JPH03159530A - Compressed air storage generating unit - Google Patents

Compressed air storage generating unit

Info

Publication number
JPH03159530A
JPH03159530A JP1294020A JP29402089A JPH03159530A JP H03159530 A JPH03159530 A JP H03159530A JP 1294020 A JP1294020 A JP 1294020A JP 29402089 A JP29402089 A JP 29402089A JP H03159530 A JPH03159530 A JP H03159530A
Authority
JP
Japan
Prior art keywords
pressure vessel
water tank
air
water
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1294020A
Other languages
Japanese (ja)
Inventor
Hiroaki Kaneda
金田 博晶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP1294020A priority Critical patent/JPH03159530A/en
Publication of JPH03159530A publication Critical patent/JPH03159530A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Abstract

PURPOSE:To enhance thermal efficiency by providing a water tank located at a high position, a pressure vessel located at a low position with a predetermined head being maintained with respect to the water tank, and another water tank communicating between the bottoms of the pressure vessel and said water tank. CONSTITUTION:A water tank 1 located above a compressed air storage generating unit is coupled through a water pipe 3 having head of 400-600m with a pressure vessel 2 located below, where proper quantity of water is supplied into the water tank 1 and the quantity of water varies according to the quantity of air stored in the pressure vessel 2. An air pipe 11 is coupled to the upper side of the pressure vessel 2, and the other end of the air pipe 1 is coupled with a compressor 4 and a gas expander 5. Since the bottoms of the high position water tank 1 and the low position pressure vessel 2 are communicated through the watertight pipe 3, a head corresponding to a required difference is produced between the water tank 1 and the pressure vessel 2 upon supply of proper quantity of water into the water tank 1 thus determining the pressure of air to be stored in the pressure vessel 2. By such arrangement, the air in the pressure vessel 2 can be entirely stored and utilized under a constant pressure at all times.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利川分野〕 本発明は空気を圧縮して圧力容器に貯蔵し、随時、取出
して加熱、エキスパンダで膨脹させて、その動力で発T
111を駆動する圧縮空気貯蔵発電装置に関する. (従来の技術〕 空気を圧縮して貯蔵し、これを取出して加熱、膨脹し、
それによって得た動力で発電する装置は空気を貯蔵する
部分に夫々特徴を持っている。従来、ヨーロンパ、米国
で実川化されているのは第3図に示すように地下約50
0mに層状をなす岩塩層に水を注入し熔解法↓こより岩
塩を取除いて大形の空洞を掘り、これに50〜80kg
/cs”gの高圧空気を叶蔵し、圧力を変化させること
↓こよって貯蔵空気を取出す放出方式である。 岩塩層が存在しない地域では第4 UAに示すように地
下の岩盤層に発破法または切削法により、トンネル(空
洞)を掘り、これに空気を扛r蔵する方式が検討されて
いる。 また、地下岩盤が存在しない軟弱Il!!盤地−1tF
では第5図に示すように高圧容器に貯蔵する方式が提案
されている. 〔発明が解決しようとする課題〕 上記従来の圧縮空気の貯蔵手段には解決すべき次の課題
があった. 即ち、地下岩塩層に大形の空洞を掘り、これに高圧空気
を貯蔵する場合、岩塩層の変形もなく、又空気の洩れも
なく、この空洞を建設する費用も安価で、理想的ではあ
るが問題は岩塩層自体に地域PLがあってY1塩層が在
在しなければ実現しない欠点がある. 地下+′H盤に空洞をltliってlri藏ずる場合、
その掘削の方法番こより建設に要する費川が大きく粂り
、発破を用いる方式は安価ではあるが、振動、騒音を4
1′ない、市i}r j1!!では!采川出来ない。ま
た切削法により、地下にトンネルを設けて叶蔵するのは
高価となる。更には1”I盤に空旧を建設する場合、l
lj盤の中のクラノク又は岩盤白体からの空気洩れがあ
り、これを防止する方法が状況によって大きく表るとい
う不確実性を{゛1′−う欠点もある.第5図の高圧容
器方式は地質上、地形]二の制約はなく、消費地に隣接
して建設出来る利点はあるが、容器白体が高価で、容量
に制限があって、高圧に圧縮する動力にロスが発alL
熱効率が悪いという問題がある. 〔課題を解決するための手段] 本発明は上記課題の解決手段として、空気を圧縮して圧
力容器に貯蔵し必要にI+コ;シてこれを取出し加熱し
たのちガスエキスパンダで膨脹させて動力を発生さきこ
れにより発電機を駆動する圧縮空気貯蔵発布装買におい
て、高所に設けられた水槽と、同水糟と所要の落差を保
って(1(所に設けられた斤力容2=と、同圧力容2:
の底部と1111記水槽の底部とを水雷状に連通ずる木
管とを具備してt
[Industrial field in Icheon] The present invention compresses air, stores it in a pressure vessel, takes it out at any time, heats it, expands it with an expander, and uses the power to generate electricity.
This relates to a compressed air storage power generation device that drives 111. (Conventional technology) Air is compressed and stored, extracted, heated, and expanded.
The devices that generate electricity using the power obtained from this process each have their own characteristics in the part that stores air. As shown in Figure 3, approximately 50 underground rivers have been converted into actual rivers in Europe and the United States.
Melting method by injecting water into a rock salt layer that forms a layer at a depth of 0 m↓Remove the rock salt, dig a large cavity, and fill it with 50 to 80 kg.
This is a release method that stores high-pressure air of /cs"g and changes the pressure ↓, thereby extracting the stored air. In areas where rock salt layers do not exist, blasting method is applied to underground rock layers as shown in Section 4 UA. Alternatively, a method of digging a tunnel (cavity) using a cutting method and storing air in it is being considered.
As shown in Figure 5, a method has been proposed in which storage is carried out in a high-pressure container. [Problems to be solved by the invention] The conventional compressed air storage means described above had the following problems to be solved. In other words, when a large cavity is dug in an underground rock salt layer and high-pressure air is stored in it, there is no deformation of the rock salt layer, no air leakage, and the cost of constructing this cavity is low, making it ideal. However, the problem is that the rock salt layer itself has a regional PL, and it cannot be realized unless the Y1 salt layer exists. When creating a cavity in the underground + 'H board,
The excavation method requires a large amount of water for construction, and although the method using blasting is inexpensive, it reduces vibration and noise by 4.
1'No, city i}r j1! ! Well then! I can't do Kagawa. Also, using the cutting method, it would be expensive to construct underground tunnels to store the leaves. Furthermore, when constructing an old and empty space on a 1" I board, l
There is also the drawback of the uncertainty that there is air leakage from the cranock or rock white body in the lj disk, and the method to prevent this depends largely on the situation. The high-pressure container method shown in Figure 5 does not have the geological and topographical constraints and has the advantage of being able to be constructed adjacent to the consumption area, but the container is expensive, has a limited capacity, and must be compressed to high pressure. Loss occurs in power
There is a problem with poor thermal efficiency. [Means for Solving the Problems] The present invention provides a solution to the above problems by compressing air, storing it in a pressure vessel, taking it out and heating it as needed, and then expanding it with a gas expander to generate power. In the equipment for compressed air storage and issuance that drives the generator, a water tank installed at a high place is kept at a required head difference from the same water tank (1 (loat force capacity 2 = And the same pressure capacity 2:
and a wood pipe communicating with the bottom of the water tank No. 1111 in the shape of a torpedo.

【ることを特敬とずる仄縮空1(叶藏
発電公;αを提供しようとするものである。 〔作用〕 本発明は上記のように構威されるので次の{’l: J
llをイ1゛する. 即ち、高所の水槽の底部と低所の圧力’?:,:2’A
の底部とは水密状に水管で連通されているため、水糟に
iffllの水を入れると水槽と圧力容器との間には所
要の落差に応した水頭差が生し、これによっ゜ζ圧力容
器内に肘蔵される空気圧力が決まる。 圧力容器の上側に空気管を接続し、これから圧縮機によ
り加『された空気を伊給(貯蔵)すると圧力容器内の水
面が押し下げられ、水は木管を通して高所の水槽へ押し
上げられる.圧力容器内の空気が満杯になると、圧縮機
は停止しこの状態で空気が貯蔵される.発電の必要が生
じたとき空気をガスエキスパンダの方へ取出すと高所の
水槽から水が、{l(所の圧力容器に移動し、圧力容器
内の仝気圧力は変化することなく押出される.この空気
は圧力容器内に水が満杯になるまで、一定の圧力で即出
される。 従って、圧力容器の持つ全容量の空気を常に一定圧力の
下で貯蔵し利用することができる。 (実施例〕 本発明の第l実施例を第1図により説明する。 第1図は本実施例の模式的構戊図で、図において、圧縮
空気貯蔵発電装数の上部に設けられた水槽1と下部に設
けられた圧力容器2との間は高低差400〜600mの
水管3で接続されている。水槽l内には適量の水が43
L給され圧力容i!32内に貯藏される空気!(10〜
20万1)により、その水量が上下する。 圧力容器2上側には空気管11が接続され、これが圧縮
機4とガスエキスパンダ5へつtl:がっている。圧縮
機dとガスエキスバンダ5は同一軸1二で嵌脱『1花な
カノブリング7を介して電動a/発孟機6と接続されて
いる.圧力容器2内にIti′!蔵空気が声{い場合、
圧力容器2内の水面は最上面となり、水槽l内の水面は
最下面となっている。 圧力容器2に空気を貯蔵する場合は主動a/発電機6を
電動機として用い、圧縮a4を運転して冷J’JI器8
で冷却し、圧力容器2内に仄力40〜(iokg/ (
ta ”の空気を{Jj給すると圧力容器2内の水面が
下降して圧力容器2内に空気が貯蔵されていく.空気が
圧力容器2内に満杯になると、圧力容器2内の水面は最
下面に下降し、水槽1 1AJの水面は−E昇して水槽
IMは水で満杯となる。発電の必要な場合は弁l2を開
いて圧力容器2内の貯蔵空気を先ず、再生器9を経て燃
焼2S】0に導き、燃JA器IOで燃料を燃焼して加熱
し、次いでガスエ・トスバンダ5で膨脹させて動力を得
、これによって電動機/発電機6を発電機として駆動し
発電する。ガスエキスバンダ5のIJF気ガスは貯蔵空
気を予熱するための再生器9を経て大気に放出される.
以上の通り本実施例によれば圧力容器2内のほぼ全容品
の空気の貯蔵、放出をほぼ一定の圧力の下で行なうこと
ができるため、次に説明する多くの利点がある。 即ら、Il’i藏空気の敗出にけう圧力降下がないので
圧縮空気をすべて利川でき、従って、圧縮に必要なfノ
1力を最小にすることができる。 また、Tf.縮機の特v1をフラットにすれば圧力容器
に4Jt給1る空気流量をある程度加減ずることが可能
となり、電力に金剰をルした特には多くの空気を正力容
器に{Jt給し、電力の余裕が小さくなったg.li4
こは{Jj給空気景をずくな<シ゛ζ消費動力を調整す
ることができる。 また、圧力容器内のffi藏空気を全量利川できるので
圧力容2スを小さくすることができると同時に設計仄力
を最小とすることができる。この結果、圧力容器の資材
節減が図れる。また、空気の出入りに対して圧力変化が
なく、常に一定圧力のもとで使用されるため繰返し応力
が生じず、金属疲労が発生しない。 また、IITE縮に−12−紫な動力を最小にすること
によって、システムとしての熱効率をId高に1ること
か出来る。因みに高圧容關方式に比べて3〜5%効;1
がアンフ゜1る。 次に本発明の第2実施例に一つい゜ζ第2レICこより
説明する。なお、本実施例では第l実施例との相違部の
みを示し、かつ説明する. 第2図において、十部水槽hは山間部に設り落差(40
0〜600rn)を保っで、圧力容器2を山間部の中服
又は平野部に設置し、その間を水n3で連通ずる。その
他について1よ第1丈施例と同林である。本実施例の場
合、上部水糟hの落;τ二6′庄保番こ山帛を利用する
ので施工費が小さいという利点がある。なお、本実施例
は出水発電装置と煩{[2 Lているが、次の(+1.
 (2)の点で異なる。 (1)同一発電容量の場合、上部水槽1aは揚水発電に
比し、約1八。の容里でよい。これはガスエキスバンダ
5に加える燃才1ffiによってζ1−シる水頭が陽水
のそれよりtp位体梢当りvノ10倍大きいためである
。 (2)本実施例では揚水発電の下部水槽が不要である。 すなわち、本突施例では下部に、圧力容器2があり、こ
れを利用するためである。 従って、揚水発電に比べると全体的に’/I 11容量
で済み、据付面積が一八。になると考えてよい。 なお、第1、第2実施例で水槽l及び上部水杷hと圧力
容器2との落差を400〜600 mとしたが、落差は
これに限定されるものではない。但し、実験の粘果、空
気圧力は40〜60kg/cm”gの範囲が最も高効率
であることが%fJ Ljiされたので、それを換1γ
して400〜(i00 mの落差を用いたものである。 (発明の効果) 本発明は上記のように構威されるので次の効果をイfす
る。 (1)圧縮空気貯蔵発電装置としての熱効率がよい(従
来の高圧容器方式に比べて3〜5%効率アンプ). (2)圧力は『1然落差によって得、かつ、圧力容器が
小型化するので設置する場合の制約がすくな(3)正力
容器西の圧縮空気容量を大部分一定圧のまま利用できる
ので工不ルギの無駄がない。 (4)従来の高圧容器式が、10(1−160kg/c
m”gと高圧であるのに対し、本発明の装置の圧力容器
では4060kg / cm”gの圧力T: rbi 
(II 9,J’,効率トナリ、中圧でよく、圧力容器
、ガスエートスパンダその他のa器、設備がすべて小型
化し、二1ストが低凍する。
The present invention is structured as described above, so the following {'l: J
ll. That is, the pressure at the bottom of the tank at high altitude and at the low point'? :, :2'A
Since the water tank is connected to the bottom of the pressure vessel in a watertight manner by a water pipe, when the ifll water is poured into the water tank, a water head difference corresponding to the required head difference occurs between the water tank and the pressure vessel, and this causes ゜ζ The air pressure stored in the pressure vessel is determined. An air pipe is connected to the top of the pressure vessel, and when the air is compressed by a compressor and stored, the water level inside the pressure vessel is pushed down, and the water is pushed up through the wood pipe into an aquarium at an elevated location. When the pressure vessel becomes full of air, the compressor stops and the air is stored in this state. When it is necessary to generate electricity, when air is taken out to the gas expander, water moves from the high water tank to the pressure vessel at This air is immediately released at a constant pressure until the pressure vessel is full of water. Therefore, the entire capacity of the pressure vessel can be stored and used under constant pressure. ( Embodiment] A first embodiment of the present invention will be explained with reference to FIG. A water pipe 3 with a height difference of 400 to 600 m connects the pressure vessel 2 installed at the bottom with a water pipe 3.
L is supplied and the pressure capacity is i! Air stored within 32! (10~
200,0001), the amount of water goes up and down. An air pipe 11 is connected to the upper side of the pressure vessel 2 and extends to a compressor 4 and a gas expander 5. The compressor d and the gas extractor 5 are connected to an electric generator 6 via a ring 7 that can be fitted and removed using the same shaft 12. Iti'! inside the pressure vessel 2! If the warehouse air is loud,
The water level in the pressure vessel 2 is the uppermost surface, and the water surface in the water tank 1 is the lowermost surface. When storing air in the pressure vessel 2, the main a/generator 6 is used as an electric motor, and the compressor A4 is operated to generate the cold J'JI device 8.
to cool the pressure vessel 2 at a pressure of 40~(iokg/(
When the air of ``ta'' is supplied {Jj, the water level in the pressure vessel 2 falls and the air is stored in the pressure vessel 2.When the pressure vessel 2 is filled with air, the water level in the pressure vessel 2 reaches its maximum. It descends to the bottom, and the water level in water tank 1 1AJ rises by -E, and water tank IM becomes full of water.When power generation is required, valve 12 is opened and the stored air in pressure vessel 2 is first drained into regenerator 9. The fuel is then combusted and heated in the combustor IO, and then expanded in the gas e-toss bander 5 to obtain power, which drives the motor/generator 6 as a generator to generate electricity. The IJF air gas from the gas extractor 5 is discharged to the atmosphere through a regenerator 9 for preheating the stored air.
As described above, according to this embodiment, almost all of the air in the pressure vessel 2 can be stored and released under a substantially constant pressure, so that there are many advantages as described below. That is, since there is no pressure drop due to the loss of air, all of the compressed air can be used, and therefore, the force required for compression can be minimized. Also, Tf. By making the compressor's characteristic v1 flat, it becomes possible to adjust the air flow rate that is supplied to the pressure vessel by 4 Jt, and especially when there is a surplus of electricity, a large amount of air can be supplied to the positive pressure vessel by {Jt, The power margin has become smaller g. li4
This allows you to adjust the power consumption without changing the air supply environment. In addition, since the entire amount of air in the pressure vessel can be drained, the pressure volume can be reduced, and at the same time, the design capacity can be minimized. As a result, materials for the pressure vessel can be saved. In addition, there is no pressure change due to the inflow and outflow of air, and since it is always used under a constant pressure, no repetitive stress occurs and metal fatigue does not occur. Furthermore, by minimizing the -12-violet power in IITE compression, the thermal efficiency of the system can be reduced to 1 in Id. Incidentally, it is 3-5% more effective than the high-pressure tank method; 1
is unfavorable. Next, a description will be given of the second embodiment of the present invention, starting with the second layer IC. In this embodiment, only the differences from the first embodiment will be shown and explained. In Figure 2, Jube water tank h is installed in a mountainous area and has a head of 40
0 to 600 rn), the pressure vessel 2 is installed in a mountainous area or in a plain area, and the space is communicated with water n3. Regarding the others, it is the same as the 1st length example. In the case of this embodiment, there is an advantage that the construction cost is low because the upper water droplet h is used. In addition, although this example uses the Izumi power generation device and the trouble {[2 L, the following (+1.
They differ in point (2). (1) In the case of the same power generation capacity, the upper water tank 1a is approximately 18 times larger than that of pumped storage power generation. The length of the village is sufficient. This is because the water head generated by 1ffi added to the gas extract bander 5 is 10 times larger than that of positive water (v) per tp position. (2) This embodiment does not require a lower water tank for pumped storage power generation. That is, in the present embodiment, there is a pressure vessel 2 at the bottom, and this is to be utilized. Therefore, compared to pumped storage power generation, the overall capacity is 11/I and the installation area is 18. You can think that it will be. In the first and second embodiments, the head difference between the water tank l and the upper loquat h and the pressure vessel 2 was set to 400 to 600 m, but the head difference is not limited to this. However, in the experiment, it was found that the most efficient air pressure was in the range of 40 to 60 kg/cm''g, so it was changed to 1γ.
The present invention uses a head of 400 to (i00 m). (Effects of the Invention) Since the present invention is configured as described above, the following effects are expected. (1) As a compressed air storage power generation device Thermal efficiency is good (3-5% efficiency amplifier compared to conventional high-pressure vessel systems). (2) Pressure is obtained by the head difference, and the pressure vessel is smaller, so there are fewer restrictions when installing it. 3) The compressed air capacity on the west side of the positive pressure vessel can be used at a constant pressure for the most part, so there is no waste of manpower. (4) The conventional high pressure vessel type
m"g, whereas in the pressure vessel of the device of the present invention, the pressure T: 4060 kg / cm"g: rbi
(II 9, J', efficiency is high, medium pressure is sufficient, pressure vessels, gas ate spanders and other A devices, and equipment are all downsized, and 21 strokes are frozen low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1夫施例の模式的構成図、第2図は
本発明の第2実施例の上部水槽及び圧力容器近傍の模式
的側面図、第3図〜第5図は各従来例の模式的側面図で
ある。 l・・・水槽、      】a・・・上部水槽、2・
・・圧力容器、    3・・・木管、4・・・圧t1
a、     5・・・ガスエキスパンダ、6・・・電
動a/発?S機、  7・・・カノプリング、8・・・
冷却器、     9・・・再生2L10中燃焼?l 
,      1 1・・・空気管。 第1図 211潰電機 第2図
FIG. 1 is a schematic configuration diagram of a first embodiment of the present invention, FIG. 2 is a schematic side view of the vicinity of an upper water tank and a pressure vessel of a second embodiment of the present invention, and FIGS. 3 to 5 are FIG. 3 is a schematic side view of each conventional example. l...water tank, ]a...upper water tank, 2.
...Pressure vessel, 3...Woodwind, 4...Pressure t1
a, 5...Gas expander, 6...Electric a/depart? S machine, 7... Kanopring, 8...
Cooler, 9... Regeneration 2L10 medium combustion? l
, 1 1...Air pipe. Fig. 1 211 crusher Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 空気を圧縮して圧力容器に貯蔵し必要に応じてこれを取
出し加熱したのちガスエキスパンダで膨脹させて動力を
発生させこれにより発電機を駆動する圧縮空気貯蔵発電
装置において、高所に設けられた水槽と、同水槽と所要
の落差を保って低所に設けられた圧力容器と、同圧力容
器の底部と前記水槽の底部とを水密状に連通する水管と
を具備してなることを特徴とする圧縮空気貯蔵発電装置
A compressed air storage power generation system that compresses air, stores it in a pressure vessel, extracts it as needed, heats it, and then expands it with a gas expander to generate power, which drives a generator. a water tank, a pressure vessel installed at a low location with a required head difference from the water tank, and a water pipe that connects the bottom of the pressure vessel and the bottom of the water tank in a watertight manner. A compressed air storage power generation device.
JP1294020A 1989-11-14 1989-11-14 Compressed air storage generating unit Pending JPH03159530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294020A JPH03159530A (en) 1989-11-14 1989-11-14 Compressed air storage generating unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294020A JPH03159530A (en) 1989-11-14 1989-11-14 Compressed air storage generating unit

Publications (1)

Publication Number Publication Date
JPH03159530A true JPH03159530A (en) 1991-07-09

Family

ID=17802219

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294020A Pending JPH03159530A (en) 1989-11-14 1989-11-14 Compressed air storage generating unit

Country Status (1)

Country Link
JP (1) JPH03159530A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536667A (en) * 2010-08-19 2013-09-19 ハインドル、エドゥアルト A system for storing potential energy and a method for manufacturing the system.
GB2519626B (en) * 2013-08-07 2017-08-23 Energy Tech Inst Llp Hybrid power generation system
KR20210149421A (en) * 2020-06-02 2021-12-09 코리아엔텍 주식회사 Energy recovery type sewage treatment system using low drop effluent and buoyancy power generation
WO2023013803A1 (en) * 2021-08-06 2023-02-09 코리아엔텍 주식회사 Aeration tank oxygen supply device using compressed air and turbine, and power generation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013536667A (en) * 2010-08-19 2013-09-19 ハインドル、エドゥアルト A system for storing potential energy and a method for manufacturing the system.
GB2519626B (en) * 2013-08-07 2017-08-23 Energy Tech Inst Llp Hybrid power generation system
KR20210149421A (en) * 2020-06-02 2021-12-09 코리아엔텍 주식회사 Energy recovery type sewage treatment system using low drop effluent and buoyancy power generation
WO2023013803A1 (en) * 2021-08-06 2023-02-09 코리아엔텍 주식회사 Aeration tank oxygen supply device using compressed air and turbine, and power generation system
KR20230021868A (en) * 2021-08-06 2023-02-14 코리아엔텍 주식회사 Oxygen supply apparatus and power generating system of aeration tank using compressed air and bucket wheel

Similar Documents

Publication Publication Date Title
EP0196690B1 (en) Energy storage and recovery
US4873828A (en) Energy storage for off peak electricity
EP0212692B1 (en) Energy storage and recovery
US7743609B1 (en) Power plant with energy storage deep water tank
US9726150B2 (en) Units and methods for energy storage
US7663255B2 (en) Compressed-air-storing electricity generating system and electricity generating method using the same
CN102686850A (en) Underwater compressed fluid energy storage system
CN102459847B (en) Device for energy storage and heat regenerator used in same , and temperature adjustment method
US20140010594A1 (en) Fluid storage in compressed-gas energy storage and recovery systems
US4399656A (en) Long-period thermal storage accumulators
US20090021012A1 (en) Integrated wind-power electrical generation and compressed air energy storage system
US20140091574A1 (en) Device for storing and delivering fluids and method for storing and delivering a compressed gas contained in such a device
WO1993006367A1 (en) A system for subterranean storage of energy
US5058386A (en) Power generation plant
US20140183869A1 (en) Method and apparatus for using wind energy or solar energy for an underwater and/or for an under seabed compressed air energy storage system
WO2013119327A1 (en) Thermodynamic energy storage
JPS61190176A (en) Storage and recovery system and method of energy
JP2003065621A (en) Cooling system
JPH03159530A (en) Compressed air storage generating unit
US4174009A (en) Long-period thermal storage accumulators
US4132077A (en) Process and apparatus for obtaining useful energy from a body of liquid at moderate temperature
KR101295082B1 (en) Apparatus for Compressed Air Energy Storage Generation using the New Renewable Energy
US5873249A (en) Energy generating system using differential elevation
US20240060602A1 (en) Systems and methods for heat management for cased wellbore compressed air storage
US20230194049A1 (en) Pressure Tunnel