JPH0315903A - フアジイ推論方式 - Google Patents

フアジイ推論方式

Info

Publication number
JPH0315903A
JPH0315903A JP1149598A JP14959889A JPH0315903A JP H0315903 A JPH0315903 A JP H0315903A JP 1149598 A JP1149598 A JP 1149598A JP 14959889 A JP14959889 A JP 14959889A JP H0315903 A JPH0315903 A JP H0315903A
Authority
JP
Japan
Prior art keywords
fuzzy
proposition
inference
fuzzy inference
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149598A
Other languages
English (en)
Inventor
Seiji Yasunobu
安信 誠二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1149598A priority Critical patent/JPH0315903A/ja
Publication of JPH0315903A publication Critical patent/JPH0315903A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)
  • Devices For Executing Special Programs (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ファジィ推論を用いた計算手段により,特に
命題主語間の重み付けを容易に記述し、熟練者の経験を
反映できるファジィ推論方式に関するものである. 〔従来の技術〕 近年、従来人間が行ってきた制御や意思決定支援を人間
にかわってマイクロコンピュータなどで自動化しようと
いう試みが盛んに行われている.この人間の知的活動を
アルゴリズム化し、人間と同等の推論を実現しようとす
る試みの一つがファジィ推論である.ファジィ推論とは
,人間の主観をファジィ集合により定量化し、ある状況
に対する人間の推論過程を模擬し、推論結果を得ようと
する方式であり、制御等に用いられている.これに関し
ては、萱野道夫著rファジィ制御』 (日刊工業新聞社
,昭和63年5月発行)等の文献において解説されてい
る通りである.これらの文献゛において用いられている
推論方式は,熟練者の推論知識を,rもし,ym度が高
く,圧カが高ければ、燃料を減らす.』といった言葉で
記述し、「温度が高い」,「圧力が高い」等の命題に対
して,ファジィ集合を定義し、ファジィ命題としてその
意味を明確化し推論に用いている. 上記推論知識はrIf x is A and Y i
s B thenu is CJといった形式で記述さ
れる.推論結果の演算は,各ファジィ命題の主語に相当
する状態量の観測量を評価し命題適合度を演算,条件部
(If部)の各ファジィ命題適合度を第工のファジィ演
算にて演算し条件部適合度を求め、この条件部適合度と
結論部( than部)のファジィ命題を第2のファジ
ィ演算によりルール結論部のファジィ集合を求め、全ル
ールに対して第3のファジィ演算により統合化し、結論
部のファジィ命題主語(燃料等)に対する推論結果をフ
ァジィ集合として求め、さらにこれを重心法等により非
ファジィ化しある一つの値とすることにより求められる
. また、上記ファジィ推論方式において、制御目的の達或
度に関する人間の推論知識を組み込む方式として、発明
者らは,特開昭61− 70605号において,『この
時点で制御指令uttuiとした場合5評価指標AはA
i(良い)であり,評価指41BはBi(非常に良い)
であるならば、この制御則Riを採用し制御指令として
uiを出力する.」といったファジィ推論方式を考案し
た.この推論知識は、rIf(u is ui−+A 
ls Ai and B is 81)then u 
is uiJといった形式で記述される.第2図にこの
従来方式の実施例を示す.内容及び動作は、本発明の実
施例(第1図)に同一記号にて示す.第2図では,ファ
ジィfIiI1#!i則評価装置9では上記推論知識に
従い、各ファジィ命題の評価装置51〜5n,61〜6
nの演算結果を直接評価する. 〔発明が解決しようとする課題〕 しかし,これらの方式では,0,0から1.0の値をも
つメンバシツプ関数を用いるファジィ集合により定義し
た命題をルールの条件部の記述に従い評価するため、ル
ールの記述内容を意識し命題の意味を他の命題のメンバ
シツプ関数の形状を意識しながら定義する必要があり、
人間の推論知識の記述が不自然になるなどの問題点があ
った.〔課題を解決するための手段〕 本発明の目的は,「温度が高いJといった命題自体の定
義はファジィ集合として独立に行い、推論ルールとして
記述するときに,その推論における各命題の主語に対す
る重み「主語重みJを独立に定義し,人間の考え通りに
ファジィ推論ルールを記述し、人間の知識を反映した推
論結果を演算する. 〔作用J 「主語重みJは記述しようとするファジィ推論ルール群
と共に設定するため、各ファジィ命題の定義自体は,ル
ール群を意識することなく、通常のファジィ集合として
設定すればよく,ルールに基づきファジィ推論の演算を
行う時に各ファジィ命題は、その主語に相当する重みを
演算されることになる.それによって、ルール群に固有
の命題間の関係は、「主語重み』に記述でき,人間の考
え通りにファジィ推論ルールを記述し、人間の知識をう
まく反映した推録結果を演算するファジィ推論を行うこ
とができる. 〔実施例〕 以下、本発明の一実施例を図面を用いて詳細に説明する
. 第1図は、本発明を実施するファジィ制御装置の一実施
例のブロック線図である.第1図において、1は過去1
回または複数回の制御指令出力時刻txhにおける制御
指令U= (u(ttzL・・・u(ttkL−u(t
nc))の記憶装置、2は過去l回または複数回の状態
観測時刻tojにおけるm測値y= (y(tozL 
・・・y(toaL−y(toJ))の記憶装置、3は
この制御対象の評価指標Aの予測装置、4はもう一つの
評価指標Bの予測装置、51〜5nは評価指IIAに対
するn個のファジィ命題の評価値を求める装置群、61
〜6nは評価指#ABに対するn個のファジィ命題の評
価値を求める装置群,7は予め定めた評価指標Aに対す
る重み付けを行う装置,8は予め定めた評価4l!iI
IABに対する重み付けを行う装置、9は予め定めた制
御則によって各評価指標の値を評価し最適な制御指令を
演算する装置、10は制御対象、11は制御対象10の
状態量X(t)の一部または全部を観測しI!測量y(
t)を求める観測装置である.つぎに本実施例の動作を
説明する.制御指令記憶装置1では過去K回の制御指令
U” (u(txt),・・u(twκ)}の記憶し、
観測量記憶装Ii2では過去J回の状態観測値Y=(y
(toiL−+y(toJ))を記憶する.次にこの制
御対象のlつの制御目的に対する評価指標A(例えば,
エレベータの予測待ち時間)の予測値aを過去の制御指
令Uと状態観311量Yおよび現在ファジィ#御則評価
装置9で評価しようとしている制御指令ui に基づい
て,as=f(U,Y,ut) なる演算を評価指標予測装置3により行なう。また同様
に評価指標B予測装置4により評価指標Bの予測値bi
 を、 bi=g(U,Y, u九) な釣甑算により求める。ここで、予測値a++ btは
それぞれμai(aL μbi(b)なるメンバシップ
関数で定義されるファジィ集合であり、次のように表せ
る. a t=fAμat(a)/ a        −(
1)b i = fBμ一五(b)/b       
 ・・・(2)次にこの2つの予測値am,biをそれ
ぞれ「aが良い』,「bが悪い」といったファジィ命題
に基づく評価Ax〜A . , B t NB.により
評価する。
これらのファジィ命題は、それぞれ Aa=fAμ^’(a )/ a          
     −(3)B處=fBμam(b)/b   
     ・・・(4)なるファジィ集合としてメンバ
シップ関数μ^t,μB▲を用いて定義される.この内
、A*,Btの評価装置5i,6iにより、ai@ b
tを評価した時の出力A t t , B i tの値
は,A i i ” A t n a i ”fA(μ^*(a)A μai(a))/ a=JA
win(μxt(aL μai(a))/ a ・・l
5)=fBsin(μat(b), μbt(b))/
 b −(6)により求まる.ここでは,ファジィ演算
として、論理積の場合を示したが、他のファジィ演算も
可能である. 次にこれらファジィ命題の評価結果A目,Bttに対し
、ファジィ命題の主語a,bに対応した重みWJL,W
bをファジィ演算し、重み付き評価結果A’is, B
’tiを得る.これらの重み付けは,それぞれ, W&=fWμwa(w)/ w        ={7
)Wb=fWμwb(w)/ w        −(
8)なるファジィ集合としてメンバシツプ関数μvat
μw1を用いて定義される.これらにより、評価指標A
,B重み付け装置7,8の演算は,A’ 1 1 = 
Wa・A i i =f,xA(uwa(w)・u^it(a))/(w+
a)  ・−(9)B′口” Wb ” B目 =fwxB(μwb(w)・unit(b))/(w+
b)  −(10)により求まる.このファジィ演算も
ここで示した代数積の他,各種演算が可能である. ファジィ制御則評価装IE9では次式で定式化する制御
則Rl  (この時点で制御指令Uをtb とした場合
、重み付き評価指標AはA1  (良い)であり、重み
付き評価指fiBはBl  (非常に良い)であるなら
ば、この制御則R.を採用し制御指令としてU,を出力
する)を制御指令の出力時刻毎に評価する. この制御則R量は, Rz  :  I  f (ut−(A  is  A
t)wa  and(B  is  Bt)wJThe
n  u  im  us ・・・(1l) で定式化することができる.この制御則RIの前提部P
sのメンバシツプ関数をμP1( t! i a W 
g a tb)とおくと、そのファジィ集合は, P L=fwxAxnj’PI(u : w,atb)
/(wta,b)=丁11XAXB{μ”(w)・(μ
x−(a)八μ−(a))A μwJw)・(μat(
b)八pbt(b))/(w,a,b)・・・(12) =A ’ s t X B ’目          
 ・・・(13)(ここで、×は2つのファジィ集合の
直積を表わす.)によって求まる.ここのファジィ演算
として、論理積法を示したが,各種演算が可能である. この前提部P.の評価値は,Pi のメンバシツプ関数
μPIの高さ、 により求まる.ファジィ制御則がn個あるとすると、そ
れぞれの制御則について同様にして評価値r息(i=l
,n)が求まり,これにより最大評価(r=rJ)の制
御則RJ を ・・・(l5) i=1.n により求めることができ,制御則R一で仮定している制
御指令u1が最適な制御指令u(t−)として決定でき
る.また、前提部PLの評価値r+ を,後件部( t
hen部)の命,[(u ig u1等)のファジ以上
の実施例では王〜9及び11の装置を独立した装置とし
て示したが、これらの一部又は全部をマイクロコンピュ
ータなどで実現してもよい.また、一部をLSIとして
チップ化してもよい.本方式は、特開昭61− 706
05号に示されるように,(1)一次遅れをもつサーボ
系、(2)列車自動運転方式、(3)クレーン運転方式
、(4)高炉の制御方式、(5)エレベータ制御方式,
(6)プラント制御方式、(7)上下水処理方式,(8
)ロボット制御方式、(9)半導体製造方式、(10)
内燃機関駆動装置制御方式、等に適用可能である. また、制御システムだけでなく、現在及び過去の対象に
対する入力と観測量をファジィ推論により評価し,行動
指針を決定するファジィ推論意思決定支援システムへも
適用可能である,第工図における制御指令記憶装置1,
評価指標A,B予測装Wt3,4を除いた、従来の状態
評価ファジィ推論と呼ばれる方式に対しても、同様に適
用可能である. 〔発明の効果〕 本発明によれば,人間が制御や意思決定を行なっている
ときのように、「温度が高い」といった概念(ファジィ
命題)と、それらを重み付けた経験則(ファジィ・ルー
ル)の記述を独立して行なえるため、容易に知識を設定
できるという効果がある. また、ファジィ命題を複数のルール群で共用できるとい
う効果がある.また,重み付けのファジィ集合W a 
( w )で,Wの値を変えることにより、評価結果を
調整できる。
【図面の簡単な説明】

Claims (4)

    【特許請求の範囲】
  1. 1.ある時刻における制御対象システムの状態量と与え
    られた条件から、あらかじめ設定されたファジィ推論ル
    ールに従って、該時刻および過去の制御対象に対する入
    力、状態量を、ファジィ命題の適合度としてファジィ命
    題適合度を演算し、ファジィ推論を行い制御指令を決定
    し、制御を行うファジィ推論計算機制御装置において、
    該ファジィ命題適合度に対して該命題の主語に対応し予
    め定めた主語重みをファジィ演算し重み付きファジィ命
    題適合度を求め、ファジィ推論を行い制御指令を決定す
    ることを特徴とするファジィ推論方式。
  2. 2.請求項1記載のファジィ命題適合度の演算において
    、その時刻または一定時間後の所定時刻に予め定めた幾
    つかの制御指令を出力した場合の、制御結果を評価指標
    として予測し、ファジィ命題適合度を演算することを特
    徴とするファジィ推論方式。
  3. 3.ある時刻における対象システムの観測量と与えられ
    た条件から、あらかじめ設定されたファジィ推論ルール
    に従って、該時刻および過去の対象に対する入力、観測
    量を、ファジィ命題の適合度としてファジィ命題適合度
    を演算し、ファジィ推論を行い行動指針を決定し意思決
    定支援を行うファジィ推論意思決定支援計算機装置にお
    いて、該ファジィ命題適合度に対して該命題の主語に対
    応し予め定めた主語重みをファジィ演算し重み付きファ
    ジィ命題適合度を求め、ファジィ推論を行い、行動指針
    を決定することを特徴とするファジィ推論方式。
  4. 4.請求項3記載のファジィ命題適合度の演算において
    、その時刻または一定時間後の所定時刻に予め定めた幾
    つかの行動指針を出力した場合の、対象システムの動き
    を評価指標として予測し、ファジィ命題適合度を演算す
    ることを特徴とするファジィ推論方式。
JP1149598A 1989-06-14 1989-06-14 フアジイ推論方式 Pending JPH0315903A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149598A JPH0315903A (ja) 1989-06-14 1989-06-14 フアジイ推論方式

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149598A JPH0315903A (ja) 1989-06-14 1989-06-14 フアジイ推論方式

Publications (1)

Publication Number Publication Date
JPH0315903A true JPH0315903A (ja) 1991-01-24

Family

ID=15478707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149598A Pending JPH0315903A (ja) 1989-06-14 1989-06-14 フアジイ推論方式

Country Status (1)

Country Link
JP (1) JPH0315903A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599897A (en) * 1992-11-02 1997-02-04 Furukawa Electric Co., Ltd. Aromatic polycarbonate, a method for producing the same, and a plastic optical waveguide using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5599897A (en) * 1992-11-02 1997-02-04 Furukawa Electric Co., Ltd. Aromatic polycarbonate, a method for producing the same, and a plastic optical waveguide using the same

Similar Documents

Publication Publication Date Title
Yen Fuzzy logic-a modern perspective
Cazarez-Castro et al. Fuzzy logic control with genetic membership function parameters optimization for the output regulation of a servomechanism with nonlinear backlash
Benítez et al. Are artificial neural networks black boxes?
Whalen et al. Issues in fuzzy production systems
US5581459A (en) Plant operation support system
Tahera et al. A fuzzy logic approach for dealing with qualitative quality characteristics of a process
Lee Intelligent control based on fuzzy logic and neural network theory
Mishra et al. Neuro-fuzzy models and applications
JPH0315903A (ja) フアジイ推論方式
Alam et al. Fuzzy priority CPU scheduling algorithm
Kravets et al. Fuzzy logic controller for embedded systems
Mahapatra et al. Fuzzy logic control of a WMR
US20060224543A1 (en) Guidance system
Baldovino et al. Fuzzy logic control: design of a ‘mini’fuzzy associative matrix (FAM) table algorithm in motor speed control
Grosan et al. Fuzzy expert systems
US6260030B1 (en) Multi grade fuzzy logic controller
Emami et al. An improved fuzzy modeling algorithm. I. Inference mechanism
Kurochkin et al. Fuzzy logic inference ruleset augmentation with sample data in medical decision-making systems
Juraev et al. APPLICATION OF FUZZY LOGIC IN AUTOMATION OF TECHNOLOGICAL PROCESSES
Iancu Extended mamdani fuzzy logic controller
Jager Adaptive fuzzy control
Iancu et al. Mamdani FLC with various implications
Ponce-Cruz et al. Fuzzy logic
Aranibar Learning fuzzy logic from examples
Pohl et al. Simulation of the Delphi method with a fuzzy expert system