた送風器である.第7の請求項は、第4の請求
項の薄片を往復運動させる手段と、薄片を湾曲又は傾斜
させる手段に、圧電素子を用いた送風器である.
本発明は空気を脈流のように送り出すので、上下が壁で
閉じられた狭い空間で使用し、2段又は複数段に縦列接
続すれば、空気の逆流が少なくなり、風圧の高い送風が
できる.
又、定期交換が必要ないので、例えば電子機器のプリン
ト基板を冷却する際に、本発明の送風器を直接プリント
基板に半田付けして、交換不可能にしても構わない.
この場合は、送風器の底面に取付けと電源供給用を兼ね
た端子を設ける.By constructing the blower with a single piece of metal and a piezoelectric element as shown in Figure 28, manufacturing becomes simple and inexpensive. [Effects of the Invention] The first claim is a blower that uses thin pieces to push air in the blowing direction, and does not require regular replacement because it does not use bearings like conventional fans. The second claim is an air blower that uses thin pieces to draw in air from the direction of the air blowing direction, and can blow air more efficiently than the air blower according to the first claim even when used in an open space. The third claim is a first method for realizing the first and second claims. The fourth claim is a second method for realizing the first claim and claim tR2. The fifth claim is a third method for realizing the first and second claims. A sixth claim is an air blower in which a piezoelectric element is used as a means for reciprocating the thin piece according to the third claim. A seventh claim is an air blower in which a piezoelectric element is used as the means for reciprocating the thin piece and the means for curving or tilting the thin piece according to the fourth claim. Since the present invention sends out air like a pulsating flow, if it is used in a narrow space closed by walls on the top and bottom and connected in series in two or more stages, backflow of air will be reduced and air can be blown with high wind pressure. .. Further, since periodic replacement is not required, for example, when cooling a printed circuit board of an electronic device, the air blower of the present invention may be soldered directly to the printed circuit board to make it non-replaceable. In this case, provide a terminal on the bottom of the blower for both mounting and power supply.
第1図は第1の請求項の第1の実施例の送風器の斜視図
、第2図は第1の実施例の送風器の動作を示す図、第3
図〜第11図は第1の請求項の第2〜第10の実施例の
動作を示す図、第12図は第2の請求項の動作を示す図
、第13図は第3の請求項の第1の実施例で、第13図
(a)は送風器の斜視図、第13図(b)は横から見た
図である.
第14図は第3の請求項の第2の実施例、第15図は第
3の請求項の第3の実施例、第16図は第4の請求項の
第1の実施例で、第16図(a)は送風器の斜視図、第
16図(b)は横カ)ら見た図である.
第17図は湾曲させる手段の一例を説明する図、第18
図は第4の請求項の第2の実施例、第19図は第5の請
求項の第1の実施例、第20図は第5の請求項の第1の
実施例の動作を説明する図、第21図は!5の請求項の
第2〜第4の実施例、第22図は第6の請求項の第1の
実施例、第23図は第22図の実施例の支持片の別の例
、第24図は第6の請求項の第2の実施例、第25図(
a)は第7の請求項の第1の実施例、第25図(b)と
第25図(C)はその実施例を送風方向側からと、横か
ら見た図、第26図は第7の請求項の!2〜第6の実施
例、第27図は第6の請求項と第7の請求項を同時に実
施した例、第28図は薄い金属片で薄片と支持片を構成
した例である。
る。
1〜3、 1 】、2】、31、4】、53、81、8
4、85、91、 I 11 121, 126
、201,211、221、231−一薄片4−一空気
12、13、22、23、42−一固定板14、15、
43、62、63、66〜69、71〜74、76〜7
9、82、83、92、94、96、98、100,1
02、112、113、203、204−一支持片
16、17、44、45−一駆動手段
24、25−一鉄片 26〜29−一電磁石32〜
34、54、234、235−一捻る手段35−一筒
36、64−一仕切板47−一金属片
48、122〜125、127〜131、213〜21
6、222〜224−一圧電素子61−一薄片の集合体
93、95、97、99、101、103、114−一
湾曲させる手段
202、212一一耳部 232−一取付け部233
−一中間部
藁
f
図
窮
2
■
(α)
(1))
(代ノ
(レ)
(91
(bl
(久)
〔F))
茎7図
晃
?
図FIG. 1 is a perspective view of the air blower according to the first embodiment of the first claim, FIG. 2 is a diagram showing the operation of the air blower according to the first embodiment, and FIG.
11 are diagrams showing the operation of the second to tenth embodiments of the first claim, FIG. 12 is a diagram showing the operation of the second claim, and FIG. 13 is a diagram showing the operation of the second claim. In the first embodiment, FIG. 13(a) is a perspective view of the blower, and FIG. 13(b) is a side view. FIG. 14 shows a second embodiment of the third claim, FIG. 15 shows a third embodiment of the third claim, and FIG. 16 shows a first embodiment of the fourth claim. Figure 16(a) is a perspective view of the blower, and Figure 16(b) is a view from the side. FIG. 17 is a diagram illustrating an example of a means for curving, and FIG.
The figure explains the operation of the second embodiment of the fourth claim, FIG. 19 the first embodiment of the fifth claim, and FIG. 20 the operation of the first embodiment of the fifth claim. Figure, Figure 21 is! The second to fourth embodiments of claim 5, FIG. 22 is the first embodiment of claim 6, and FIG. 23 is another example of the support piece of the embodiment of FIG. The figure shows the second embodiment of the sixth claim, FIG.
a) shows the first embodiment of the seventh claim, FIGS. 25(b) and 25(C) show the embodiment as viewed from the air blowing direction side and from the side, and FIG. 26 shows the first embodiment of the seventh claim. 7 claims! Embodiments 2 to 6, FIG. 27 shows an example in which the sixth and seventh claims are implemented simultaneously, and FIG. 28 shows an example in which the thin piece and the supporting piece are made of thin metal pieces. Ru. 1-3, 1], 2], 31, 4], 53, 81, 8
4, 85, 91, I 11 121, 126
, 201, 211, 221, 231--one thin piece 4--one air 12, 13, 22, 23, 42--one fixed plate 14, 15,
43, 62, 63, 66-69, 71-74, 76-7
9, 82, 83, 92, 94, 96, 98, 100, 1
02, 112, 113, 203, 204 - Support piece 16, 17, 44, 45 - Drive means 24, 25 - Iron piece 26 to 29 - Electromagnet 32 -
34, 54, 234, 235-One twisting means 35-One tube
36, 64-one partition plate 47-one metal piece 48, 122-125, 127-131, 213-21
6, 222 to 224 - Piezoelectric element 61 - Thin piece assembly 93, 95, 97, 99, 101, 103, 114 - Curving means 202, 212 - Ear portion 232 - Mounting portion 233
-1 middle part straw f figure 2 ■ (α) (1)) (daino (re) (91 (bl (ku) [F)) stem 7 figure Akira?
Claims (7)
復運動させて、往復運動の方向と垂直な方向に送風を行
なう送風器に於いて、往復の両方向の移動時に、薄片の
移動方向の面の一部分又は全部分を送風方向に傾斜させ
る、送風器。(1) In a blower that reciprocates a thin piece that can be curved or tilted and blows air in a direction perpendicular to the direction of the reciprocating movement, the thin piece moves in both directions. An air blower in which a part or all of the directional surface is inclined in the direction of air flow.
復運動させて、往復運動の方向と垂直な方向に送風を行
なう送風器に於いて、 a、薄片を移動するか、変形又は傾斜して、薄片の移動
方向と反対側の面に、薄片の送風方向と反対側の部分か
ら送風方向側の部分に向かって、気圧の低い領域を次々
に作り、送風方向と反対の方向から気体を引込み、加速
して運動の慣性を付け、 b、引込んだ気体の慣性によって、気体を送風方向に送
り出し、 c、薄片が往復の一方向への移動を終わり、逆方向への
折返しの移動を開始する際に、引込んだ気体が送風方向
に送り出されるまで待ってから、移動を行なう、 送風器。(2) In an air blower that sends air in a direction perpendicular to the direction of the reciprocating motion by reciprocating a thin piece that can be bent or tilted, a. By tilting, on the surface opposite to the direction of movement of the flake, areas of low pressure are created one after another from the part of the flake on the opposite side to the blowing direction to the part on the side of the blowing direction, and from the direction opposite to the blowing direction. Gas is drawn in and accelerated to give it inertia of motion; b. The inertia of the drawn gas causes the gas to be sent out in the direction of the air flow; c. The flakes complete their reciprocating movement in one direction and begin turning in the opposite direction. An air blower that waits until the drawn-in gas is sent out in the blowing direction before starting movement.
の送風方向側の端部分を往復運動させる手段と、薄片の
送風方向と反対側の端部分を往復運動させる手段と、を
有し、薄片の往復の両方向の移動時に、薄片の送風方向
と反対側の端部分が、送風方向側の端部分より、移動方
向に対して前方に位置するように、送風方向と反対側の
端部分を、送風方向側の端部分より先行して移動させる
、送風器。(3) In the air blower according to claim (1) or (2), means for reciprocating the end portion of the thin piece on the side in the blowing direction, and means for reciprocating the end portion of the thin piece on the side opposite to the blowing direction. , and is opposite to the air blowing direction so that when the thin piece moves back and forth in both directions, the end portion of the thin piece on the opposite side to the air blowing direction is located in front of the end portion on the side of the air blowing direction with respect to the moving direction. An air blower in which the side end portion moves ahead of the side end portion in the air blowing direction.
を往復運動させる手段と、薄片を湾曲又は傾斜させる手
段と、を有し、薄片の往復の両方向の移動時に、薄片の
送風方向と反対側の端部分が、送風方向側の端部分より
、移動方向に対して前方に位置するように、薄片を湾曲
又は傾斜させる、送風器。(4) The air blower according to claim (1) or (2), further comprising means for reciprocating the thin piece and means for curving or tilting the thin piece, so that when the thin piece moves in both directions, the thin piece An air blower in which the thin piece is curved or inclined so that the end portion on the opposite side to the air blowing direction is located forward in the direction of movement than the end portion on the side in the air blowing direction.
を、移動させると共に湾曲又は傾斜させる手段、を有し
、薄片の往復の両方向の移動時に、薄片の送風方向と反
対側の端部分が、送風方向側の端部分より、移動方向に
対して前方に位置するように、薄片を湾曲又は傾斜させ
る、送風器。(5) The air blower according to claim (1) or (2), further comprising means for moving and curving or tilting the thin piece, and when the thin piece moves in both directions, the blowing direction is opposite to the blowing direction of the thin piece. An air blower in which the thin piece is curved or inclined so that the end portion on the side is located forward in the direction of movement than the end portion on the side in the blowing direction.
側の端部分を往復運動させる手段と、薄片の送風方向と
反対鋼の端部分を往復運動させる手段と、に、圧電素子
を含み、圧電素子に電圧を印加することにより、薄片の
端部分を往復運動させる、送風器。(6) In the blower according to claim (3), the means for reciprocating the end portion of the thin piece in the blowing direction side and the means for reciprocating the end portion of the steel sheet opposite to the blowing direction include piezoelectric An air blower that includes a piezoelectric element and causes the end portion of the thin piece to reciprocate by applying a voltage to the piezoelectric element.
傾斜させる手段に圧電素子を含み、往復運動させる手段
に圧電素子を含み、 a、湾曲又は傾斜させる手段の圧電素子に電圧を印加す
ることにより、薄片を湾曲に変形、又は傾斜させ、薄片
を湾曲に変形、又は傾斜させることにより、薄片の移動
方向の面の一部分又は全部分を送風方向に傾斜させ、 b、往復運動させる手段に含まれる圧電素子に電圧を印
加することにより、薄片を往復運動させる、 送風器。(7) In the air blower according to claim (4), the means for curving or tilting the thin piece includes a piezoelectric element, the means for reciprocating the thin piece includes a piezoelectric element, and a. By applying , the flake is deformed into a curve or tilted, and by deforming the flake into a curve or tilted, a part or all of the surface of the flake in the direction of movement is tilted in the direction of air blowing, b. Reciprocating motion An air blower that causes a thin piece to reciprocate by applying a voltage to a piezoelectric element included in the means for causing the thin piece to reciprocate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29862889A JPH03160200A (en) | 1989-11-15 | 1989-11-15 | Air blower |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29862889A JPH03160200A (en) | 1989-11-15 | 1989-11-15 | Air blower |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03160200A true JPH03160200A (en) | 1991-07-10 |
Family
ID=17862195
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29862889A Pending JPH03160200A (en) | 1989-11-15 | 1989-11-15 | Air blower |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03160200A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302092A (en) * | 1991-06-07 | 1994-04-12 | Daikin Industries, Ltd. | Fluid transferring apparatus imitating flapping movement of bees |
EP1258637A1 (en) * | 2001-05-14 | 2002-11-20 | Ludwig Resch | 'Bird wing' pump |
GB2376720A (en) * | 2001-06-20 | 2002-12-24 | 1 Ltd | Fluid-propelling device |
US7431244B2 (en) | 2002-08-14 | 2008-10-07 | Siemens Aktiengesellschaft | Device for the generation of eddies and method for operating of said device |
-
1989
- 1989-11-15 JP JP29862889A patent/JPH03160200A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5302092A (en) * | 1991-06-07 | 1994-04-12 | Daikin Industries, Ltd. | Fluid transferring apparatus imitating flapping movement of bees |
EP1258637A1 (en) * | 2001-05-14 | 2002-11-20 | Ludwig Resch | 'Bird wing' pump |
GB2376720A (en) * | 2001-06-20 | 2002-12-24 | 1 Ltd | Fluid-propelling device |
GB2376720B (en) * | 2001-06-20 | 2005-08-31 | 1 Ltd | Fluid-propelling device |
US7431244B2 (en) | 2002-08-14 | 2008-10-07 | Siemens Aktiengesellschaft | Device for the generation of eddies and method for operating of said device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1075972A (en) | Oscillating plate pump and motor | |
EP1596136B1 (en) | Air conditioner indoor unit with a linearly oscillating blower | |
JPH03160200A (en) | Air blower | |
JPS6315480B2 (en) | ||
CN107525250B (en) | Air outlet panel assembly and central air conditioner indoor unit with same | |
JP4331157B2 (en) | Air outlet direction control device and air conditioner indoor unit | |
CN102725108A (en) | Forming punch arrangement | |
CN106979636B (en) | Air conditioner, condenser thereof and control method | |
CN208804858U (en) | Blinds, louver assembly, air conditioner indoor unit and air conditioner | |
JP3135347B2 (en) | Wind direction adjustment device | |
CN218721859U (en) | Volute tongue assembly and air conditioner | |
KR19980020135A (en) | Air conditioner | |
JP2006292271A (en) | Outdoor unit for air conditioner | |
JP2591593Y2 (en) | Horizontal louver device for air conditioner | |
CN220963162U (en) | Pressure spring and magnetic latching relay | |
US7294052B2 (en) | Control for dual stepper motors | |
JPS61149757A (en) | Airflow direction deflecting device of air conditioner | |
JP2002106944A (en) | Rectifier plate integrally formed blow-off grill | |
KR20030038953A (en) | A wind direction control apparatus of air conditioner | |
JPH0755295A (en) | Heat exchanger | |
CN213236180U (en) | Thermal expansion valve | |
CN214370618U (en) | Low-noise frequency conversion air-isolating vertical plate for outdoor unit of household air conditioner | |
JP7337288B2 (en) | Air conditioner indoor unit and wind direction plate removal method | |
CN216620236U (en) | Air outlet structure and air conditioner | |
JPH06288606A (en) | Fluid controller using high polymer gel actuator |