JPH03158784A - Instrument and system for measuring magnetic permeability - Google Patents

Instrument and system for measuring magnetic permeability

Info

Publication number
JPH03158784A
JPH03158784A JP1297185A JP29718589A JPH03158784A JP H03158784 A JPH03158784 A JP H03158784A JP 1297185 A JP1297185 A JP 1297185A JP 29718589 A JP29718589 A JP 29718589A JP H03158784 A JPH03158784 A JP H03158784A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic permeability
electromagnet
elastic body
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1297185A
Other languages
Japanese (ja)
Other versions
JPH0614113B2 (en
Inventor
Toshifumi Niino
敏文 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP1297185A priority Critical patent/JPH0614113B2/en
Publication of JPH03158784A publication Critical patent/JPH03158784A/en
Publication of JPH0614113B2 publication Critical patent/JPH0614113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To measure the magnetic permeability even when a magnetic shield material, etc., is in a plate shape by fitting an electromagnet to a high-rigidity base across an elastic body opposite the side of a surface to be measured and fitting a strain gauge to the elastic body. CONSTITUTION:The magnetic permeability measuring instrument is constituted by fitting the electromagnet 3 to the internal surface of the U-sectioned high-rigidity base 1 on the opposite side from the opening side across the elastic body 2, and a transducer detect the magnetic permeability from the detected value of the strain gauge 4 fitted with the elastic body 2 and the value of a supply current to the electro magnet 3. The opening flank end surface of the base 1 is made to abut on the body 6 to be measured such as the magnetic shield material and a constant interval is secured between the abutting surface and the tip of the electromagnet 3. The electro magnet 3 is constituted by winding a coil 3b around the outer periphery of an iron core 3a and its one end is extended to the opening side of the base 1. The coil 3b is connected to a DC power source through a current controller 9 and the supply current is varied under its control to vary a produced magnetic field. The value of the current supplied to the current supply circuit is inputted to the transducer through an A/D converter.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁気共鳴診断装置(MHI)を設置した室等
の磁気シールドルームに用いられる磁気シールド材の透
磁率を容易に測定できるようにした測定装置と測定シス
テムとに関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for easily measuring the magnetic permeability of a magnetic shielding material used in a magnetically shielded room such as a room in which a magnetic resonance diagnostic instrument (MHI) is installed. The present invention relates to a measuring device and a measuring system.

[従来の技術] 非磁性材の透磁率μは1で、純鉄は約8000であり、
透磁率の大きいほど磁気シールド効果の高いことが知ら
れている。このため、従来より磁気シールド性能を知る
ため、磁気シールド材の透磁率を測定することが行なわ
れている。
[Prior art] The magnetic permeability μ of non-magnetic materials is 1, and that of pure iron is approximately 8000.
It is known that the higher the magnetic permeability, the higher the magnetic shielding effect. For this reason, in order to know the magnetic shielding performance, the magnetic permeability of the magnetic shielding material has been measured.

従来の測定方法は、鉄w4JIs C2504の電磁軟
鉄板の磁気特性試験に準じて行うものが一般的である。
The conventional measurement method is generally carried out in accordance with the magnetic property test of electromagnetic soft iron plate of iron W4JIs C2504.

これは初めに外径45+*aw、内径33mmのリング
試料を切り出し、研磨した後、磁気焼鈍を行ない、磁気
的特性が最良の試料を作成する。次に磁束密度を検出す
るサーチコイルと磁場をかける励磁コイルを、それぞれ
所定の巻数だけリング試料の外周に巻きつける。そして
励磁コイルに電流を流して、その時のサーチコイルに発
生する電圧から磁束密度を求めるもので、連続的に測定
することにより、B−8曲線を求めている。B −8曲
線は、横軸にH(la場:単位Oeエルステッド)、縦
軸にB(磁束密度:単位Gガウス)を表わしたものであ
り、B−8曲線の勾配(B/H)から透磁率μを求めて
、それを磁気シールド効果の良否の基準にしていた。
First, a ring sample with an outer diameter of 45+*aw and an inner diameter of 33 mm is cut out, polished, and then magnetically annealed to create a sample with the best magnetic properties. Next, a search coil for detecting magnetic flux density and an excitation coil for applying a magnetic field are each wound a predetermined number of turns around the outer periphery of the ring sample. Then, a current is passed through the excitation coil, and the magnetic flux density is determined from the voltage generated in the search coil at that time, and the B-8 curve is determined by continuous measurement. The B-8 curve represents H (La field: unit Oe Oersted) on the horizontal axis and B (magnetic flux density: unit G Gauss) on the vertical axis, and from the slope of the B-8 curve (B/H) The magnetic permeability μ was determined and used as a criterion for determining whether the magnetic shielding effect was good or bad.

[発明が解決しようとする課題] 従来、ある材料の磁気シールド効果を測定する場合、リ
ング状試料を切り出してその透磁率を測定するようにし
ている。すなわち、被測定物の磁気特性が材料として最
良のときのものの測定値を得るようにしている。しかし
、MRI室等の磁気シールド壁の施工は、板状の磁気シ
ールド材を磁気焼鈍した後に穴あけや現地での取付け、
溶接を行って磁気シールド壁を完成している。そのため
磁気シールド壁における取付加工等により磁気特性が劣
化してしまい、初めに測定した透磁率と異なる磁気シー
ルド特性になってしまう。
[Problems to be Solved by the Invention] Conventionally, when measuring the magnetic shielding effect of a certain material, a ring-shaped sample is cut out and its magnetic permeability is measured. That is, the measured value is obtained when the magnetic properties of the object to be measured are the best for the material. However, the construction of magnetic shielding walls in MRI rooms, etc. requires magnetic annealing of plate-shaped magnetic shielding materials, then drilling and on-site installation.
The magnetic shield wall is completed by welding. Therefore, the magnetic properties deteriorate due to the mounting process on the magnetic shield wall, resulting in magnetic shield properties different from the initially measured magnetic permeability.

例えば、純鉄の鉄板を磁気焼鈍した後、リング試料とし
て切り出したままの状態のものと、再度磁気焼鈍したも
ののB−8曲線は第3図に示すようになる。第3図から
れかるように磁気焼鈍した材料でも、その後、冷間加工
を施すと磁気特性が劣化する。このため加工された後に
、磁気シールド材の透磁率を測定して、磁気特性が所定
以上のものか否かを確認する必要がある。
For example, after magnetically annealing a pure iron plate, the B-8 curves of the ring sample in the as-cut state and the one magnetically annealed again are shown in FIG. As shown in FIG. 3, even if a material is magnetically annealed, its magnetic properties deteriorate when it is subsequently subjected to cold working. Therefore, after processing, it is necessary to measure the magnetic permeability of the magnetic shielding material to confirm whether the magnetic properties are higher than a predetermined value.

しかし現在では、磁気シールド壁として加工された板状
の磁気シールド材の透磁率を測定する装置がなく、設計
では磁気特性が最良の状態で計算を行ない、使用する材
料は安全率を見込んで板厚を増している。また磁気シー
ルド効果の確認ができるのは、MRI室では建築が仕上
がり装置稼動した後であり、その後に磁気シールド効果
の検査で良くない結果が出たときに、対策を施すことが
非常に困難である。そのため予め高い安全率で厚い板厚
の磁気シールド材を使用することになり、コストアップ
になって不経済であった。
However, at present, there is no device to measure the magnetic permeability of plate-shaped magnetic shielding materials processed as magnetic shielding walls, and when designing, calculations are performed based on the best magnetic properties, and the materials used are selected based on the safety factor. It's getting thicker. In addition, the magnetic shielding effect can only be confirmed in the MRI room after the building has been completed and the equipment is in operation, so it is extremely difficult to take countermeasures when a negative result is obtained in a later test of the magnetic shielding effect. be. Therefore, a thick magnetic shielding material with a high safety factor must be used in advance, which increases the cost and is uneconomical.

本発明は、磁気シールド材等が板状のままでも透磁率を
測定できるようにし、磁気焼鈍直後の最良値でなく加工
後、実際に磁気シールド材として機能するときの値を正
確に測れるようにすることを目的とする。
The present invention makes it possible to measure magnetic permeability even when a magnetic shielding material is in the form of a plate, so that it is possible to accurately measure the value when it actually functions as a magnetic shielding material after processing, rather than the best value immediately after magnetic annealing. The purpose is to

[課題を解決するための手段] 本発明の透磁率測定装置は、電磁石を測定面側に対向さ
せて高剛性支持材に弾性体を介して取付け、弾性体にひ
ずみゲージを取付けるとともにその検出値及び電磁石の
磁場に基づき透磁率に変換する変換器を設けたものであ
る。電磁石による磁場を変化させるためには、それを電
流制御装置を介して直流電源に接続すればよい。
[Means for Solving the Problems] The magnetic permeability measuring device of the present invention has an electromagnet facing the measurement surface side, which is attached to a highly rigid support material via an elastic body, a strain gauge is attached to the elastic body, and the detected value is measured. and a converter that converts the magnetic field into magnetic permeability based on the magnetic field of the electromagnet. In order to change the magnetic field caused by the electromagnet, it can be connected to a DC power source via a current control device.

本発明の透磁率測定システムは、上記電磁石を備えた透
磁率測定装置を使用し、電磁石への入力電流値をスイー
プさせることにより磁場(H)と磁束密度(B)とを変
換器で計測して、連続的なり−H曲線をリアルタイムに
検出し、さらにそのB −8曲線に基づき透磁率を求め
るものである。
The magnetic permeability measurement system of the present invention uses a magnetic permeability measurement device equipped with the electromagnet described above, and measures the magnetic field (H) and magnetic flux density (B) with a converter by sweeping the input current value to the electromagnet. The continuous B-H curve is detected in real time, and the magnetic permeability is determined based on the B-8 curve.

[作用1 上記透磁率測定装置を使用して板状の磁気シールド材の
透磁率を測定するときは、高剛性支持材を磁気シールド
材に当接させる。この状態で電磁石の磁場(H)が透磁
率の高い磁気シールド材に作用し、透磁率に比例した高
い磁束密度が発生して、クーロン力によりM磁石が磁束
密度に比例した力で引き付けられる。このため電磁石を
固定した弾性体にひずみが生じ、そのひずみをひずみゲ
ージが検出して変換器に入力する。磁場は、電磁石への
供給電流を変化させることにより変化させることができ
、電流値に対応する信号を受けた変換器が対応する磁場
(H)に変換する。
[Operation 1] When measuring the magnetic permeability of a plate-shaped magnetic shielding material using the magnetic permeability measuring device, a highly rigid support material is brought into contact with the magnetic shielding material. In this state, the magnetic field (H) of the electromagnet acts on the magnetic shielding material with high magnetic permeability, generating a high magnetic flux density proportional to the magnetic permeability, and the M magnet is attracted by the Coulomb force with a force proportional to the magnetic flux density. As a result, strain occurs in the elastic body to which the electromagnet is fixed, and the strain is detected by the strain gauge and input to the transducer. The magnetic field can be changed by changing the current supplied to the electromagnet, and a converter that receives a signal corresponding to the current value converts it into a corresponding magnetic field (H).

変換器は、ひずみを磁束密度(B)に変換する演算部と
、その磁束密度と磁場(H)とから透磁率に変換する演
算部とを有していて、磁気シールド材の透磁率を算出す
る。すなわち変換器では、各磁場値でのひずみゲージの
検出値と磁場とによりB−8曲線を求め、さらにその勾
配(B/H)を求めることにより透磁率μが算出される
The converter has a calculation unit that converts strain into magnetic flux density (B) and a calculation unit that converts the magnetic flux density and magnetic field (H) into magnetic permeability, and calculates the magnetic permeability of the magnetic shielding material. do. That is, in the converter, a B-8 curve is obtained from the detected value of the strain gauge at each magnetic field value and the magnetic field, and the magnetic permeability μ is calculated by further obtaining the gradient (B/H).

[実施例] 本発明の実施例を第1.2図により説明する。[Example] An embodiment of the present invention will be explained with reference to FIG. 1.2.

透磁率測定装置は、断面コ字形の高剛性支持材lの開口
側とは反対側の内面に、弾性体2を介して電磁石3が取
付けられ、弾性体2に取付けたひずみゲージ4の検出値
と電磁石3への供給電流値とから変換器5が透磁率を検
出するようになっている。
The magnetic permeability measuring device has an electromagnet 3 attached to the inner surface of a highly rigid support member l having a U-shaped cross section on the side opposite to the opening side through an elastic body 2, and detects the detected value of a strain gauge 4 attached to the elastic body 2. The converter 5 detects the magnetic permeability from the current value supplied to the electromagnet 3.

高剛性支持材1の開口側面端面は、磁気シールド材等の
被測定物6に当接されるようになっており、その当接面
と電磁石3の先端との間に一定間隔が確保されるように
なっている。なお高剛性支持材lは、非磁性材で形成さ
れる。
The end face of the open side of the high-rigidity support member 1 is designed to come into contact with an object to be measured 6 such as a magnetic shielding material, and a certain distance is ensured between the contact face and the tip of the electromagnet 3. It looks like this. Note that the high-rigidity support material l is formed of a non-magnetic material.

弾性体2は、円柱形に形成した被磁性体であり、本実施
例ではその外周に3つのひずみゲージ4を等間隔に取付
けである。そして弾性体2にひずみが生じたときに、3
つのひずみゲージ4の検出値を受けたひずみ測定器7が
3点の平均値を変換器5へ出力するようになっている。
The elastic body 2 is a magnetic body formed in a cylindrical shape, and in this embodiment, three strain gauges 4 are attached to its outer circumference at equal intervals. When strain occurs in elastic body 2, 3
The strain measuring device 7 receives the detected values of the two strain gauges 4 and outputs the average value of the three points to the converter 5.

電磁石3は、鉄心3aの外周にコイル3bを巻いて構成
され、その一端が高剛性支持材lの開口側(測定面側)
に向うようになっている。電磁石3のコイル3bは直流
電源8に電流制御装置9を介して接続され、電流制御装
置9の制御により供給電流が変化されて発生磁場を変化
させるようになっている。またこの電流供給回路に供給
する電流値はA/D変換器lOを介して変換器5に入力
されるようになっている。
The electromagnet 3 is constructed by winding a coil 3b around the outer periphery of an iron core 3a, one end of which is connected to the opening side (measurement surface side) of the high-rigidity support member l.
It is now heading towards The coil 3b of the electromagnet 3 is connected to a DC power source 8 via a current control device 9, and the supplied current is changed under the control of the current control device 9 to change the generated magnetic field. Further, the current value supplied to this current supply circuit is input to the converter 5 via the A/D converter IO.

変換器5は、電磁石3への供給電流値に応じて発生する
磁場の関係式、及びひずみゲージ4のひずみ値と磁束密
度との関係式を予め計算あるいは実験により求めて記憶
するコンビエータ−を備えている。またそのコンピュー
ターはひずみゲージ4からの検出値を磁束密度(B)に
変換する演算部を有するとともに、電磁石への供給電流
値から磁場(H)を検出する演算部を有する。また変換
器5は、電磁石3への電流値をスイープさせた場合の、
磁束密度(B)と磁場(H)とを同時に測定して連続的
なり−H曲線をCRT (表示部) 5aに表示できる
ようになっており、さらにその曲線の勾配(B/)I)
から透磁率μを検出できるようになっている。
The converter 5 includes a combinator that stores the relational expression of the magnetic field generated according to the value of the current supplied to the electromagnet 3 and the relational expression between the strain value of the strain gauge 4 and the magnetic flux density, which are obtained by calculation or experiment in advance. ing. The computer also has a calculation section that converts the detected value from the strain gauge 4 into a magnetic flux density (B), and also has a calculation section that detects the magnetic field (H) from the current value supplied to the electromagnet. The converter 5 also sweeps the current value to the electromagnet 3.
The magnetic flux density (B) and magnetic field (H) are measured simultaneously, and a continuous H curve can be displayed on the CRT (display unit) 5a, and the slope of the curve (B/) I) can be displayed.
It is now possible to detect magnetic permeability μ from .

上記構成の透磁率測定装置を使用して磁気シールド材等
の透磁率を測定する場合は、高剛性支持材lの開口側端
面を被測定物6に当接し、電磁石3にある電流値の電流
を供給すればそれに応じた磁界が電磁石3と被測定物6
との間に生じる。また被測定物6の透磁率に比例した磁
束密度が電磁石3の磁界に生じ、クーロン力により電磁
石3が被測定物側に引き付けられて、弾性体2にひずみ
を生じさせる。
When measuring the magnetic permeability of a magnetic shielding material, etc. using the magnetic permeability measuring device configured as described above, the opening side end surface of the high-rigidity support material 1 is brought into contact with the object to be measured 6, and the current value of the electromagnet 3 is If a corresponding magnetic field is supplied to the electromagnet 3 and the object to be measured 6
occurs between Further, a magnetic flux density proportional to the magnetic permeability of the object to be measured 6 is generated in the magnetic field of the electromagnet 3, and the electromagnet 3 is attracted to the object to be measured by Coulomb force, causing strain in the elastic body 2.

このためA/D変換器lOからの電流値と、ひずみゲー
ジ4からのひずみ検出値とが変換器5に入力され、そこ
で磁場(H)と磁束密度(B)に変換される。また電磁
石3への供給電流値を電流制御装置9により変更させて
はスイープさせて、変換器5により磁場(H)と磁束密
度(B)とを連続的に測定して連続的なり−H曲線を変
換器5にノアルタイムに表示させ、かつその曲線の勾配
(B / H)から透磁率μを算出させる。
Therefore, the current value from the A/D converter IO and the detected strain value from the strain gauge 4 are input to the converter 5, where they are converted into a magnetic field (H) and a magnetic flux density (B). In addition, the current value supplied to the electromagnet 3 is changed and swept by the current control device 9, and the magnetic field (H) and magnetic flux density (B) are continuously measured by the converter 5 to form a continuous -H curve. is displayed on the converter 5 in nominal time, and the magnetic permeability μ is calculated from the gradient (B/H) of the curve.

前記した透磁率測定装置は電磁石を使用したが、その代
わりに永久磁石を使用して、被測定物の磁束音度を検出
する装置にしてもよく、あるいは磁力の異なる数種類の
永久磁石を弾性体2に着脱可能にして、磁石の取替えを
可能にし、磁場(1−1)を変更できるようにして前記
同様に透磁率を測定させるようにしてもよい。
Although the magnetic permeability measuring device described above uses an electromagnet, a permanent magnet may be used instead to detect the magnetic flux soundness of the object to be measured, or several types of permanent magnets with different magnetic forces may be used as an elastic body. 2 may be made detachable so that the magnet can be replaced and the magnetic field (1-1) can be changed so that the magnetic permeability can be measured in the same manner as described above.

[発明の効果] 本発明の透磁率測定装置あるいは測定システムによれば
、被測定物からリング試料を切り取り加工する必要がな
いので、種々のポイントの透磁率を簡単に測定でき、し
かも磁気シールド材を工場加工完了時点、現場搬入時点
、取付完了時点等様々な時点で透磁率を測定することが
できて、現実の透磁率を測定把握できる。
[Effects of the Invention] According to the magnetic permeability measuring device or measuring system of the present invention, there is no need to cut out a ring sample from the object to be measured, so magnetic permeability at various points can be easily measured, and moreover, it is possible to easily measure the magnetic permeability of various points. The magnetic permeability can be measured at various times, such as when the factory processing is completed, when it is delivered to the site, and when the installation is completed, and the actual magnetic permeability can be measured and understood.

またMRI室周囲の磁気シールド壁等を磁気シールド材
を使用して施工する場合、過剰な安全率の材料を使用す
ることな(現実的な値の材料を使用でき、さらに磁気シ
ールド材を取付けた後、万一所定の透磁率が確保されて
いない場合に、建築の仕上げがなされていない段階であ
るので増貼り等の対策を施しやすい。
Also, when constructing magnetic shielding walls around the MRI room using magnetic shielding materials, do not use materials with excessive safety factors (materials with realistic values can be used, and the magnetic shielding materials can be installed). If the predetermined magnetic permeability is not secured after that, it is easy to take measures such as increasing the number of layers since the building has not yet been finished.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の透磁率測定装置の断面図、第2図は同
装置のシステム図、第3図は従来方法により磁気焼鈍し
た材料と加工したままの試料のB−8曲線を示す説明図
である。 l;高剛性支持材   2;弾性体
Fig. 1 is a cross-sectional view of the magnetic permeability measuring device of the present invention, Fig. 2 is a system diagram of the device, and Fig. 3 is an explanation showing the B-8 curve of a material magnetically annealed by a conventional method and a sample as processed. It is a diagram. l; High rigidity support material 2; Elastic body

Claims (3)

【特許請求の範囲】[Claims] (1)、被測定物に当接される高剛性支持材に、弾性体
を介して電磁石を測定面側に対向させて取付け、弾性体
にひずみゲージを取付け、ひずみゲージの検出値と電磁
石への入力電流値とに基づき被測定物の透磁率を計測す
る変換器を設けたことを特徴とする透磁率測定装置。
(1) Attach an electromagnet to the high-rigidity support material that comes into contact with the object to be measured through an elastic body so as to face the measurement surface, attach a strain gauge to the elastic body, and connect the detected value of the strain gauge to the electromagnet. What is claimed is: 1. A magnetic permeability measuring device comprising a converter for measuring magnetic permeability of an object to be measured based on an input current value.
(2)、電磁石のコイルに、電流制御装置を介して直流
電源を接続した請求項1に記載の透磁率測定装置。
(2) The magnetic permeability measuring device according to claim 1, wherein a DC power source is connected to the coil of the electromagnet via a current control device.
(3)、請求項(1)又は(2)に記載の透磁率測定装
置を使用し、電磁石への入力電流値をスイープさせるこ
とにより磁場(H)と磁束密度(B)とを変換器で計測
して、連続的なB−H曲線をリアルタイムに検出すると
ともに、そのB−H曲線に基づき透磁率を求めることを
特徴とする透磁率測定システム。
(3) Using the magnetic permeability measuring device according to claim (1) or (2), the magnetic field (H) and magnetic flux density (B) are converted by a converter by sweeping the input current value to the electromagnet. 1. A magnetic permeability measurement system that measures and detects a continuous B-H curve in real time, and determines magnetic permeability based on the B-H curve.
JP1297185A 1989-11-15 1989-11-15 Permeability measuring device and system Expired - Lifetime JPH0614113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1297185A JPH0614113B2 (en) 1989-11-15 1989-11-15 Permeability measuring device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1297185A JPH0614113B2 (en) 1989-11-15 1989-11-15 Permeability measuring device and system

Publications (2)

Publication Number Publication Date
JPH03158784A true JPH03158784A (en) 1991-07-08
JPH0614113B2 JPH0614113B2 (en) 1994-02-23

Family

ID=17843276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1297185A Expired - Lifetime JPH0614113B2 (en) 1989-11-15 1989-11-15 Permeability measuring device and system

Country Status (1)

Country Link
JP (1) JPH0614113B2 (en)

Also Published As

Publication number Publication date
JPH0614113B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
US4528856A (en) Eddy current stress-strain gauge
EP1810046B1 (en) Sensor for measuring magnetic flux
CA2431008A1 (en) Measurement of stress in a ferromagnetic material
JP2766929B2 (en) Non-destructive inspection equipment
JPH0797008B2 (en) Method and apparatus for measuring a ferromagnetic object embedded in a non-magnetic material
JPS58102148A (en) On-line hardness measuring method for steel sheet
US20100236339A1 (en) Biaxial stress management
DE3037932A1 (en) Measuring coercive field strengths on extensive surfaces - by quasi-stationary and dynamic cycling through hysteresis curve
JPH03158784A (en) Instrument and system for measuring magnetic permeability
WO1989000702A1 (en) Magnetic sensor
JP3753505B2 (en) Disturbance magnetic field compensation method and magnetic resonance imaging apparatus
JP2005127963A (en) Nondestructive inspection method and its apparatus
JP6612023B2 (en) Removal of non-hysteresis magnetism in ferromagnets
KR20190067716A (en) Method and device for measuring the thickness of non-magnetisable layers on a magnetisable base material
JP2008249583A (en) Magnetic object detector
JP2000088571A (en) Detecting method for position of moving body at inside of pipe
US20230018264A1 (en) Method for determining a materials characteristic value of magnetizable metal bodies by means of a micromagnetic sensor assembly, and corresponding sensor assembly
SU824019A1 (en) Materials
KR890002503B1 (en) Sense of magnetism in two dimension
JPH07229955A (en) Increment magnetic permeability measuring apparatus for magnetic steel plate
JP2001033429A (en) Damage diagnostic method for metal member
JP2996351B2 (en) Demagnetization coefficient measurement method for magnetic materials
JPH0658907A (en) Method for evaluating quality of magnetic material
Bida The effect of a gap between the poles of an attachable electromagnet and a tested component on coercimeter readings and methods for decreasing it
KR860000965B1 (en) The measuring method for magnetic property by measuring barkhausen noise