JPH03160045A - Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article - Google Patents

Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article

Info

Publication number
JPH03160045A
JPH03160045A JP30036389A JP30036389A JPH03160045A JP H03160045 A JPH03160045 A JP H03160045A JP 30036389 A JP30036389 A JP 30036389A JP 30036389 A JP30036389 A JP 30036389A JP H03160045 A JPH03160045 A JP H03160045A
Authority
JP
Japan
Prior art keywords
weight
vinyl chloride
fiber
resin composition
copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30036389A
Other languages
Japanese (ja)
Inventor
Masahiro Ishii
正裕 石居
Kiyoyasu Fujii
藤井 清康
Hiroshi Sugawara
宏 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP30036389A priority Critical patent/JPH03160045A/en
Publication of JPH03160045A publication Critical patent/JPH03160045A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To prepare the title compsn. giving a molded article excellent in the mechanical strengths and durability under a repeated loading of stress by compounding a specific copolymer (mixture) with a specific fiberglass. CONSTITUTION:The title compsn. is prepd. by compounding: 100 pts.wt. copolymer comprising 50-99.5wt.% vinyl chloride and 50-0.5wt.% N-substd. maleimide (e.g. cyclohexylmaleimide), or 100 pts.wt. mixture of the copolymer with a vinyl chloride resin (e.g. a polyvinyl chloride); with 5-70 pts.wt. fiberglass having a length of 3mm or higher.

Description

【発明の詳細な説明】 (産業上の利用分!F) 本発明は、繊維強化塩素含有樹脂&Il戊物、該組成物
を用いた成形体及びその製造方法に関する. (従来の技術) ポリ塩化ビニル樹脂等の塩素含有樹脂&[l威物をガラ
ス繊維等の繊維で補強することは従来周知であって、例
えば特開昭58−134140号公報に示されている. (発明が解決しようとする課題) しかしながら、塩素含有樹脂&[l威物を使用した場合
愕は、ガラス繊維と塩素含有樹脂&IN威物との接着性
や濡れ性が低い為、物性が低くなり、加熱段階で成形体
の表面にガラス繊維が浮き出してしまうという問題点が
あった. 本発明は、上記従来技術の問題点を解決し、高い機械的
強度を有し、且つクリープ性能や疲労性能等の耐久性能
に優れた成形体を得る為になされたものである. (課題を解決するための手段) 本発明の1は、塩化ビニルK%脂.50〜99.5重量
%とN−i!換マレイン酸イミド50〜0.5重量%か
らなる共重合体又は該共重合体と塩化ビニル系樹脂との
混合物100重量部に、長さ3閤以上のガラス繊維5〜
70重量部を配合してなることを特徴とする繊維強化塩
素含有樹脂組成物をその要旨とするものであり、本発明
の2は、上記の繊維強化塩素含有樹脂組成物を材料とし
て製せられた成形体をその要旨とするものであり、本発
明の3は、塩化ビニル糸1樹脂50〜99.5重量%と
N−置換マレイン酸イミド50〜0.5重量%からなる
共重合体又は該共重合体と塩化ビニル系樹脂との混合物
100重量部を、エアーにより流動化させて流動床を形
成し、その流動床中をロービング状のガラス繊維を通過
させ、ガラス繊維に該混合物を付着させて繊維強化塩素
含有樹脂組戒物を得、次いでこの繊維強化塩素含有樹脂
組成物を戊形型に装入し、加熱、加圧することを特徴と
する繊維強化塩素含有樹脂&II威物を用いた成形体の
製造方法をその要旨とするものである. 本発明に於いて使用される塩化ビニル系樹脂としては、
ポリ塩化ビニル、後塩素化ポリ塩化ビニル、塩化ビニル
ー酢酸ビニル共重合体、塩化ビニルー塩化ビニリデン共
重合体、エチレン塩化ヒニル共重合体、プロピレンー塩
化ビニル共重合体、塩化ビニルーアクリル酸エステル共
重合体、塩化ビニルーメタクリル酸エステル共重合体等
が使用出来る。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application! F) The present invention relates to a fiber-reinforced chlorine-containing resin and molded product, a molded article using the composition, and a method for manufacturing the same. (Prior Art) It has been well known to reinforce chlorine-containing resins such as polyvinyl chloride resins with fibers such as glass fibers, and is disclosed in, for example, Japanese Patent Laid-Open No. 134140/1983. .. (Problem to be Solved by the Invention) However, when using chlorine-containing resin and chlorine-containing resin, the physical properties deteriorate due to poor adhesion and wettability between glass fiber and chlorine-containing resin and nitride. However, there was a problem in that the glass fibers came out on the surface of the molded product during the heating stage. The present invention has been made in order to solve the problems of the prior art described above and to obtain a molded article that has high mechanical strength and excellent durability performance such as creep performance and fatigue performance. (Means for Solving the Problem) 1 of the present invention is a vinyl chloride K% fat. 50-99.5% by weight and N-i! To 100 parts by weight of a copolymer consisting of 50 to 0.5% by weight of maleic acid imide or a mixture of the copolymer and a vinyl chloride resin, 5 to 5 parts by weight of glass fibers having a length of 3 strands or more are added.
70 parts by weight of the fiber-reinforced chlorine-containing resin composition, and the second aspect of the present invention is a fiber-reinforced chlorine-containing resin composition made of the above-mentioned fiber-reinforced chlorine-containing resin composition. 3 of the present invention is a copolymer consisting of 50 to 99.5% by weight of vinyl chloride thread 1 resin and 50 to 0.5% by weight of N-substituted maleic acid imide; 100 parts by weight of a mixture of the copolymer and vinyl chloride resin is fluidized with air to form a fluidized bed, and a roving-shaped glass fiber is passed through the fluidized bed to adhere the mixture to the glass fiber. to obtain a fiber-reinforced chlorine-containing resin composition, and then this fiber-reinforced chlorine-containing resin composition is charged into a hollow mold, heated and pressurized. The gist of this paper is the method for manufacturing molded objects. The vinyl chloride resin used in the present invention includes:
Polyvinyl chloride, post-chlorinated polyvinyl chloride, vinyl chloride-vinylacetate copolymer, vinyl chloride-vinylidene chloride copolymer, ethylene-hinyl chloride copolymer, propylene-vinyl chloride copolymer, vinyl chloride-acrylic acid ester copolymer , vinyl chloride-methacrylic acid ester copolymer, etc. can be used.

塩化ビニル系樹脂の平均重合度は、200〜1200と
するのが好ましい.200未満であると良好な物性が纒
られず、l200を超えると溶融温度での粘度が極めて
高く、スタンピング戊形が困難となる1頃向にある。
The average degree of polymerization of the vinyl chloride resin is preferably 200 to 1,200. If it is less than 200, good physical properties will not be obtained, and if it exceeds 1200, the viscosity at the melting temperature will be extremely high, and it will be close to 1, making stamping difficult.

本発明に於いて塩化ビニル系■.脂と共重合されるN 置換マレイン酸イミドは、 一般式 (Rl 、Rzは水素、塩素、臭素、弗素、シアン基又
は炭素原子数1〜3のアルキル基から選ばれる同種又は
異種の原子又は基であり、R3は炭素原子数1〜30の
非置換もしくは置換の脂肪族、環状脂肪族又は芳香族で
あり、望ましいものとしてはメチル基、L−ブチル基、
シクロヘキシル基、ビシクロ−2.2.1−へブチル2
−メチル基、9.IO−エタノー9,10〜ジヒドロア
ントラセン残基、トリフェニルメチルベンジル基、フェ
ニル基等が挙げられる.N−置換マレイン酸イミドの添
加量が0.5重量%未満では、ガラス繊維との接着性、
ati!的強度、耐久性改善効果がな<、50重量%を
超えて添加した場合には、溶融温度が高くなり、230
℃以下での流動性が悪くなり、より高温の威形では塩化
ビニル系樹脂の分解が起こる.本発明に於いて使用され
るガラス繊維は、連続したものであっても、3m以上の
長さに切断されたもので゛あってもよいが、長さ3閣未
満では、弾性率は向上しても強度の向上は殆ど期待出来
ない.又、ビニルシランや置換されたアルキルシラン、
ジアξノアルキルシラン等の接着助剤を添加した表面処
理剤によって前処理を施してもよい. ガラス繊維の添加量は、5重量部未満であると補強効果
が充分でなく、70重量部を超えると樹脂のガラス繊維
への含浸が困難となり、却って物性の低下を惹起する. 通常、ガラス繊維は、直径5〜30μ程度のフィラメン
トが数百〜数千本収束されたストランド或いはロービン
グの形態で使用されるが、成形体中に於いてはフィラメ
ント単位に開繊され、フィラメント間に樹脂が充分含浸
されていることが望ましいので、収束剤の付着量は1重
量%以下、より好ましくは0.5重量%以下とするのが
、開織性の点からは好ましい。
In the present invention, vinyl chloride type ■. The N-substituted maleic imide to be copolymerized with the fat has the general formula (Rl and Rz are the same or different atoms or groups selected from hydrogen, chlorine, bromine, fluorine, a cyan group, or an alkyl group having 1 to 3 carbon atoms). and R3 is an unsubstituted or substituted aliphatic, cycloaliphatic, or aromatic group having 1 to 30 carbon atoms, and preferable examples include a methyl group, an L-butyl group,
Cyclohexyl group, bicyclo-2.2.1-hebutyl 2
-methyl group, 9. Examples include IO-ethanol 9,10-dihydroanthracene residue, triphenylmethylbenzyl group, and phenyl group. If the amount of N-substituted maleic acid imide added is less than 0.5% by weight, the adhesion to glass fibers,
ati! If it is added in an amount exceeding 50% by weight, the melting temperature will increase and the 230%
Fluidity deteriorates below ℃, and decomposition of vinyl chloride resin occurs at higher temperatures. The glass fiber used in the present invention may be continuous or cut into lengths of 3 meters or more, but if the length is less than 3 meters, the elastic modulus will not improve. However, almost no improvement in strength can be expected. In addition, vinyl silane and substituted alkyl silane,
Pretreatment may be performed using a surface treatment agent containing an adhesion aid such as diaξnoalkylsilane. If the amount of glass fiber added is less than 5 parts by weight, the reinforcing effect will not be sufficient, and if it exceeds 70 parts by weight, it will be difficult to impregnate the glass fiber with the resin, and the physical properties will deteriorate. Glass fibers are usually used in the form of strands or rovings made up of several hundred to several thousand filaments with a diameter of about 5 to 30 microns, but in a molded product, they are opened into filament units, and there are gaps between the filaments. Since it is desirable that the resin be sufficiently impregnated with the resin, the amount of the binding agent attached is preferably 1% by weight or less, more preferably 0.5% by weight or less, from the viewpoint of openability.

本発明に於いては、その他塩化ビニル系樹脂を成形加工
する際に慣用される添加剤、例えばアルキル錫メルカプ
ト化合物、アルキル錫カルボキシレート、金属石鹸、エ
ボキシ化された油又はエステル、アリール系、アルキル
系又はアリール/アルキル系混合ホスファイト等の熱安
定剤、グリセリンのモノー、ジー トリーエステル、高
級アルコール、中性もしくは塩基性金属石鹸等の内滑剤
、高級脂肪酸、脂肪酸エステル、ポリエチレンワンクス
、脂肪酸アミド、シリコーン油等の外滑剤、立体障害を
受けたフェノール又はビスフェノール等の酸化防止剤、
サリチル酸エステル、ペンゾフエノン、ペンゾトリアゾ
ール、シアノアクリレート等の紫外線吸収剤、金属酸化
物、カーボンブラック等の顔料、ジオクチルフタレート
、ジシクロへキシルフクレート等の可塑剤、エチレンー
酢酸ビニル共重合体、塩素化ポリエチレン、アクリロニ
トリルーブタジエンースチレン共重合体、メタクリロ?
トリルーブタジエンースチレン共重合体等の耐衝撃性改
質剤、炭酸カルシウム、タルク、マイ力等の′@機充填
剤が添加されていてもよい.塩化ビニル賑嵐脂,とN−
置換マレイン酸イミドからなる共重合体と塩化ビニル系
樹脂との混合物は、両者及びその他の添加剤を■型タン
ブラー或いはヘンシェルミキサー等で混合するか、押出
機で溶融混練した後粉砕することによって得られる. 塩化ビニル■■■m1lyとN−r!l10マレイン酸
イミドからなる共重合体又は該共重合体と塩化ビニル系
樹脂との混合物の粒径は1+nm以下とされるのが好ま
しい.粒径が1mmを超えると、ガラス繊維フィラメン
ト間へのm戒物の浸入が困難となり、含浸が不充分とな
り易い。
In the present invention, other additives commonly used when molding vinyl chloride resins, such as alkyltin mercapto compounds, alkyltin carboxylates, metal soaps, eboxidized oils or esters, aryl, alkyl heat stabilizers such as phosphites or aryl/alkyl mixed phosphites, internal lubricants such as glycerin monomers, g-tree esters, higher alcohols, neutral or basic metal soaps, higher fatty acids, fatty acid esters, polyethylene waxes, fatty acid amides. , external lubricants such as silicone oil, antioxidants such as sterically hindered phenol or bisphenol,
UV absorbers such as salicylic acid esters, penzophenone, penzotriazole, and cyanoacrylates, metal oxides, pigments such as carbon black, plasticizers such as dioctyl phthalate and dicyclohexyl fucrate, ethylene-vinyl acetate copolymers, and chlorinated polyethylene. , acrylonitrile-butadiene-styrene copolymer, methacrylo?
Impact modifiers such as tributadiene-styrene copolymer, and fillers such as calcium carbonate, talc, and minerals may be added. PVC resin, and N-
A mixture of a copolymer consisting of a substituted maleic acid imide and a vinyl chloride resin can be obtained by mixing the two and other additives in a type tumbler or Henschel mixer, or by melt-kneading them in an extruder and then pulverizing them. It will be done. Vinyl chloride■■■m1ly and N-r! The particle size of the copolymer consisting of l10 maleic acid imide or the mixture of the copolymer and vinyl chloride resin is preferably 1+nm or less. If the particle size exceeds 1 mm, it becomes difficult for the m-sacred substance to penetrate between the glass fiber filaments, and impregnation tends to be insufficient.

組成物におけるガラス繊維との混合は、本発明の3のよ
うに、樹脂混合物がエアにより流動化している流動床中
をロービング状のガラス繊維を通過させ、ガラス繊維フ
ィラメントに樹脂混合物を均一に付着させる方法が好適
に用いられるが、本発明の1及び2の場合は、これに限
られるものではなく、予め長さ3一以上に切断されたガ
ラス繊維と樹脂混合物とをV型タンブラー或いはヘンシ
エルミキサー等で混合する方法、両者を流動床中でエア
で混合する方法等も採用可能である. 本発明に於いて樹脂混合物にガラス1a維を混合して組
成物とした後、加熱、加圧して戒型する方法としては、
第1図(イ)に示す本発明の3のように、塩素含有樹脂
組戒物を付着させた長さ3lI1以上のガラス繊維2を
ヒーター4を内蔵し、第1図(ロ)にも示すように下型
31と上型32とからなるプレス金型3に投入して加熱
、加圧する方法の他、第2図に示すように、樹脂混合物
の流動床5中を通過させたロービング状のガラス繊維6
を加熱ロールで加熱、加圧する方法、あるいは、第3図
に示すように、樹脂混合物の流動床5中を通過させたロ
ービング状のガラス繊!!l16を切断してベルト上に
S積し、ダブルベルトブレス9で加熱、加圧する方法等
が採用可能であるが、加熱温度は160〜230゜Cと
するのが好ましい.加熱温度が160゜C未満であると
、樹脂混合物が充分に一体化せず、物性が低くなり、2
30℃を超えると、塩化ビニル系樹脂が分解し易く、戒
形が困難となる.(作用) 本発明のlにおいては、N一置換マレイン酸イミドが有
するガラス繊維との良親和性により、ガラス繊維と塩化
ビニル系柑脂との接着性が改善される. 又、塩化ビニル囚梃旭とN−置換マレイン酸イミドから
なる共重合体と塩化ビニル系樹脂との混合物を使用する
場合には、N−置換マレイン酸イミドが有するガラス繊
維との良親和性と共重合体の塩化ビニル系樹脂との良親
和性により、ガラス繊維と塩化ビニル系樹脂との接着性
が改善される. 本発明の2においては、本発明の1で得られた繊維強化
塩素含有樹脂&II戒物を材料として製せられた成形体
であるから、ガラス繊維と塩化ビニル系樹脂との接着性
に優れたものが得られる. 本発明の3においては、本発明の1の繊維強化塩素含有
樹脂組底物を得るに際して、ロービング状のガラス繊維
を用い、このガラス繊維に塩化ビニル系樹脂混合物を付
着させたものを戒形型に装入するので、戒形中にガラス
繊維が切断されることがない. (実施例) 以下、本発明の実施例を具体的に説明するが、本発明は
実施例に限定されるものではない.丈息銑上 塩化ビニル70重量%とシクロヘキシルマレイミド30
重景%とからなる共重合体100重量部、ブチル錫マレ
エート3重量部、ポリエチレンワックス0.3重量部を
スーパーミキサーで混合し、平均粒径約200μの粉状
塩化ビニル系樹脂組戒物を得た.次に、フィラメント直
径23μ、収束剤付着fit 0.3重量%、番手44
00texのロービング状ガラス繊維を長さ25aに切
断し、前記粉状塩化ビニル系樹脂組放物800 gとガ
ラス繊維200gとを、流動床内でエア及び手でガラス
繊維をフィラメント単位に開繊しつつ均一に混合した.
該混合物を平板用プレス金型内に投入し、該金型を20
0゜Cの熱盤間に挟み、5分間加熱した後、面圧力20
kg/cdで2分間加熱、加圧し、続いて金型を冷却プ
レスで加圧しつつ冷却し、厚み3鴎の平板状成形体を得
た. 叉韮潰1 重合度400のポリ塩化ビニル100重量部、塩化ビニ
ル40重量%とシクロヘキシルマレイミド60重量%と
からなる共重合体15重量部、ブチル錫マレエート3重
量部、ポリエチレンワックス0,3重量部をスーパー藁
キサーで混合し、平均粒径約300μの粉状塩化ビニル
系樹脂組成物を得た.次に、フィラメント直径13μ、
収束剤付着IO.3重量%、番手1100texのロー
ビング状ガラス繊維を長さ5amに切断し、前記粉状塩
化ビニル系樹脂組戒物800gとガラス繊維200gと
を、流動床内でエア及び手でガラス繊維をフィラメント
単位に開繊しつつ均一に混合した.該混合物を平板用プ
レス金型内に投入し、該金型を210’Cの熱盤間に挟
み、5分間加熱した後、面圧力20kg/cjで2分間
加熱、加圧し、続いて金型を冷却プレスで加圧しつつ冷
却し、厚み3閤の平板状成形体を得た. 夫施貫ユ 酢ビ含有量13重量%の酢酸ビニルー塩化ビニル共重合
体100重量部、塩化ビニル70重景%とt−プチルマ
レイξド30重四%とからなる共重合体20重量部、ブ
チル錫マレエート3重量部、ポリエチレンワックス0.
3重量部をスーパーミキサーで混合し、平均粒径約25
0μの粉状塩化ビニル系樹脂&Il戒物を得た.次に、
フィラメント直径13μ、収束剤付着1 0.3重量%
、番手l100teκのロービング状ガラス繊維を長さ
5o閣に切断し、前記粉状塩化ビニル系樹脂組成’4k
700gとガラス繊維300gとを、流動床内でエア及
び手でガラス繊維をフィラメント単位に開繊しつつ均一
に混合した.該混合物を平板用プレス金型内に投入し、
咳金型を190゜Cの熱盤間に挟み、5分間加熱した後
、面圧力15kg/cdで2分間加熱、加圧し、続いて
金型を冷却プレスで加圧しつつ冷却し、厚み3IIII
1の平板状成形体を得た.亥韮舅1 塩化ビニル97重量%とフェニルマレイミド3重量%と
からなる共重合体100重量部、プチル錫マレエート3
重量部、ポリエチレンワックス0.3重量部をスーパー
ミキサーで混合し、平均粒径約200μの粉状ポリ塩化
ビニル組成物を得た.次に、前記&I或物がエアにより
流動化された流動床中に、フィラメント直径23μ、収
束剤付着量0.3重量%、番手4400texのロービ
ング状ガラスIM!Iiを浸漬、通過させ、フィラメン
ト間に組成物を均一に付着させた後、25mの長さに切
断し、ガラス繊維の含有量35重蛍%の混合物を得、該
混合物を平仮用プレス金型内に投入し、該金型を200
℃の熱盤間に挟み、5分間加熱した後、面圧力10kg
/cdで2分間加熱、加圧し、続いて金型を冷却プレス
で加圧しつつ冷却し、厚み3閣の平板状戊形体を得た。
Mixing with glass fibers in the composition is carried out by passing the roving-shaped glass fibers through a fluidized bed in which the resin mixture is fluidized by air, and uniformly attaching the resin mixture to the glass fiber filaments, as in the third aspect of the present invention. However, in the case of 1 and 2 of the present invention, the method is not limited to this, but the glass fibers cut in advance to lengths of 3 or more and the resin mixture are mixed in a V-shaped tumbler or Henschel. It is also possible to use a method of mixing with a mixer, etc., or a method of mixing both with air in a fluidized bed. In the present invention, the method of mixing glass 1a fibers into a resin mixture to form a composition and then molding it by heating and pressurizing it is as follows:
3 of the present invention shown in FIG. 1(A), a glass fiber 2 with a length of 3lI1 or more to which a chlorine-containing resin composition is attached is equipped with a built-in heater 4, as also shown in FIG. 1(B). In addition to the method of heating and pressurizing the press mold 3 consisting of a lower mold 31 and an upper mold 32, as shown in FIG. glass fiber 6
Alternatively, as shown in Fig. 3, roving-shaped glass fibers are passed through a fluidized bed 5 of a resin mixture. ! It is possible to adopt a method of cutting the l16, stacking it on the belt, heating and pressurizing it with the double belt press 9, but it is preferable that the heating temperature be 160 to 230°C. If the heating temperature is less than 160°C, the resin mixture will not be sufficiently integrated, resulting in poor physical properties.
If the temperature exceeds 30°C, the vinyl chloride resin will easily decompose, making it difficult to form a precept. (Function) In I of the present invention, the adhesion between glass fibers and vinyl chloride citrus resin is improved due to the good affinity that N-substituted maleic acid imide has with glass fibers. In addition, when using a mixture of a copolymer made of vinyl chloride and N-substituted maleic acid imide and a vinyl chloride-based resin, the good affinity with glass fibers that N-substituted maleic acid imide has The copolymer's good affinity with vinyl chloride resin improves the adhesion between glass fibers and vinyl chloride resin. In the second aspect of the present invention, since the molded article is made of the fiber-reinforced chlorine-containing resin obtained in the first aspect of the present invention & II Kaimono, it has excellent adhesiveness between the glass fiber and the vinyl chloride resin. You can get something. In the third aspect of the present invention, when obtaining the fiber-reinforced chlorine-containing resin composite sole according to the first aspect of the present invention, roving-shaped glass fibers are used, and a vinyl chloride resin mixture is attached to the glass fibers. Since the glass fibers are charged into the container, the glass fibers will not be cut during the molding process. (Examples) Examples of the present invention will be specifically described below, but the present invention is not limited to the examples. 70% by weight of vinyl chloride and 30% of cyclohexyl maleimide
100 parts by weight of a copolymer composed of 100 parts by weight, 3 parts by weight of butyltin maleate, and 0.3 parts by weight of polyethylene wax were mixed in a super mixer to form a powdered vinyl chloride resin compound with an average particle size of about 200μ. Obtained. Next, filament diameter 23μ, sizing agent adhesion fit 0.3% by weight, count 44
A roving glass fiber of 0.00 tex was cut into a length of 25 a, and 800 g of the powdered vinyl chloride resin assembly and 200 g of glass fiber were opened into filament units using air and hands in a fluidized bed. Mixed evenly.
The mixture was put into a press mold for a flat plate, and the mold was heated for 20 minutes.
Place it between heating plates at 0°C and heat for 5 minutes, then apply a surface pressure of 20°C.
The mold was heated and pressurized for 2 minutes at kg/cd, and then the mold was cooled while being pressurized with a cooling press to obtain a flat plate-shaped molded product with a thickness of 3 mm. Chopstick 1 100 parts by weight of polyvinyl chloride with a degree of polymerization of 400, 15 parts by weight of a copolymer consisting of 40% by weight of vinyl chloride and 60% by weight of cyclohexylmaleimide, 3 parts by weight of butyltin maleate, 0.3 parts by weight of polyethylene wax. were mixed in a super straw mixer to obtain a powdered vinyl chloride resin composition with an average particle size of about 300μ. Next, the filament diameter is 13μ,
Sizing agent adhesion IO. A roving glass fiber having a weight of 3% by weight and a size of 1100 tex was cut into a length of 5 am, and 800 g of the powdered vinyl chloride resin composite and 200 g of glass fiber were mixed into filament units using air and hands in a fluidized bed. The fibers were spread and mixed uniformly. The mixture was put into a press mold for a flat plate, and the mold was placed between heating plates at 210'C and heated for 5 minutes, then heated and pressurized for 2 minutes at a surface pressure of 20 kg/cj, and then the mold was was cooled while being pressurized with a cooling press to obtain a flat plate-shaped molded product with a thickness of 3 lbs. 100 parts by weight of a vinyl acetate-vinyl chloride copolymer with a vinyl acetate content of 13% by weight, 20 parts by weight of a copolymer consisting of 70% vinyl chloride and 30% by weight of t-butyl maleate, butyl 3 parts by weight of tin maleate, 0.0 parts by weight of polyethylene wax.
Mix 3 parts by weight in a super mixer to obtain an average particle size of about 25
A powdered vinyl chloride resin with a particle size of 0μ was obtained. next,
Filament diameter 13μ, sizing agent adhesion 1 0.3% by weight
A roving glass fiber having a count of l100teκ was cut into lengths of 5o and the powdered vinyl chloride resin composition '4k was cut.
700 g and 300 g of glass fiber were uniformly mixed in a fluidized bed while opening the glass fiber into filaments using air and hands. Putting the mixture into a press mold for a flat plate,
The cough mold was sandwiched between heating plates at 190°C and heated for 5 minutes, then heated and pressurized for 2 minutes with a surface pressure of 15 kg/cd, and then cooled while pressurizing the mold with a cooling press to obtain a thickness of 3III.
A flat plate-shaped compact of No. 1 was obtained.亥韮舅1 100 parts by weight of a copolymer consisting of 97% by weight of vinyl chloride and 3% by weight of phenylmaleimide, butyltin maleate 3
parts by weight and 0.3 parts by weight of polyethylene wax were mixed in a super mixer to obtain a powdered polyvinyl chloride composition with an average particle size of about 200 μm. Next, a roving-shaped glass IM with a filament diameter of 23 μ, a sizing agent adhesion amount of 0.3% by weight, and a count of 4400 tex was placed in a fluidized bed in which the &I material was fluidized with air. After dipping and passing the composition through the filaments to uniformly adhere the composition between the filaments, the filaments were cut into a length of 25 m to obtain a mixture with a glass fiber content of 35%, and the mixture was pressed into a flat press metal. Insert into the mold and press the mold for 200
Place it between heating plates at ℃ and heat it for 5 minutes, then apply a surface pressure of 10 kg.
/cd for 2 minutes, and then the mold was cooled while being pressed with a cooling press to obtain a flat plate-shaped body with a thickness of 3 mm.

X旌銖i 重合度400のポリ塩化ビニル100重量部、塩化ビニ
ル40重量%とシクロヘキシルマレイミド60重量%と
からなる共重合体15重量部、ブチル錫マレエー13重
量部、ポリエチレンワックス0.3重量部をスーパーξ
キサーで?昆合し、平均粒径約200μの粉状塩化ビニ
ル系樹脂組戒物を得た.次に、前記組成物がエアにより
流動化された流動床中に、フィラメント直径23μ、収
束剤付着量0.3重量%、番手4400texのロービ
ング状ガラス繊維5本を浸漬、通過させ、フィラメント
間に組戒物を均一に付着させた後、220゜Cに加熱さ
れたロールで連続的に加熱、加圧し、幅200m,厚み
0.3閣、ガラス繊維の含有量40重量%のシートを得
、該シートを10枚積層し、温度200℃、面圧力10
kg/c+4で加熱、加圧した後冷却し、厚み3mの平
板状或形体を得た。
100 parts by weight of polyvinyl chloride with a degree of polymerization of 400, 15 parts by weight of a copolymer consisting of 40% by weight of vinyl chloride and 60% by weight of cyclohexylmaleimide, 13 parts by weight of butyltin maleate, 0.3 parts by weight of polyethylene wax super ξ
At Kisser? The mixture was combined to obtain a powdered vinyl chloride resin compound with an average particle size of about 200 μm. Next, five roving-shaped glass fibers with a filament diameter of 23μ, a binding agent adhesion amount of 0.3% by weight, and a count of 4400tex were immersed and passed through a fluidized bed in which the composition was fluidized with air. After uniformly adhering the Kumihimo, it was heated and pressed continuously with a roll heated to 220°C to obtain a sheet with a width of 200 m, a thickness of 0.3 mm, and a glass fiber content of 40% by weight. 10 of these sheets were stacked at a temperature of 200°C and a surface pressure of 10
After heating and pressurizing at kg/c+4, the mixture was cooled to obtain a plate-shaped body with a thickness of 3 m.

走校銖上 塩化ビニルーシクロへキシルマレイミド共重合体を添加
しない以外は実施例2の通りにして、厚み3閤の平板状
成形体を得た. 且較員1 組戒物とガラス繊維とを200゜Cの混練ロールで溶融
混練した以外は実施例lの通りにして、厚み3鱈の平板
状成形体を得た。
A flat plate-like molded product with a thickness of 3 mm was obtained in the same manner as in Example 2, except that the vinyl chloride-cyclohexyl maleimide copolymer was not added. Comparative Example 1 A flat plate-like molded product with a thickness of 3 mm was obtained in the same manner as in Example 1, except that the composite material and the glass fiber were melt-kneaded using a kneading roll at 200°C.

前記の各実施例及び比較例について、下記(1)〜(5
)の物性測定を行った結果並びに、実施例1〜4及び比
較例lについて、得られた成形体を遠赤外線加熱装置に
より材料温度約200’Cに加熱溶融させ、金型温度4
0’Cのプレス金型内に投入し、面圧力120kg/c
dで加圧して得た成形体について(6)の物性測定を行
った結果を第I表に纏めて記載する。
Regarding each of the above examples and comparative examples, the following (1) to (5)
), as well as Examples 1 to 4 and Comparative Example 1, the obtained molded bodies were heated and melted to a material temperature of about 200'C with a far infrared heating device, and the mold temperature was 4.
Placed in a press mold at 0'C, surface pressure 120kg/c
Table I summarizes the results of measuring the physical properties in (6) for the molded product obtained by pressurizing in step d.

(1)戊形体の樹脂を燃焼除去し、ガラス繊維量及びガ
ラス繊維長を測定。
(1) Burn and remove the resin from the rod and measure the amount and length of glass fibers.

(2)成形体より幅20aw、長さ120閣の試験片を
切り出し、スパン間距離100vmで3点曲げ試験を行
い、曲げ強度及び曲げ弾性率を測定。
(2) A test piece with a width of 20aw and a length of 120cm was cut out from the molded body, and a three-point bending test was performed with a span distance of 100v to measure the bending strength and bending elastic modulus.

(3)成形体よりJ I S − K7110に準して
アイゾット衝撃試験片を切り出し、アイゾット衝撃強度
を測定. (4)前記(2)の試験に於いて、試験片に初期応力6
IKglmm”の応力が発生する曲げ変位量を与えた状
態で放置し、24時間後の応力保持率を測定。
(3) An Izod impact test piece was cut out from the molded article according to JIS-K7110, and the Izod impact strength was measured. (4) In the test (2) above, the initial stress of 6
A bending displacement amount that generates a stress of "IKglmm" was left as it was, and the stress retention rate was measured after 24 hours.

(5)前記(2)の試験に於いて、試験片に6kg/a
m”の応力が発生する曲げ荷重の負荷、除去を50回繰
り返した後の試験片の状態を目視観察.(6)成形体の
表面のガラス繊維の浮き出しの有無を目視観察. (以下余白) (発明の効果) 本発明の1の繊維強化塩素含有樹脂組戒物及び本発明の
2の成形体は、叙上の通りの構成とされているので、該
組成物を用いて成形体を製造した場合には、該組戒物の
ガラス繊維と塩化ビニル系樹脂との接着性や濡れ性が改
善されているので、高い強度を有すると共に、応力保持
及び応力の繰り返し負荷に対して高い耐久性を有し、更
に成形体表面へのガラス繊維の浮き出しが無くなって、
表面状態も著しく向上するという利点を有する. 本発明の3の繊維強化塩素含有樹脂組成物を用いた成形
体の製造方法は、叙上の通りの横戒とされているので、
上記本発明の1及び2で得られる効果に加えて、成形の
際にガラス繊維が切断されることが無いから、得られる
成形体はより強度に優れたものとなる.
(5) In the test of (2) above, the test piece was loaded with 6 kg/a
Visually observe the condition of the test piece after repeating the application and removal of a bending load that generates a stress of 50 m'' 50 times. (6) Visually observe the presence or absence of protrusion of glass fibers on the surface of the molded object. (See the margins below) (Effects of the Invention) Since the fiber-reinforced chlorine-containing resin composition according to the first aspect of the present invention and the molded article according to the second aspect of the present invention have the configurations described above, molded articles can be manufactured using the compositions. In this case, the adhesion and wettability between the glass fiber and vinyl chloride resin of the composite material are improved, so it has high strength and high durability against stress retention and repeated stress loading. In addition, there is no protrusion of glass fibers on the surface of the molded product,
It also has the advantage of significantly improving the surface condition. The method for producing a molded article using the fiber-reinforced chlorine-containing resin composition according to the third aspect of the present invention is strictly prohibited as described above.
In addition to the effects obtained in the above aspects 1 and 2 of the present invention, since the glass fibers are not cut during molding, the resulting molded product has better strength.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の3の一実施例を示す説明図あって、(
イ)は金型内に繊維強化塩素含有樹脂&I1戒物を装入
した図、(口)は上型と下型とを閉合した図、第2図は
同上の他の実施例を示す説明図、第3図は同上の更に他
の実施例を示す説明図である. 1・・一塩素含有樹脂組成物、2・・−ガラス繊維、3
・−プレス金型、 5・−・塩素含有樹脂組戒物の流動床、6・一ロービン
グ状のガラス繊維、
FIG. 1 is an explanatory diagram showing a third embodiment of the present invention.
A) is a diagram in which the fiber-reinforced chlorine-containing resin & I1 precepts are charged into the mold, (opening) is a diagram in which the upper and lower molds are closed, and Figure 2 is an explanatory diagram showing another example of the same. , FIG. 3 is an explanatory diagram showing still another embodiment of the same. 1. Monochlorine-containing resin composition, 2.-Glass fiber, 3
・-Press mold, 5.--Fluidized bed of chlorine-containing resin composition, 6.1 Roving-shaped glass fiber,

Claims (1)

【特許請求の範囲】 1、塩化ビニル樹脂50〜99.5重量%とN−置換マ
レイン酸イミド50〜0.5重量%からなる共重合体又
は該共重合体と塩化ビニル系樹脂との混合物100重量
部に、長さ3mm以上のガラス繊維5〜70重量部を配
合してなることを特徴とする繊維強化塩素含有樹脂組成
物。 2、請求項1記載の繊維強化塩素含有樹脂組成物を材料
として製せられた成形体。 3、塩化ビニル樹脂50〜99.5重量%とN−置換マ
レイン酸イミド50〜0.5重量%からなる共重合体又
は該共重合体と塩化ビニル系樹脂との混合物100重量
部を、エアーにより流動化させて流動床を形成し、その
流動床中をロービング状のガラス繊維を通過させ、ガラ
ス繊維に該混合物を付着させて繊維強化塩素含有樹脂組
成物を得、次いでこの繊維強化塩素含有樹脂組成物を成
形型に装入し、加熱、加圧することを特徴とする繊維強
化塩素含有樹脂組成物を用いた成形体の製造方法。
[Scope of Claims] 1. A copolymer consisting of 50 to 99.5% by weight of a vinyl chloride resin and 50 to 0.5% by weight of an N-substituted maleic acid imide, or a mixture of the copolymer and a vinyl chloride resin. A fiber-reinforced chlorine-containing resin composition comprising 100 parts by weight of glass fibers and 5 to 70 parts by weight of glass fibers having a length of 3 mm or more. 2. A molded article made from the fiber-reinforced chlorine-containing resin composition according to claim 1. 3. 100 parts by weight of a copolymer consisting of 50 to 99.5% by weight of vinyl chloride resin and 50 to 0.5% by weight of N-substituted maleic acid imide or a mixture of the copolymer and vinyl chloride resin is heated in air. to form a fluidized bed, pass roving glass fibers through the fluidized bed, adhere the mixture to the glass fibers to obtain a fiber-reinforced chlorine-containing resin composition, and then obtain a fiber-reinforced chlorine-containing resin composition. A method for producing a molded article using a fiber-reinforced chlorine-containing resin composition, which comprises charging the resin composition into a mold, heating and pressurizing the resin composition.
JP30036389A 1989-11-17 1989-11-17 Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article Pending JPH03160045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30036389A JPH03160045A (en) 1989-11-17 1989-11-17 Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30036389A JPH03160045A (en) 1989-11-17 1989-11-17 Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article

Publications (1)

Publication Number Publication Date
JPH03160045A true JPH03160045A (en) 1991-07-10

Family

ID=17883879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30036389A Pending JPH03160045A (en) 1989-11-17 1989-11-17 Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article

Country Status (1)

Country Link
JP (1) JPH03160045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509199A (en) * 1998-01-16 2002-03-26 ネオプレク・アーゲー Fiber coating method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002509199A (en) * 1998-01-16 2002-03-26 ネオプレク・アーゲー Fiber coating method

Similar Documents

Publication Publication Date Title
Coran et al. Rubber-thermoplastic compositions. Part I. EPDM-polypropylene thermoplastic vulcanizates
EP0232522A2 (en) Polypropylene resin composition
EP2632972A1 (en) Nucleating agent for polyethylenes
US4115499A (en) Large void-free polyethylene castings
CN108794847A (en) Rotational moulding polyolefin composition and preparation method thereof
CN109535744A (en) A kind of dedicated thermoplastic elastomer (TPE) of Yoga band and its preparation process
US3388202A (en) Method for melting acrylonitrile polymers and copolymers
JPH03160045A (en) Fiber-reinforced chlorinated resin composition, molded article thereof, and production of the molded article
EP0736364A4 (en) Styrene resin pellets and product of molding thereof
JPH0518861B2 (en)
CN109929245A (en) A kind of high-air-tightness PPA composite material and preparation method
JPH0790137A (en) Mica-reinforced polypropylene resin composition
JPH01223152A (en) Glass-fiber reinforced methacrylic resin composition
CN106947077A (en) A kind of ultra-toughness MC nylon materials and preparation method thereof
JP2507100B2 (en) Fiber-reinforced vinyl chloride resin composition, molded article using the composition, and method for producing the molded article
JPS62146947A (en) Polypropylene resin composition
US4071495A (en) Reinforced polyvinylidene fluoride molding compositions
JPH03166251A (en) Fiber-reinforced chlorine-containing resin composition, molded body using the same composition and production thereof
JPH02299610A (en) Resin-made chopstick
US20240150576A1 (en) A polyamide or fluoropolymer composite material and method of its preparation
DD201803A5 (en) ADHESION AGENT AND ITS USE FOR BINDING SILICONE RUBBER ON A TRAIGER
JPS6395260A (en) Glass fiber for glass fiber-reinforced amide resin molded article
JPS6395261A (en) Glass fiber for glass fiber-reinforced amide resin molded article
JPH04130149A (en) Vinyl chloride resin composition for composite glass-vinyl chloride resin molding, and composite glass-vinyl chloride resin molding prepared therefrom
JPS636510B2 (en)