JPH03160150A - Compression ignition internal combustion engine and injection valve thereof - Google Patents

Compression ignition internal combustion engine and injection valve thereof

Info

Publication number
JPH03160150A
JPH03160150A JP30131689A JP30131689A JPH03160150A JP H03160150 A JPH03160150 A JP H03160150A JP 30131689 A JP30131689 A JP 30131689A JP 30131689 A JP30131689 A JP 30131689A JP H03160150 A JPH03160150 A JP H03160150A
Authority
JP
Japan
Prior art keywords
fuel
nozzle
time
injection valve
needle valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30131689A
Other languages
Japanese (ja)
Inventor
Shigeru Onishi
繁 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Clean Engine Laboratory Co
Original Assignee
Nippon Clean Engine Laboratory Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Clean Engine Laboratory Co filed Critical Nippon Clean Engine Laboratory Co
Priority to JP30131689A priority Critical patent/JPH03160150A/en
Publication of JPH03160150A publication Critical patent/JPH03160150A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Abstract

PURPOSE:To enhance thermal efficiency by improving the combustibility by variably controlling a lift of a pin type needle valve in accordance with a combustion supply amount and restricting fuel injection by a relative relation between a pin shape and a nozzle shape with a fuel group set in a diffusion direction, at the time of a low load, and in a binding direction at the time of a high load. CONSTITUTION:A rod 4 for controlling a lift amount of a needle valve is arranged in the spring 2 of a nozzle holder 1 in a fuel injection nozzle. One end part 5 of this rod 4 is brought into contact with an eccentric cam 6 through a spacer 7 with a position of the rod 4 made variable by actuating the eccentric cam 6. The eccentric cam 6 is actuated by an electrically operated mechanism 8 or a hydraulically operated mechanism. In a correlation between a needle throttle position 3 and a nozzle flow path 10, throttle action is changed and/or diffusing direction of fuel injection is restricted. That is, a fuel group is set in a diffusing direction, at the time of a low load, and set in a binding direction at the time of a high load.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は圧縮着火内燃機関と燃料噴射弁に関する0 〔従来の技術〕 従来の燃料噴射ノズルはニードル弁をバネ圧力によって
閉状態とし、これを供給燃料の圧力(開弁圧)によって
開作用を行なう自動弁が主である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a compression ignition internal combustion engine and a fuel injection valve. [Prior Art] A conventional fuel injection nozzle closes a needle valve using spring pressure. The main type of valves are automatic valves that open according to the pressure of supplied fuel (valve opening pressure).

このため機関のアイドリング時や低負荷時等少量の燃料
供給時においては必然的にニードルリフトはストッパー
位置迄に到らず、その中間に位置することになり、且つ
その位置はバネ定数と燃料圧との平衡により停止位置は
不安定となりやすい。
Therefore, when a small amount of fuel is supplied, such as when the engine is idling or under low load, the needle lift will inevitably not reach the stopper position, but will be located somewhere in between, and the position will depend on the spring constant and fuel pressure. The stopping position tends to become unstable due to the equilibrium with the

したがって低回転時等においては不整的噴射を起こすこ
とが多く、燃料群の微粒化・慣徹性・拡散性は高負荷時
より悪化の傾向があり問題とされている。また運転中に
は噴孔より噴射される燃料群は加熱による蒸発作用によ
って微粒化が促進されていることが特徴的である。この
ような熱条件によって左右される燃料の拡散・慣徹・微
粒化等の実体把握は不可能に近く、これがディーゼル燃
焼技術の発展や排ガス対策技術開発を阻害している因と
も云える。
Therefore, irregular injection often occurs at low speeds, etc., and the atomization, permeability, and dispersion of the fuel group tend to be worse than when the load is high, which is considered a problem. Further, during operation, the fuel group injected from the nozzle holes is characterized in that atomization is promoted by the evaporation effect due to heating. It is nearly impossible to grasp the actual effects of fuel diffusion, customization, atomization, etc. that are affected by such thermal conditions, and this can be said to be the reason for hindering the development of diesel combustion technology and exhaust gas countermeasure technology.

このように熱の影響を大きく受けるノズルは始動時等に
おいての白煙・青煙の問題と高負荷時における黒煙の発
生問題とは表裏の関係であり回避することは困難である
。またこの問題は多孔ホール式自動弁・単孔ピン形弁に
共通する改善課題でもある。
For nozzles that are greatly affected by heat in this way, the problem of white smoke/blue smoke during startup and the like and the problem of black smoke generation during high loads are two sides of the same coin, and it is difficult to avoid them. This problem is also a common improvement issue for multi-hole automatic valves and single-hole pin type valves.

〔発明が解決しようとするS題〕[Problem S that the invention attempts to solve]

多噴孔弁による拡散燃料群と空気スワールとのマッチン
グによって効率的燃焼を得る直噴方式は燃料噴霧状態に
よって性能の変化が大きいことが知られている。
It is known that the performance of the direct injection system, which achieves efficient combustion by matching the diffused fuel group and air swirl using a multi-hole valve, varies greatly depending on the fuel spray state.

この方式は燃料粒子の微粒化を図れば慣徹性が劣化する
等の矛盾する特性を有するものであり、且つ回転数に応
じたスワールの適合が絶対条件である。またスワールを
生ずる装置によって給気流路に抵抗が生ずる不利は免が
れない。これらの問題を解決する手段として近時は超高
圧噴射系による解決方法の研究が行なわれているが、超
高圧装置はコスト・耐久性・消費動力等に不利な点が多
くあり、実用化に困難な問題を提起している。
This method has contradictory characteristics such as deterioration of inertia if the fuel particles are atomized, and it is an absolute requirement that the swirl be adapted to the rotational speed. Moreover, the device that generates the swirl inevitably creates resistance in the air supply flow path, which is a disadvantage. Recently, research has been carried out on solutions using ultra-high pressure injection systems as a means of solving these problems, but ultra-high pressure devices have many disadvantages in terms of cost, durability, power consumption, etc., and are not practical. raises difficult questions.

発明者は先にこれら直噴機関の問題点を解決する手段と
して単孔ノズルによる燃料噴流衝突拡散燃焼方式を提示
した(SA]+4871689,fsAI& 8812
41)。この方式は単孔ピン形ノズルを用い非高圧噴射
において従来WArJRと較べ高熱効率・高出力を得る
こと、また燃焼室中心域の燃料衝突部近傍より燃焼反応
が発生するため燃焼期間が短かいことが立証されている
。しかし、上記燃焼方式を従来のピン形ノズル、即ち開
弁圧をバネ圧によって設定しニードル弁揚程を機構的ス
トッパー作用に依存し、燃料ポンプよりの送り置・送り
速度等によって噴射供給を行なう場合においてはバネ定
数の影響を受けることが大きく、燃料の送り量によって
はニードル弁の揚程度が不安定となり、特に多気筒機関
においてその変化によって各気筒毎の燃焼にパラツキが
生ずる。また燃焼温度の低いアイドリング運転等を長時
間週続する場合には衝突面温度が低下し、衝突面にカー
ボンが付着する問題があった。
The inventor previously proposed a fuel jet impingement diffusion combustion method using a single-hole nozzle as a means of solving these problems with direct injection engines (SA] +4871689, fsAI & 8812
41). This method uses a single-hole pin-shaped nozzle to obtain higher thermal efficiency and higher output than the conventional WArJR in non-high-pressure injection, and also has a short combustion period because the combustion reaction occurs near the fuel collision part in the center area of the combustion chamber. has been proven. However, when the above combustion method is used with a conventional pin-type nozzle, that is, the valve opening pressure is set by spring pressure, the needle valve lift depends on a mechanical stopper action, and the injection supply is performed by the feed position and feed speed etc. from the fuel pump. is greatly affected by the spring constant, and the degree of lift of the needle valve becomes unstable depending on the amount of fuel fed, and especially in multi-cylinder engines, this change causes uneven combustion in each cylinder. Further, when idling operation with low combustion temperature is continued for a long time, there is a problem that the collision surface temperature decreases and carbon adheres to the collision surface.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はピン形噴射弁においてニードル揚程を燃料供給
量に応じて制御し、スロットル作用を負荷に応じて変化
させ、スロットル作用による燃料粒子の微粒化や拡散角
度等を負荷に応じて変化さるものであり、よって少負荷
時においては熱や衝突作用に依存することなく霧化条件
を促進し効果的燃焼を図るものである。このためピン形
スロットル弁においてリフトを抑えスロットル作用を大
きくすることにより、低負荷時における燃料の微粒化を
促進し噴孔を起点とした円盤状の拡散を行なうものであ
り、燃焼期間は短縮される。この場合においては燃料拡
散を衝突作用に依存する必要も生じない。また高負荷時
においてはスロットル作用を減じ開口部面積を大とし、
短時間内に全燃料を剛体的噴流として流動エネルギーを
保持し高温衝突部に衝突せしめることにより、拡散・慣
徹の短縮が実現される。したがって比較的低い噴射圧に
おいても出力性能・燃費・スモーク等を全負荷範囲にお
いて向上せしめることが実現しうるのである。
The present invention is a pin type injection valve that controls the needle lift according to the fuel supply amount, changes the throttle action according to the load, and changes the atomization of fuel particles and the diffusion angle etc. by the throttle action according to the load. Therefore, when the load is low, the atomization conditions are promoted and effective combustion is achieved without relying on heat or collision effects. For this reason, by suppressing the lift and increasing the throttle action in the pin-type throttle valve, the atomization of the fuel is promoted at low loads, and the fuel is dispersed in a disk shape starting from the nozzle hole, thereby shortening the combustion period. Ru. In this case, there is no need to rely on collision effects for fuel diffusion. Also, under high loads, the throttle action is reduced and the opening area is increased.
By converting all the fuel into a rigid jet within a short period of time, retaining the flow energy and colliding with the high-temperature collision part, diffusion and acclimatization time can be shortened. Therefore, even with relatively low injection pressure, it is possible to improve output performance, fuel efficiency, smoke, etc. over the entire load range.

〔実施例〕〔Example〕

本発明の実施例を図において説明する。 Embodiments of the invention are explained in the drawings.

図1においてノズルホルダー(1)のバネ(2)内には
エ一ドル弁(3)の揚程爪を制御するためのロンド@)
が配備されている。口ッド(4)の一端部6)は偏心カ
ム(6)にスペーサ−(7)を介して接しており、カム
(6)の作動によりロンド(4)位置が移動するごとく
に構成されている。カム(6)の作動は図20図3のご
とく電気的作動機構(8)または油圧作動機111(9
)によって行なわれる。また図4のごとくにクサビ機構
の移動等によってもニードルリフトを制御することがで
きる。したがって図5・図6・図7・図8に示スコトく
にニードルスロットル位置(3)と噴孔流路(10)と
の相関において絞り作用を変化させるこシゐ−什#1k
嘴由多相伽1すスこ冫笛幇酊鮨冫なり一その結果アイド
リング時や低負荷時においても燃料の微粒化が促進され
ることになる。
In Fig. 1, the spring (2) of the nozzle holder (1) contains a rond for controlling the lift claw of the eddle valve (3).
is in place. One end 6) of the mouth rod (4) is in contact with an eccentric cam (6) via a spacer (7), and is configured such that the position of the rond (4) moves with the operation of the cam (6). There is. The cam (6) is operated by an electric actuating mechanism (8) or a hydraulic actuating mechanism 111 (9) as shown in Fig. 20 and Fig. 3.
) is carried out by The needle lift can also be controlled by moving the wedge mechanism as shown in FIG. Therefore, as shown in FIGS. 5, 6, 7, and 8, it is necessary to change the throttling action in the relationship between the needle throttle position (3) and the nozzle hole flow path (10).
As a result, atomization of the fuel is promoted even during idling or low load.

また図9・図10 は本技術を衝突拡散ディーゼル方式
に適用した例が示されている。この場合においてはリフ
トを制限することによって、図9のごとくアイドリング
や低負荷時に燃料が衝突面に衝突すること少なく、高負
荷時のみ図10のごとくに燃料群の衝突作用が行なわれ
る、したがってアイドリング時等衝突面温度の砥い場合
においても衝突面にカーボンが滞積する等の不都合が生
じない。玄たポイクー等燃焼床の大きな機関においては
ニードル弁リフトを可動させることにより、大床内にお
ける火炎域の移動や燃焼状態の平均化を図ることが容易
であり、火炎帯の移動によって機関部の耐久性・熱伝効
率の向上や排気の低公害化等を行なうことができる。
Furthermore, Figures 9 and 10 show an example in which this technology is applied to a collision-diffusion diesel system. In this case, by limiting the lift, the fuel collides with the collision surface less during idling or low load as shown in Figure 9, and the collision effect of the fuel group occurs only at high load as shown in Figure 10. Even in the case of polishing at a temperature of the collision surface at different times, problems such as carbon accumulation on the collision surface do not occur. In engines with a large combustion bed, such as the Genta Poiku, by moving the needle valve lift, it is easy to move the flame area within the large bed and equalize the combustion state. It is possible to improve durability and heat transfer efficiency, and reduce exhaust pollution.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、 1. ディーゼル燃焼方式においてアイドリング時や低
負荷時には意図的にスロットル作用を強化せしめること
により、燃料の拡散・微粒化が促進され、低負荷域燃焼
が改善される。したがって従来エンジンと較べ未燃炭化
水素が減少し、臭い、白青煙の問題が改善される。
According to the present invention: 1. In the diesel combustion system, by intentionally increasing the throttle action during idling or low load, fuel diffusion and atomization are promoted, improving combustion in the low load range. Therefore, compared to conventional engines, unburned hydrocarbons are reduced, and the problems of odor and white smoke are improved.

1,低負荷時には燃料微粒促進作用により、また高負荷
時には衝突部の温度作用によって着火遅れ現象が短縮さ
れ、その結果、着火遅れに起因する騒音が低減される。
1. The ignition delay phenomenon is shortened by the fuel particle promotion effect at low loads and by the temperature effect at the collision part at high loads, and as a result, the noise caused by the ignition delay is reduced.

1.高負荷時における噴孔面積拡大作用は、従来のポン
プ圧力150〜300Kg/mにおいても燃料流の霧化
抑制と燃料流が衝突面に到るまでのエネルギー保持に有
利であり、衝突拡散作用は強化される、と同時に衝突部
の高温着火促進作用により燃焼室中心城よりの理想的拡
散火炎が形成される。この拡散火炎は気筒内空気の燃焼
室内移動流(スキツシュ流)によって方射状の軸方向流
れ中において反応は急速に進行し、その結果燃焼期間が
短縮される。
1. The nozzle area expansion effect under high load is advantageous in suppressing atomization of the fuel flow and retaining energy until the fuel flow reaches the collision surface, even at conventional pump pressures of 150 to 300 kg/m, and the collision diffusion effect is effective. At the same time, an ideal diffusion flame is formed from the center of the combustion chamber due to the high temperature ignition promoting effect of the collision part. The reaction of this diffusion flame rapidly progresses in the radial axial flow due to the cylinder air moving into the combustion chamber (skitsch flow), resulting in a shortened combustion period.

1 燃焼期間の短縮されることによって熱効率が向上し
、KGB・遅噴射においても熱効率を低下させること少
な<、NOXは従来直噴方式より大巾に低減される。
1. Thermal efficiency is improved by shortening the combustion period, and there is little reduction in thermal efficiency even in KGB/late injection. NOx is significantly reduced compared to conventional direct injection systems.

1− スワールを必要としない本内燃機関においては、
給気系が単純で抵抗が少なく給気の体積効率に有利であ
り、機関比出力の向上に効果が大である。
1- In this internal combustion engine that does not require swirl,
The air supply system is simple and has low resistance, which is advantageous for the volumetric efficiency of air supply, and is highly effective in improving engine specific output.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示すものであり、図1・図2・
図3・図4はピン型ノズルにおケルニードル弁リフト制
御方法の例を示す。図5・図6・図7・図8はピン型ノ
ズルの噴孔付近の拡大断面説明図であり、図6・図7は
スロットル部にvI数の小切欠部を有する例図であり、
図9、・図10は衝突拡散方式ディーゼル機関に本発明
を実施した説明図であり、図9はニードルリフトを小と
した低負荷時における燃料群の動向を示し、図10はニ
ードルリフトを大とした高負荷時における燃料群の衝突
拡散作用と火炎の展開動向を示す。 図中、1−/ズル本体、2−・閉用バネ、3・・・ニー
ドル弁スロットル部、4−・リフト制御用ロツド、5・
・・ロツド端部、6・・・カム、7・−スベーサー、8
一・電気的作動機構、9一油圧的作動機構、1〇一噴孔
流路、11−・アイドル時の拡散炎、12−・・高負荷
時の拡散炎、13・・・スキツシュ流の動向。 図2
The drawings show examples of the present invention, and include FIGS. 1, 2, and 2.
Figures 3 and 4 show an example of a Kel needle valve lift control method for a pin type nozzle. 5, FIG. 6, FIG. 7, and FIG. 8 are enlarged cross-sectional explanatory views of the vicinity of the nozzle hole of the pin-type nozzle, and FIGS. 6 and 7 are examples of having small notches of vI number in the throttle part,
Figures 9 and 10 are explanatory diagrams in which the present invention is implemented in a collision-diffusion type diesel engine. Figure 9 shows the trend of the fuel group at low load with a small needle lift, and Figure 10 shows the trend of the fuel group at a low load with a small needle lift. The collision-diffusion effect of fuel groups and flame development trends are shown under high loads. In the figure, 1-/Zulu body, 2-- Closing spring, 3-- Needle valve throttle part, 4-- Lift control rod, 5--
... Rod end, 6... Cam, 7 - Baser, 8
1. Electrical actuation mechanism, 91. Hydraulic actuation mechanism, 101. Nozzle hole flow path, 11.. Diffusion flame at idle, 12.. Diffusion flame at high load. 13. Trend of skitsch flow. . Figure 2

Claims (1)

【特許請求の範囲】 1、燃料供給量に応じ可変的にピン形ニードル弁の揚程
を制御し、ピン形状と噴孔形状の相対関係により燃料群
を低負荷時には拡散方向に、高負荷時には結束方向とす
ることを特徴とした圧縮着火式内燃機関。 2、噴孔部を内拡テーパー状に形成したことを特徴とす
る前記特許請求範囲1記載の噴射弁。 3、スロットル部を先端円錐状に形成し、且つ複数の等
間隙小カット部を形成したことを特徴とする前記特許請
求範囲1・2記載の噴射弁。 4、ニードル弁を開弁する電磁弁内にリフト可変機構を
構築したことを特徴とする前記特許請求範囲1記載の噴
射弁。
[Claims] 1. The lifting height of the pin-shaped needle valve is variably controlled according to the amount of fuel supplied, and the relative relationship between the pin shape and the nozzle hole shape causes the fuel group to spread in the direction of diffusion at low loads and to bundle at high loads. A compression ignition internal combustion engine characterized by a direction. 2. The injection valve according to claim 1, wherein the injection hole portion is formed in an inwardly expanding taper shape. 3. The injection valve according to claims 1 and 2, characterized in that the throttle portion has a conical tip and a plurality of small cut portions with equal gaps. 4. The injection valve according to claim 1, characterized in that a variable lift mechanism is constructed within the solenoid valve that opens the needle valve.
JP30131689A 1989-11-19 1989-11-19 Compression ignition internal combustion engine and injection valve thereof Pending JPH03160150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30131689A JPH03160150A (en) 1989-11-19 1989-11-19 Compression ignition internal combustion engine and injection valve thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30131689A JPH03160150A (en) 1989-11-19 1989-11-19 Compression ignition internal combustion engine and injection valve thereof

Publications (1)

Publication Number Publication Date
JPH03160150A true JPH03160150A (en) 1991-07-10

Family

ID=17895387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30131689A Pending JPH03160150A (en) 1989-11-19 1989-11-19 Compression ignition internal combustion engine and injection valve thereof

Country Status (1)

Country Link
JP (1) JPH03160150A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467757A (en) * 1993-08-20 1995-11-21 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine and combustion method of same
US5626115A (en) * 1995-03-10 1997-05-06 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine
JPH09271662A (en) * 1996-04-05 1997-10-21 Aguri Create:Kk Carbon-containing packing material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5467757A (en) * 1993-08-20 1995-11-21 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine and combustion method of same
US5626115A (en) * 1995-03-10 1997-05-06 Toyota Jidosha Kabushiki Kaisha Compression-ignition type engine
JPH09271662A (en) * 1996-04-05 1997-10-21 Aguri Create:Kk Carbon-containing packing material

Similar Documents

Publication Publication Date Title
EP1389679B1 (en) Compression ignition internal combustion engine
KR100678997B1 (en) Method of controlling the process of combustion in an internal combustion engine, and engine with means for controlling the engine valves
US6845746B2 (en) Internal combustion engine with injection of gaseous fuel
RU2136918C1 (en) Internal combustion engine and method of its operation
US20020011223A1 (en) Fuel injection system for a two-stroke engine
KR19990064073A (en) Compound cycle engine
JPH0579331A (en) Air compression and valve operating type internal combustion engine
EP0544920A1 (en) Direct injection type compression ignition internal combustion engine
JPH0252115B2 (en)
EP1719903B1 (en) Apparatus for mode-switching fuel injector nozzle
US4111177A (en) Internal combustion engine
JP2812236B2 (en) Compression ignition type internal combustion engine
JPH03160150A (en) Compression ignition internal combustion engine and injection valve thereof
JPH0478812B2 (en)
JPH03286124A (en) Cylinder fuel injection type engine
JPH08254123A (en) Combustion chamber of internal combustion engine
JPH09217624A (en) Diesel engine using heavy oil as main fuel
JPS6238828A (en) Direct injection type diesel engine
JPS61200322A (en) Two-cycle compression ignition type internal-combustion engine
JPH1026026A (en) Spark ignition engine
JPH07224739A (en) Fuel injection nozzle
JPH07332199A (en) Double opening and closing multi-hole nozzle injection valve, compression ignition engine using it and ignition method therefor
JP2008064073A (en) Fuel injection device
KR100279997B1 (en) Hole formation method of hole nozzle for direct injection engine
JPH10103094A (en) Multicylinder engine with egr system using incombustible fuel