JPH03158603A - Fluidized bed type burner - Google Patents

Fluidized bed type burner

Info

Publication number
JPH03158603A
JPH03158603A JP29772089A JP29772089A JPH03158603A JP H03158603 A JPH03158603 A JP H03158603A JP 29772089 A JP29772089 A JP 29772089A JP 29772089 A JP29772089 A JP 29772089A JP H03158603 A JPH03158603 A JP H03158603A
Authority
JP
Japan
Prior art keywords
gas
fluidized bed
furnace
dispersion holes
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29772089A
Other languages
Japanese (ja)
Inventor
Tetsuya Funahara
船原 哲也
Takeshi Oyama
大山 武
Shigeru Yamamoto
茂 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIWA NENSHIYOU GIJUTSU KENKYUSHO KK
Original Assignee
KASHIWA NENSHIYOU GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIWA NENSHIYOU GIJUTSU KENKYUSHO KK filed Critical KASHIWA NENSHIYOU GIJUTSU KENKYUSHO KK
Priority to JP29772089A priority Critical patent/JPH03158603A/en
Publication of JPH03158603A publication Critical patent/JPH03158603A/en
Pending legal-status Critical Current

Links

Landscapes

  • Incineration Of Waste (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Abstract

PURPOSE:To maintain the state of preferable fluidization in heating medium particles with no influence of some dispersion holes that are more or less clogged by arranging in multiple stages the dispersion holes which pierce through the furnace wall substantially horizontally at the bottom section and forming a gas chamber which surrounds the outside opening sections of the dispersion holes on the outside of the bottom section of the furnace wall. CONSTITUTION:Dispersion holes 18 are formed in multiple stages in the furnace wall 10a of a furnace 10 at the lower section and they are arranged, for instance, radially. Respective gas chambers 19 that surround the outside opening sections of the dispersion holes 18 are mounted on the outer circumference of the furnace wall 10a. The flow rate of the gas that is delivered from a blower 26 is regulated by a regulating valve 25 and the gas is supplied to the gas chamber 19 through supply pipes 24. After the pressure of the gas is regulated there to a certain extent, the gas is blown out into the fluidized bed through the dispersion holes 18. With this arrangement it is possible to maintain a preferable flow of heating medium particles without influence from the dispersion holes 18 which are more or less clogged, and, further, to let the ash, etc., that invade from the dispersion holes 18 stay in the gas chambers and prevent them from flowing further into the upstream side.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃焼炉内の流動層中に気体を送り込むための
分散孔を燃焼炉の炉壁底部に設けた流動層式燃焼装置に
関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a fluidized bed combustion device in which dispersion holes are provided at the bottom of the furnace wall of a combustion furnace for feeding gas into a fluidized bed in the combustion furnace. It is.

(従来技術) 従来、−船釣に利用されている流動層式燃焼装置は、燃
焼炉内の流動層中に気体を垂直方向に送り込むための分
散孔を燃焼炉の炉底部にもち、複数の分散孔を形成した
分散板は、流動層の最下部で炉内部を概ね覆うように配
置されており、また、燃焼灰、燃焼ゴミ、固体粒子の塊
等を取り出す取出し口は、分散板の一部又は両端に設け
られている。このように構成することで、分散板の下方
がら導入された気体が、分散板の分散孔を通って流動層
内に下方から垂直方向に送り込まれ、その結果、流動層
内に充填された熱媒体粒子(例えば、平均粒径0.3〜
0.8 mm程度の砂、アルミナ、シリカの粒子等)と
燃焼物とが熱媒体粒子の流れのある流動層内で撹拌され
ると共に、燃焼物が高温の熱媒体粒子に接触して象、速
に加熱されて、効率の良い燃焼が行われる。
(Prior art) Conventionally, fluidized bed combustion devices used for boat fishing have dispersion holes at the bottom of the combustion furnace for feeding gas vertically into the fluidized bed in the combustion furnace, and have multiple The dispersion plate with dispersion holes formed therein is placed at the bottom of the fluidized bed so as to cover most of the inside of the furnace, and the outlet for taking out combustion ash, combustion garbage, lumps of solid particles, etc. is located in one part of the dispersion plate. or both ends. With this configuration, the gas introduced from below the dispersion plate is sent vertically into the fluidized bed from below through the dispersion holes of the dispersion plate, and as a result, the heat filled in the fluidized bed is Media particles (e.g. average particle size 0.3~
Sand, alumina, silica particles, etc. of about 0.8 mm) and the combustion material are stirred in a fluidized bed with a flow of heat carrier particles, and the combustion material comes into contact with the high temperature heat carrier particles, causing It heats up quickly and burns efficiently.

しかしながら、このような形式の燃焼装置においては、
分散孔が垂直方向に延在しているので、装置の運転を停
止した場合、運転時に流動層内で循環していた熱媒体粒
子が、自由落下して分散孔から侵入する確率が非常に高
く、このような粒子の侵入と同時に分散孔に徐々に粒子
が付着してしまう。したがって、燃焼炉を繰り返し使用
することにより、分散板より下流側の空気流路、並びに
分散板の分散孔を、熱媒体粒子等が徐々に塞ぎ、結果的
に、分散孔の大部分が熱媒体粒子等で塞がれて、所望の
気体が炉内へ供給されず、装置の故障を引き起こすこと
となる。
However, in this type of combustion device,
Because the dispersion pores extend vertically, when the equipment is stopped, there is a very high probability that the heat carrier particles that were circulating in the fluidized bed during operation will freely fall and enter through the dispersion pores. At the same time as such particles enter, the particles gradually adhere to the dispersion pores. Therefore, by repeatedly using a combustion furnace, the air flow path downstream of the distribution plate and the distribution holes of the distribution plate are gradually blocked by heat transfer particles, etc., and as a result, most of the distribution holes are occupied by the heat transfer medium. It is blocked by particles and the like, preventing the desired gas from being supplied into the furnace, resulting in equipment failure.

また、垂直上方に気体を吹き上げる前述の形式の燃焼装
置において、気体を高速にすると、分散孔上方で熱媒体
粒子層に局所的な流体の素通り(チャネリング)部分が
生し、その結果、流動層内で熱媒体粒子を好適に循環さ
せることができないこともある。
In addition, in the above-mentioned type of combustion device that blows gas vertically upward, when the gas is made to flow at high speed, a local channeling portion of the fluid is created in the heat carrier particle layer above the dispersion hole, resulting in a fluidized bed. In some cases, it may not be possible to properly circulate the heat transfer medium particles within the heat exchanger.

更にまた、分散板は炉底部のほぼ全域を覆うように配置
されており、灰等の取出し口は、分散板の一部又は周囲
に設けられるが、分散孔にある程度の面積が必要なので
、あまり大きな取出口を形成することができず、灰等の
除去作業能率が悪くなるといった不具合が生じる。
Furthermore, the dispersion plate is arranged to cover almost the entire area of the bottom of the furnace, and the outlet for removing ash, etc. is provided in a part of or around the dispersion plate, but since the dispersion hole requires a certain area, it is not necessary to It is not possible to form a large outlet, resulting in problems such as poor ash removal efficiency.

そこで、上述した垂直型の分散孔にかえて水平型の分散
孔をもった流動層式燃焼装置が考案された。この水平分
散孔型の流動層式燃焼装置は、燃焼炉の下部に形成した
分散孔と、燃焼炉の上部に設けた燃焼ガス導出管と、燃
焼炉の中央部に設けた燃焼物投入管と、燃焼炉の底部に
形成した灰等の取出口とから主として構成されている。
Therefore, a fluidized bed combustion apparatus was devised that had horizontal dispersion holes instead of the vertical dispersion holes described above. This horizontal distribution hole type fluidized bed combustion device consists of a distribution hole formed at the bottom of the combustion furnace, a combustion gas outlet pipe installed at the top of the combustion furnace, and a combustion material input pipe installed at the center of the combustion furnace. , and an ash outlet formed at the bottom of the combustion furnace.

この装置に使用する分散孔は、炉壁を実質的に水平に貫
通するよう周方向に複数個配置されている1分散孔をこ
のような構成にすることで、炉内に水平方向に吹き出さ
れた気体は、お互いに中央でぶつかり合って上昇気流を
引き起こし、流動層内で流動化状態が発生する。その結
果、流動層内に充填された熱媒体粒子と燃焼物等とが熱
媒体粒子の流れに乗って流動層内で撹拌されると共に、
燃焼物が高温の熱媒体粒子に接触しながら象、速に加熱
されて、効率の良い燃焼が行われる。
The dispersion holes used in this device are configured such that a plurality of dispersion holes are arranged in the circumferential direction so as to penetrate the furnace wall substantially horizontally. The gases collide with each other in the center, causing an updraft and creating a fluidized state within the fluidized bed. As a result, the heating medium particles and the combustion materials filled in the fluidized bed are stirred within the fluidized bed by the flow of the heating medium particles, and
The combustion material is rapidly heated as it comes into contact with high-temperature heat transfer particles, resulting in efficient combustion.

上述したように水平型の分散孔を炉壁下部に設けること
により、炉の底部のほぼ全域を灰等の取出口に当てるこ
とができるので、炉内で下方に存在する確率の高い不燃
物や熱媒体粒子等の粗大塊を、効率よく取出口から選択
的に排出させることができる。また、水平型の分散孔(
後者の従来例)は、垂直型分散孔(前者の従来例)と違
って炉壁に対してほぼ直角に配置されるので、運転を停
止すると同時に自由落下する熱媒体粒子等が、分散孔か
ら進入したり、分散孔に付着したりする虞れが少なく、
したがって、分散孔の掃除の回数を極めて減らすことか
できると共に、点検作業の回数をも減らすことができる
As mentioned above, by providing horizontal dispersion holes at the bottom of the furnace wall, almost the entire bottom of the furnace can be exposed to the ash removal port, so incombustibles and other substances that are likely to exist below in the furnace can be removed. Coarse lumps such as heating medium particles can be efficiently and selectively discharged from the outlet. In addition, horizontal dispersion holes (
Unlike the vertical dispersion hole (former conventional example), the latter (conventional example) is arranged almost perpendicularly to the furnace wall, so that when the operation is stopped, free-falling heat transfer particles, etc. are removed from the dispersion hole. There is little risk of it entering or adhering to the dispersion hole.
Therefore, the number of times the dispersion hole is cleaned can be significantly reduced, and the number of inspection operations can also be reduced.

(発明が解決しようとする課題) しかしながら、−段形式の分散孔においては、答礼から
の気体の吹出し量のバランスがとれて初めて円滑な熱媒
体粒子の循環が行われるので、分散孔付近での熱媒体粒
子等の付着が分散孔の一部に発生した場合、目詰まりを
起こした分散孔からの気体の吹出し量が減少し、その結
果、流動層内での気体の流れに偏りが生じ、不均一な熱
媒体粒子の循環が行われて、燃焼物の効率の良い燃焼が
妨げられることとなる。
(Problem to be Solved by the Invention) However, in the -stage type dispersion hole, smooth circulation of the heat transfer medium particles is achieved only when the amount of gas blown out from the return is balanced. When heat transfer particles, etc. adhere to some of the dispersion holes, the amount of gas blown out from the clogged dispersion holes decreases, resulting in uneven gas flow within the fluidized bed. Non-uniform circulation of the heat transfer medium particles will result in hindering efficient combustion of the combustible material.

そこで、本発明は、分散孔の多少の詰まりにも影響され
ず、しかも流動層内で任意の熱媒体粒子の流れを形成す
ることのできる流動層式燃焼装置を提供することを目的
としている。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a fluidized bed combustion apparatus that is not affected by clogging of the dispersion holes and is capable of forming a desired flow of heat medium particles within the fluidized bed.

(課題を解決するための手段) 上記目的を達成するために、本発明における流動層式燃
焼装置は、燃焼炉内の流動層中に気体を送り込むための
分散孔を、燃焼炉の炉壁底部に多段に設けると共に、炉
壁を実質的に水平に貫通させて配置し、分散孔の外側開
口部を包囲する気体室を炉壁底部の外側に隣接させて形
成し、分散孔から吹き出す気体を各段ごとに個別的に制
御する手段を設けたことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the fluidized bed combustion apparatus of the present invention has dispersion holes for feeding gas into the fluidized bed in the combustion furnace at the bottom of the furnace wall of the combustion furnace. The furnace wall is provided in multiple stages, and the furnace wall is substantially horizontally penetrated, and a gas chamber surrounding the outer opening of the distribution hole is formed adjacent to the outside of the bottom of the furnace wall, so that the gas blown out from the distribution hole is It is characterized by providing means for individually controlling each stage.

(作 用) 上述したように構成された流動層式燃焼装置によれば、
炉壁を実質的に水平に貫通する分散孔が多段に設けられ
、このことにより、分散孔の多少の詰まりにも影響され
ずに熱媒体粒子の好適な流れを維持することができる。
(Function) According to the fluidized bed combustion apparatus configured as described above,
Dispersion holes penetrating the furnace wall substantially horizontally are provided in multiple stages, thereby making it possible to maintain a suitable flow of heat carrier particles without being affected by some clogging of the dispersion holes.

また、分散孔の外側開口部を包囲する気体室を炉壁底部
の外側に隣接させて形成することにより、分散孔から進
入してきた灰等を気体室内で留めて更に上流側へ灰等が
流入するのを防止することができる。更にまた、分散孔
から吹き出す気体を各段ごとに個別的に制御する手段を
設けることにより、流動層内で任意の熱媒体粒子の流れ
を形成することが可能になる。
In addition, by forming a gas chamber that surrounds the outer opening of the dispersion hole adjacent to the outside of the bottom of the furnace wall, ash, etc. that enter through the dispersion hole is stopped within the gas chamber, and ash, etc. flows further upstream. It is possible to prevent this from happening. Furthermore, by providing means for individually controlling the gas blown out from the dispersion holes for each stage, it becomes possible to form any desired flow of heat medium particles within the fluidized bed.

(実施例) 以下、本発明による実施例を図面に基づいて詳細に説明
する。
(Example) Hereinafter, an example according to the present invention will be described in detail based on the drawings.

本発明の流動層式燃焼装置は、第1図に示すように、装
置本体を構成する燃焼炉10を具え、この燃焼炉の内部
には熱媒体粒子12が充填されて流動層13が形成され
ている。また、炉壁には、流動層13内に燃焼物を投入
するための燃焼物投入管11が取り付けられている。 
燃焼炉10の上部には、燃焼物が燃焼の際に発生する燃
焼排ガスを炉外へ導く排ガス導出管14が設けられてい
る。この排ガス導出管14には排ガスに随伴する粉粒子
を分離するサイクロン分離器15が取り付けられている
。この分離器の上端には、排ガスを大気又はガス処理装
置に送り出す排気管16と、分離器で分離した熱媒体粒
子等の粉粒子を炉内に戻す戻り管17とを具えている。
As shown in FIG. 1, the fluidized bed combustion apparatus of the present invention includes a combustion furnace 10 constituting the main body of the apparatus, and the inside of this combustion furnace is filled with heat carrier particles 12 to form a fluidized bed 13. ing. Further, a combustion material input pipe 11 for charging combustion material into the fluidized bed 13 is attached to the furnace wall.
An exhaust gas outlet pipe 14 is provided in the upper part of the combustion furnace 10 to guide combustion exhaust gas generated when the combustion material is combusted to the outside of the furnace. A cyclone separator 15 is attached to the exhaust gas outlet pipe 14 to separate powder particles accompanying the exhaust gas. The upper end of this separator is provided with an exhaust pipe 16 for sending out the exhaust gas to the atmosphere or a gas processing device, and a return pipe 17 for returning powder particles such as heat carrier particles separated by the separator to the furnace.

炉10の下部には、炉内の流動層13内で熱媒体粒子1
2を流動化する燃焼用気体を送り込むための分散孔18
と、この分散孔の外側開口部を包囲する気体室19と、
この気体室に気体を供給する気体供給装置20とが設け
られている。炉の底部には、燃焼灰等を排出する取り出
し部21が設けられている。
At the bottom of the furnace 10, heat transfer particles 1 are placed in a fluidized bed 13 in the furnace.
Dispersion hole 18 for feeding combustion gas to fluidize 2
and a gas chamber 19 surrounding the outer opening of the dispersion hole;
A gas supply device 20 that supplies gas to this gas chamber is provided. A take-out section 21 for discharging combustion ash and the like is provided at the bottom of the furnace.

この取出し部21は一対をなすバルブ21a、21bに
より構成されて、外部よりも高い圧力の炉内から灰等を
効率良く取出すことを可能ならしめている。
The extraction section 21 is constituted by a pair of valves 21a and 21b, and makes it possible to efficiently extract ash and the like from inside the furnace, which has a higher pressure than the outside.

本発明の流動層式燃焼装置の分散孔18は、炉10の下
部で炉壁10a内に多段(本実施例では4段)に形成さ
れ、例えば、第2図に示すように、放射状に配置されて
いる6分散孔18の外側開口部を包囲する各気体室19
は、炉壁10aの外周に取り付けられた円筒状の包囲壁
22と、この包囲壁内で各段毎に分散孔18を仕切る仕
切り板23とにより画成される。したがって、同一容積
をなす気体室19を各段毎に独立させて形成することが
できる。各気体室内に気体を供給する気体供給装置20
は、包囲壁22の外周壁22aに各段毎に取り付けられ
た複数の気体供給管24と、各供給管24に毎に設けら
れた流量調整弁25と、各供給管24に気体を供給する
気体供給源例えばブロワ26とから構成する。したがっ
て、上述した構成により、ブロワ26から送り出された
気体は、調整弁25により流量が調整され、その後、供
給管24を通って気体室19内に供給される。
The dispersion holes 18 of the fluidized bed combustion apparatus of the present invention are formed in multiple stages (four stages in this embodiment) in the furnace wall 10a at the lower part of the furnace 10, and are arranged radially, for example, as shown in FIG. Each gas chamber 19 surrounds the outer opening of the six dispersion holes 18.
is defined by a cylindrical surrounding wall 22 attached to the outer periphery of the furnace wall 10a, and a partition plate 23 that partitions the dispersion holes 18 at each stage within the surrounding wall. Therefore, gas chambers 19 having the same volume can be formed independently for each stage. Gas supply device 20 that supplies gas into each gas chamber
, a plurality of gas supply pipes 24 attached to each stage on the outer peripheral wall 22a of the surrounding wall 22, a flow rate adjustment valve 25 provided for each supply pipe 24, and a gas supply pipe 24 for supplying gas to each supply pipe 24. It consists of a gas supply source, for example, a blower 26. Therefore, with the above-described configuration, the flow rate of the gas sent out from the blower 26 is adjusted by the regulating valve 25, and then the gas is supplied into the gas chamber 19 through the supply pipe 24.

そして、所要容積をもった気体室19内である程度圧力
調整された気体を、分散孔18を通って流動層内に吹き
出すことが可能となる。
Then, the gas whose pressure has been adjusted to a certain degree within the gas chamber 19 having the required volume can be blown out into the fluidized bed through the dispersion hole 18.

分散孔18からの気体の吹き出し速度は、分散孔の入口
圧力損失、気体室19内の圧力損失、及びブロワ26か
ら送り出される気体の流量等の様々な影響を受けるので
、流量調整弁25を設けることが、分散孔から送り出さ
れる気体の流量を最適な状態で制御することを可能なら
しめる。
Since the blowing speed of gas from the dispersion hole 18 is affected by various factors such as the inlet pressure loss of the dispersion hole, the pressure loss inside the gas chamber 19, and the flow rate of the gas sent out from the blower 26, a flow rate adjustment valve 25 is provided. This makes it possible to optimally control the flow rate of gas sent out from the dispersion holes.

上述した各調整弁25の開閉度の調整により流動層13
内で様々な流動状態を形成することが可能となる6例え
ば、流動層13内の水平方向断面における流速分布の均
一な上昇気流の発生(第3図参照)は、最下段の弁から
順次に弁の開度を所望量だけ小さくして、分散孔18か
ら吹き出す気体の量を最下段から段階的に少なくするこ
とにより達成される。このような上昇気流を発生させる
結果として、流動層内が均一な温度分布となり、燃焼が
効率的に行われ、燃焼温度の制限幅が小さいものでも好
ましい流動化状態が得られる。
The fluidized bed 13 is adjusted by adjusting the degree of opening and closing of each regulating valve 25 as described above.
For example, the generation of an upward airflow with a uniform flow velocity distribution in the horizontal cross section of the fluidized bed 13 (see Figure 3) can be achieved by sequentially starting from the lowest valve. This is achieved by reducing the opening degree of the valve by a desired amount to gradually reduce the amount of gas blown out from the dispersion hole 18 starting from the lowest stage. As a result of generating such an upward airflow, a uniform temperature distribution is achieved within the fluidized bed, combustion is performed efficiently, and a preferable fluidized state can be obtained even when the combustion temperature limit range is small.

流動層13内での比較的大きな流動化状態の発生(第4
図参照)は、第3図の場合よりも弁の開度を全体的に大
きくして、流動層13内の水平方向断面における流速分
布を中央部分で密にすることにより達成される。このよ
うな流動化状態を発生させる結果として、流動層内での
熱媒体粒子の動きが大きくなり、熱媒体粒子が固まろう
とする場合、これを妨げるような流動化状態が得られる
Generation of a relatively large fluidized state within the fluidized bed 13 (fourth
(see figure) is achieved by making the valve opening larger overall than in the case of FIG. 3 and making the flow velocity distribution in the horizontal cross section of the fluidized bed 13 denser in the central portion. As a result of generating such a fluidized state, the movement of the heat transfer medium particles within the fluidized bed increases, and if the heat transfer medium particles attempt to solidify, a fluidized state is obtained that prevents the heat transfer medium particles from solidifying.

流動層13内の垂直中心軸線近傍での渦流の発生(第5
図参照)は、第4図の場合よりも弁の開度を全体的に更
に大きくして、流動層13内の水平方向断面における流
速分布を中央部分で更に密にすることにより達成される
。このような渦流を発生させる結果として、同一炉内で
混合の激しい中央部分と、比較的流れの穏やかな周辺部
分とが得られるので、二段燃焼に適した流動化状態が得
られる。
Generation of vortex near the vertical central axis in the fluidized bed 13 (fifth
(see figure) is achieved by making the opening of the valves larger overall than in the case of FIG. 4, and by making the flow velocity distribution in the horizontal cross section of the fluidized bed 13 even denser in the central portion. As a result of generating such a vortex flow, a central part where the mixing is intense and a peripheral part where the flow is relatively calm are obtained in the same furnace, so that a fluidized state suitable for two-stage combustion is obtained.

上述した構成の流動層式燃焼装置において、分散孔18
から制御されながら水平方向に吹き出された気体は、炉
内で上述した流動化状態又は渦を発生し、この気流に乗
って流動層内で、燃焼物投入管11により炉内に送り込
まれた燃焼物(例えばタイヤ、プラスチック、木片等の
可燃物)並びに熱媒体粒子12が流動化され、そして、
燃焼物が高温の熱媒体粒子12に接触しながら急速に加
熱される。
In the fluidized bed combustion apparatus configured as described above, the dispersion holes 18
The gas blown out horizontally in a controlled manner generates the above-mentioned fluidized state or vortex in the furnace, and the combustion is carried by this airflow into the furnace through the combustion material input pipe 11 in the fluidized bed. (combustible materials such as tires, plastics, wood chips, etc.) as well as heat carrier particles 12 are fluidized, and
The combustion material is rapidly heated while coming into contact with the high-temperature heat carrier particles 12.

その結果、灰等が発生すると同時に燃焼排ガスが発生す
る。このようにして発生した排ガスは排ガス導出管14
を通ってサイクロン分離器15内に送りこまれ、その後
、熱媒体粒子等の比較的径の大きな粒子は分離された後
、戻り管17を通って炉内に戻される。また、炉内の圧
力が外の圧力よりも高いので、炉底部に溜まった灰等は
、先ず、上側のバルブ21aを開放し、灰が下側のバル
ブ21b上に溜まったところで上側のバルブ21aを閉
鎖し、その後、下側バルブ21bを開放することにより
炉外に排出される。このように取出し部を2段に構成す
ることで、炉内での燃焼物の燃焼と同時並行的に灰等の
排出を行うことができ、したがって、燃焼装置を、灰等
の排出のために一時停止することなく、効率良く連続作
動させることができる。
As a result, combustion exhaust gas is generated at the same time as ash and the like are generated. The exhaust gas generated in this way is transferred to the exhaust gas outlet pipe 14.
The particles are then sent through the cyclone separator 15 into the cyclone separator 15, where relatively large diameter particles such as heat transfer medium particles are separated, and then returned through the return pipe 17 into the furnace. In addition, since the pressure inside the furnace is higher than the outside pressure, the ash accumulated at the bottom of the furnace is removed by first opening the upper valve 21a, and when the ash accumulates on the lower valve 21b, the upper valve 21a is removed. is closed, and then the lower valve 21b is opened to be discharged to the outside of the furnace. By configuring the extraction section in two stages in this way, it is possible to discharge ash, etc. simultaneously with the combustion of the combustible material in the furnace. It can be operated efficiently and continuously without pauses.

上述した流量調整弁25に代えて、各段の気体供給管2
4に設定値の異なる固定型オリフィスを設けても、分散
孔18から吹き出される気体の流量を調整することが可
能となる。
Instead of the above-mentioned flow rate adjustment valve 25, each stage of gas supply pipe 2
Even if a fixed orifice with a different setting value is provided in the dispersion hole 18, the flow rate of the gas blown out from the dispersion hole 18 can be adjusted.

本発明は上述の実施例に限定されるものではなく、種々
の変更を加えることができるのは言うまでもない。
It goes without saying that the present invention is not limited to the embodiments described above, and that various changes can be made.

気体供給装置20の他の実施例として、第6図に示すよ
うに、各段毎に取り付けられた気体供給管24の上流側
に形成した合流部27に、切り換えバルブ28を設ける
ことも可能である。このバルブはモータ29により駆動
され、このモータの駆動により各段毎の気体供給管24
とプロワ26とを個別的に連通させることができ、その
結果として、所要の段の分散孔から気体を選択的に排出
させることが可能となる。また、切り換えバルブ28を
時間毎に切り換える構成にすることで、気体室19内へ
送られる気体の流量を経時的に変化させることが可能と
なる。
As another embodiment of the gas supply device 20, as shown in FIG. 6, it is also possible to provide a switching valve 28 at the confluence section 27 formed on the upstream side of the gas supply pipe 24 attached to each stage. be. This valve is driven by a motor 29, and the gas supply pipe 24 of each stage is driven by this motor.
and the blower 26 can be individually communicated with each other, and as a result, it is possible to selectively discharge gas from the dispersion holes of a required stage. Further, by configuring the switching valve 28 to be switched over time, it is possible to change the flow rate of gas sent into the gas chamber 19 over time.

気体室19内に送り込まれる気体の放熱量や加熱量を調
整するためには、例えば、第7図に示すように、気体室
19を包囲する包囲壁22の外周壁22aの厚みを各段
毎に変化させると好適である。また、第8図に示すよう
に、気体室19の容積を各段毎に変化させても好適であ
る。
In order to adjust the heat dissipation amount and heating amount of the gas sent into the gas chamber 19, for example, as shown in FIG. It is preferable to change it to Further, as shown in FIG. 8, it is preferable to change the volume of the gas chamber 19 for each stage.

分散孔18からの気体の吹き出し速度を各段毎に調整す
る実施例として、例えば、第9図に示すように、各分散
孔18の吹き出し口を所定量だけ絞ったもの、並びに、
第10図に示すように、各分散孔18の吹き出し口を所
定量だけ拡開させたものがある。前者のように構成する
と、分散孔18から吹き出される気体はジェット流とな
り、その結果、流動層の中央部付近まで気体を吹き出さ
せることが可能となり、流動層内の中央部付近の流動化
を大きくすることができる。後者のような構成にすると
、分散孔18から吹き出される気体は拡散しながら吹き
出され、その結果、炉壁付近の気体の量を大きくするこ
とができる。
As an embodiment in which the blowing speed of gas from the dispersion holes 18 is adjusted for each stage, for example, as shown in FIG.
As shown in FIG. 10, there is one in which the outlet of each dispersion hole 18 is expanded by a predetermined amount. In the former configuration, the gas blown out from the dispersion hole 18 becomes a jet stream, and as a result, it becomes possible to blow out the gas to the vicinity of the center of the fluidized bed, thereby preventing fluidization near the center of the fluidized bed. Can be made larger. With the latter configuration, the gas blown out from the dispersion holes 18 is blown out while being diffused, and as a result, the amount of gas near the furnace wall can be increased.

分散孔18からの気体の吹き出し方向を各段毎に変える
実施例として、分散孔18を、例えば第11図に示すよ
うに流動層13の垂直中心軸線に対して所定角度をなし
て配置させると好適である。このように分散孔からの気
体の吹き出し角度を段毎に変えることによって、分散孔
の経路の長さが変わり、これに伴って経路内での圧力損
失を変化させることができるので、気体の吹出し速度を
好適に変えることができる。また、吹出し角度を変える
ことにより、吹き出したジェット流の水平方向の分布速
度を変えることができる。したがって、水平方向の速度
分布を好適に調整することができる。
As an example in which the blowing direction of gas from the dispersion holes 18 is changed for each stage, the dispersion holes 18 may be arranged at a predetermined angle with respect to the vertical central axis of the fluidized bed 13, as shown in FIG. 11, for example. suitable. By changing the angle at which gas is blown from the dispersion holes for each stage, the length of the path of the dispersion holes changes, and the pressure loss within the path can be changed accordingly. The speed can be suitably changed. Furthermore, by changing the blowout angle, the horizontal distribution speed of the jet stream blown out can be changed. Therefore, the horizontal velocity distribution can be suitably adjusted.

分散孔からの気体の吹き出し量及び吹き出し方向を各段
毎に変える実施例として、例えば第12図に示すような
ものがある。この場合、上段の分散孔18は気体出口側
で縮径され、中段の分散孔18は中央部に球形の部屋が
設けられ、下段の分散孔18はv字状に折り曲げられて
構成されている0分散孔のこのような形状はほんの一例
であり、適時に応じて分散孔の経路の長さ、太さ及び方
向を変えることが好ましいことは言うまでもない。
An example of an embodiment in which the amount and direction of gas blown out from the dispersion holes are changed for each stage is shown in FIG. 12, for example. In this case, the upper dispersion hole 18 has a reduced diameter on the gas outlet side, the middle dispersion hole 18 has a spherical chamber in the center, and the lower dispersion hole 18 is bent into a V-shape. This shape of the 0-dispersion hole is just an example, and it goes without saying that it is preferable to change the length, thickness, and direction of the path of the distribution hole as appropriate.

第9〜12図における気体室19は区画されていないが
、例えば第7図に示すように気体室を各段毎に区画する
と、分散孔からの気体の吹き出しをより一層確実に制御
することが可能となる。
Although the gas chamber 19 in FIGS. 9 to 12 is not divided, for example, if the gas chamber is divided into stages as shown in FIG. 7, the blowing of gas from the dispersion holes can be controlled more reliably. It becomes possible.

炉内の温度分布を変化させて、流動層内での燃焼物の燃
焼位置を好ましい場所に保持するために、冷却又は加熱
した気体を分散孔から吹き出させることが必要な場合が
ある。このことを達成するためには、例えば、第13図
に示すように、気体供給装置20の他に熱交換手段Aを
設けると好適である。
In order to change the temperature distribution within the furnace and maintain the combustion position of the combustion material in the fluidized bed at a preferred location, it may be necessary to blow cooled or heated gas through the distribution holes. In order to achieve this, for example, as shown in FIG. 13, it is preferable to provide heat exchange means A in addition to the gas supply device 20.

この熱交換手段Aは、具体的には、気体室19を包囲す
る包囲壁22の外周壁22a内で、各気体室19を包囲
するように形成した個別的な媒体循環通路32と、この
媒体循環通路内に媒体を強制的に送り込むための媒体供
給装置(例えばポンプ)34と、媒体通路内を循環して
熱交換の行われた媒体を所定の媒体状態に戻すための熱
交換器30と、この熱交換器30を通って各媒体循環通
路32と媒体供給装置34との間を連通させる一対の配
管33と、各区画毎に対をなして設けられた配管33の
うちの媒体供給側の管に取り付けられて、媒体供給装置
34から送り出された媒体量を調整しながら、所望量の
媒体を媒体循通路内へ送り込むための第2の流量調整手
段(例えばバルブ)31とから構成されている。
Specifically, the heat exchange means A includes individual medium circulation passages 32 formed so as to surround each gas chamber 19 within the outer peripheral wall 22a of the surrounding wall 22 surrounding the gas chambers 19, and the medium circulation passage 32 formed so as to surround each gas chamber 19. A medium supply device (for example, a pump) 34 for forcibly feeding the medium into the circulation passage, and a heat exchanger 30 for returning the medium that has been circulated through the medium passage to a predetermined medium state. , a pair of pipes 33 that communicate between each medium circulation passage 32 and the medium supply device 34 through the heat exchanger 30, and a medium supply side of the pipes 33 provided in pairs for each section. A second flow rate adjusting means (for example, a valve) 31 is attached to the pipe and is configured to feed a desired amount of medium into the medium circulation path while adjusting the amount of medium sent out from the medium supply device 34. ing.

対をなす前述の配管33は、各段に設けられた媒体循環
通路32毎に配設されており、これに応じて、流量調整
手段31及び媒体供給装置34も各段毎に設けることが
可能となる。他の実施例として、各段の気体室に対応し
て個別的な熱交換器30を取り付けることにより、各気
体室の加熱/冷却を、より正確に制御することが可能に
なると共に、個々の熱交換器30をタイマ作動させて経
時的な制御も可能となる。ここで、気体室を加熱する場
合において、炉から排出されるガスを制御しながら媒体
循環通路内に直接流すことも可能である。
The above-mentioned pair of pipes 33 are arranged for each medium circulation passage 32 provided in each stage, and accordingly, the flow rate adjustment means 31 and the medium supply device 34 can also be provided in each stage. becomes. In another embodiment, by installing individual heat exchangers 30 for each stage of gas chambers, heating/cooling of each gas chamber can be more accurately controlled and the individual It is also possible to control the heat exchanger 30 over time by operating a timer. Here, when heating the gas chamber, it is also possible to flow the gas discharged from the furnace directly into the medium circulation passage while controlling it.

(発明の効果) 以上の記載から明らかなとおり、本発明の流動層式燃焼
装置は、燃焼炉内の流動層中に気体を送り込むための分
散孔を、燃焼炉の炉壁底部に多段に設けると共に、前記
炉壁を実質的に水平に貫通させて配置し、前記分散孔の
外側開口部を包囲する気体室を前記炉壁底部の外側に隣
接させて形成し、前記分散孔から吹き出す気体を各段ご
とに個別的に制御する手段を設けているので、分散孔の
多少の詰まりにも影響されずに熱媒体粒子の好適な流動
化状態を維持することができ、また、分散孔から進入し
てきた灰等を気体室内で留めて更に上流側へ灰等が流入
するのを防止することができ、更にまた、流動層内で任
意の熱媒体粒子の流動化状態を形成することが可能にな
るといった優れた効果を有する。
(Effects of the Invention) As is clear from the above description, the fluidized bed combustion apparatus of the present invention has dispersion holes for feeding gas into the fluidized bed in the combustion furnace in multiple stages at the bottom of the furnace wall of the combustion furnace. Further, a gas chamber is formed adjacent to the outside of the bottom of the furnace wall, the gas chamber being disposed substantially horizontally through the furnace wall and surrounding the outer opening of the distribution hole, so that the gas blown out from the distribution hole is formed adjacent to the outside of the bottom of the furnace wall. Since each stage is equipped with means for controlling it individually, it is possible to maintain a suitable fluidized state of the heat transfer medium particles without being affected by some clogging of the dispersion holes. It is possible to retain the ash, etc. that has been generated in the gas chamber and prevent the ash, etc. from flowing further upstream, and furthermore, it is possible to form a fluidized state of any heat transfer medium particles in the fluidized bed. It has excellent effects such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の流動層式燃焼装置の一実施例を示す断
面図、 第2図は第1図の■−■線に沿う断面図、第3〜5図は
本発明の燃焼装置の流動層内で起こる種々の流動化状態
を示す図、 第6〜13図は本発明の燃焼装置の他の実施例を示す断
面図である。 10・・・燃焼炉 10a・・・炉壁 12・・・熱媒体粒子 13・・・流動層 18・・・分散孔 19・・・気体室 20・・・気体供給装置 25・・・流量調整弁 31・・・第2の流量調整手段 A・・・熱交換手段 第6図 第7図 /’/ 第8図 第9図 第11図 第13図
Fig. 1 is a sectional view showing an embodiment of the fluidized bed combustion apparatus of the present invention, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Figs. 3 to 5 are sectional views of the combustion apparatus of the present invention. Figures 6 to 13 are sectional views showing other embodiments of the combustion apparatus of the present invention. 10... Combustion furnace 10a... Furnace wall 12... Heat carrier particles 13... Fluidized bed 18... Dispersion hole 19... Gas chamber 20... Gas supply device 25... Flow rate adjustment Valve 31...Second flow rate adjustment means A...Heat exchange means Fig. 6 Fig. 7/'/ Fig. 8 Fig. 9 Fig. 11 Fig. 13

Claims (1)

【特許請求の範囲】 1、燃焼炉内の流動層中に気体を送り込むための分散孔
を、燃焼炉の炉壁底部に多段に設けると共に、前記炉壁
を実質的に水平に貫通させて配置し、前記分散孔の外側
開口部を包囲する気体室を前記炉壁底部の外側に隣接さ
せて形成し、前記分散孔から吹き出す気体を各段ごとに
個別的に制御する手段を設けたことを特徴とする流動層
式燃焼装置。 2、請求項1記載の燃焼装置において、前記気体室を各
段ごとの区画に区分し、前記各区画に対する気体の温度
、圧力及び供給量を調整する流量調整手段を設けたこと
を特徴とする流動層式燃焼装置。 3、請求項2記載の燃焼装置において、前記流量調整手
段を、流量調整弁により構成したことを特徴とする流動
層式燃焼装置。 4、請求項2記載の燃焼装置において、前記気体室内の
気体温度を制御するための熱交換手段を配置し、該熱交
換手段内を流れる熱媒体の流量を調節する第2の流量調
整手段を、前記各区画に対応させて設けて前記各区画を
通過する前記気体の温度を個別的に調整可能としたこと
を特徴とする流動層式燃焼装置。
[Claims] 1. Dispersion holes for feeding gas into the fluidized bed in the combustion furnace are provided in multiple stages at the bottom of the furnace wall of the combustion furnace, and are arranged to penetrate the furnace wall substantially horizontally. and a gas chamber surrounding the outer opening of the dispersion hole is formed adjacent to the outside of the bottom of the furnace wall, and means is provided for individually controlling the gas blown out from the dispersion hole for each stage. Characteristic fluidized bed combustion equipment. 2. The combustion apparatus according to claim 1, characterized in that the gas chamber is divided into sections for each stage, and a flow rate adjustment means is provided for adjusting the temperature, pressure, and amount of gas supplied to each section. Fluidized bed combustion equipment. 3. The fluidized bed combustion apparatus according to claim 2, wherein the flow rate adjustment means is constituted by a flow rate adjustment valve. 4. The combustion apparatus according to claim 2, wherein a heat exchange means for controlling the gas temperature in the gas chamber is disposed, and a second flow rate adjustment means for adjusting the flow rate of the heat medium flowing within the heat exchange means. . A fluidized bed combustion apparatus, characterized in that the temperature of the gas passing through each of the sections can be individually adjusted by being provided corresponding to each of the sections.
JP29772089A 1989-11-17 1989-11-17 Fluidized bed type burner Pending JPH03158603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29772089A JPH03158603A (en) 1989-11-17 1989-11-17 Fluidized bed type burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29772089A JPH03158603A (en) 1989-11-17 1989-11-17 Fluidized bed type burner

Publications (1)

Publication Number Publication Date
JPH03158603A true JPH03158603A (en) 1991-07-08

Family

ID=17850304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29772089A Pending JPH03158603A (en) 1989-11-17 1989-11-17 Fluidized bed type burner

Country Status (1)

Country Link
JP (1) JPH03158603A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066264A1 (en) * 1998-06-16 1999-12-23 Mitsubishi Heavy Industries, Ltd. Operating method of fluidized-bed incinerator and the incinerator
JP2015224801A (en) * 2014-05-26 2015-12-14 忠行 猪野 Cyclone incinerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999066264A1 (en) * 1998-06-16 1999-12-23 Mitsubishi Heavy Industries, Ltd. Operating method of fluidized-bed incinerator and the incinerator
JP2015224801A (en) * 2014-05-26 2015-12-14 忠行 猪野 Cyclone incinerator

Similar Documents

Publication Publication Date Title
KR100203007B1 (en) A fluid bed cooler, a fluid bed combustion reactor and a method for the operation of a such reactor
EP0740109B1 (en) Fluidized-bed combuster
JPS6217123B2 (en)
US3264751A (en) Heat-exchange method and apparatus
EP0050519B1 (en) Fluidized bed combustor
JPS594881A (en) Fluidized bed furnace and its application
CN100554848C (en) The air-flow control device and the bed cooling means that are used for particulates material bed layer
US4604050A (en) Method of cleaning nozzles in a fluidized bed
JP2001133150A5 (en)
RU2228496C2 (en) Gear to remove liquid from disperse material
JPH03158603A (en) Fluidized bed type burner
GB2084198A (en) Producing metal powder
JP2000197854A (en) Multi-chamber type fluidized bed classification apparatus
WO2001036082A1 (en) A fluidized bed apparatus
JPH04316988A (en) Method of cooling gas and circulating fluid bed cooler for cooling gas
KR960705752A (en) SINTERING METHOD OF CEMENT CLINKERS AND SINTERING APPRATUS OF THE SAME
US4445443A (en) Fluidized bed heat exchanger having separating drain and method of operation thereof
JPH10122509A (en) Fluidized bed combustion device
CA1192792A (en) Fluidized bed heat exchanger having separating drain and method of operation thereof
CN111692887A (en) Powder cooler
JPS62237939A (en) Multistage jet stream bed apparatus using peripheral wall jet stream type fluidized bed
KR100510880B1 (en) Dispersion Nozzle and Fluidized Bed Reactor Using the Same
CN214275691U (en) Gas distribution plate of fluidized bed cooler and fluidized bed cooler
JPH06281126A (en) Filtros plate for fluidized bed incinerator
JP2807218B2 (en) Heat exchange device and method of operating the same