JPH0315800A - Reactor auxiliary cooling system equipment for atomic power plant - Google Patents

Reactor auxiliary cooling system equipment for atomic power plant

Info

Publication number
JPH0315800A
JPH0315800A JP1149369A JP14936989A JPH0315800A JP H0315800 A JPH0315800 A JP H0315800A JP 1149369 A JP1149369 A JP 1149369A JP 14936989 A JP14936989 A JP 14936989A JP H0315800 A JPH0315800 A JP H0315800A
Authority
JP
Japan
Prior art keywords
hot water
heat exchanger
reactor
cuw
rcw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149369A
Other languages
Japanese (ja)
Inventor
Masaaki Fukushima
正明 福島
Kenichi Ueno
健一 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1149369A priority Critical patent/JPH0315800A/en
Publication of JPH0315800A publication Critical patent/JPH0315800A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

PURPOSE:To prevent freezing of the coil of a warming air conditioner of an intra-reactor hot water system by leading cooling water of an RCW (reactor auxiliary cooling system) to an intra-reactor hot water system heat exchanger at the time of stopping a CUW (reactor refrigerant purifying system) circulating pump. CONSTITUTION:In the RCW, the waste heat for cooling of a reactor refrigerant purifying system non-regenerative heat exchanger is used to heat the warming air conditioner of the intra-reactor hot water system. A by-pass line 20 is provided on the duct between a CUW non-regenerative heat exchanger 7 and an intra-reactor hot water system heat exchanger 8 to by-pass a temperature control valve 12. Since the diameter of piping of this line is set to a desired value, cooling water at about 30 deg.C flowing in the RCW is supplied to the exchanger 8 through the line 20 even if a CUW circulating pump 14 is stopped to completely close the control valve 12. Consequently, the reduction of the hot water temperature in the intra-reactor hot water system is prevented to prevent freezing of the coil of the warming air conditioner.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) この発明は、原子炉冷却材浄化系(以下CUWと称する
)設備を冷用する原子力発電プラントの原子炉補機冷却
系《以下RCWと称する)設備に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) This invention relates to a reactor auxiliary cooling system of a nuclear power plant that cools reactor coolant cleaning system (hereinafter referred to as CUW) equipment. (hereinafter referred to as RCW) equipment.

(従来の技術) 原子力発雷プラントのRCWは、原子炉事故時等に機能
する非常用機器と原子炉通常運転時等に機能する常用I
ff器とをそれぞれ冷却するものである。
(Conventional technology) The RCW of a nuclear power plant consists of emergency equipment that functions in the event of a reactor accident, etc., and regular I that functions during normal reactor operation.
FF unit and the FF unit, respectively.

第5図は、従来のRCW設備を示す系統図である。RC
W設備は、冷却水ボンブ1で加圧ざれた冷却水を海水熱
交換器2を介して、海水ボンプ3で加圧ざれた海水によ
り冷却し、この冷却水を非常用m器4、C(JW循環ボ
ンプクーラ6およびCUW非再生熱交換器7等へ供給す
る。また、CUW非再生熱交換器7からの廃熱を回収し
て所内温水系の暖房用空W4119(16図参照)へこ
の廃熱を供給することを目的として、CLIW非再生熱
交換器7の下流側に所内温水系熱交換器8が設置されて
いる。
FIG. 5 is a system diagram showing a conventional RCW facility. R.C.
The W equipment cools the cooling water pressurized by the cooling water bomb 1 through the seawater heat exchanger 2 with the seawater pressurized by the seawater pump 3, and then transfers this cooling water to the emergency m equipment 4, C ( It is supplied to the JW circulation pump cooler 6, CUW non-regenerative heat exchanger 7, etc. Also, the waste heat from the CUW non-regenerative heat exchanger 7 is recovered and sent to the heating air W4119 (see Figure 16) of the in-house hot water system. For the purpose of supplying heat, an in-house hot water heat exchanger 8 is installed downstream of the CLIW non-regenerative heat exchanger 7.

また、RCW設備には常用・非常用分離弁9および分離
弁10.11が設置されて、非常時に常用機器5等への
冷却水供給を停止して非常用機器4へ充分な冷加水が補
給されるようになっている。
In addition, the RCW equipment is equipped with regular/emergency separation valves 9 and 10.11, which stop the supply of cooling water to the regular equipment 5, etc. in the event of an emergency, and supply sufficient chilled water to the emergency equipment 4. It is supposed to be done.

さらに、CLIW非再生熱交換器7と所内温水系熱交換
器8等の間に温度W4節弁12が配設されて、CUW非
再生熱交換器7により冷即されるCUW系の原子炉水温
度が一定にiJI IEされる。
Furthermore, a temperature W4 regulating valve 12 is disposed between the CLIW non-regenerative heat exchanger 7 and the station hot water system heat exchanger 8, etc., so that the CUW system reactor water immediately cooled by the CUW non-regenerative heat exchanger 7 is The temperature is kept constant.

第6図は従来のCUW設備および所内温水系設備の系統
図である。
FIG. 6 is a system diagram of conventional CUW equipment and in-house hot water system equipment.

原子炉13からの冷却材(原子炉水)をCUW循環ボン
ブ14によってCUW再生熱交換器15、CUW非再生
熱交換器7およびろ過説塩装置16へ供給することによ
り原子炉冷即材を浄化している。ここで、CUW非再生
熱交換器7は、前記RCW設備の冷却水17によって、
ろ過脱塩装置16が運転可能となる温度まで原子炉水を
冷却する。
The reactor coolant is purified by supplying the coolant (reactor water) from the reactor 13 to the CUW regenerative heat exchanger 15, CUW non-regenerative heat exchanger 7, and filtration chlorination device 16 through the CUW circulation bomb 14. are doing. Here, the CUW non-regenerative heat exchanger 7 is operated by the cooling water 17 of the RCW equipment.
The reactor water is cooled to a temperature at which the filtration and demineralization device 16 can operate.

また、CUW非再生熱交換器7の冷却水出口側に前記編
度調節弁12が、さらにその下流側に前記所内瀉水系熱
交換器8がそれぞれ設置ざれている。
Further, the knitting adjustment valve 12 is installed on the cooling water outlet side of the CUW non-regenerative heat exchanger 7, and the in-house water purification system heat exchanger 8 is installed further downstream thereof.

この所内編水系熱交換器8は、CUW非再生熱交換器7
から回収された廃熱により加熱された温水を所内編水ポ
ンプ18によって加圧し、暖房用空調!ill9へ供給
する。
This in-house edited water system heat exchanger 8 is a CUW non-regenerative heat exchanger 7.
The hot water heated by the waste heat recovered from the water is pressurized by the in-house water pump 18 and used for heating air conditioning! Supply to ill9.

(R明が解決しようとする課題〉 従来のRCW設備では、第6図に示すCUW循環ボンブ
14が停止すると、RCWの温度調節弁12《第5図お
よび第6図〉が全開となるので、所内潟水系熱交換器8
への冷却水17の供給が断たれる。その結果、所内温水
系の温度が低下し、冬期において所内温水系の暖房用空
調機19におけるコイルが凍結するおそれがある。
(Problem that R-ming is trying to solve) In conventional RCW equipment, when the CUW circulation bomb 14 shown in FIG. 6 stops, the RCW temperature control valve 12 (FIGS. 5 and 6) is fully opened. In-house lagoon water heat exchanger 8
The supply of cooling water 17 to is cut off. As a result, the temperature of the station hot water system decreases, and there is a risk that the coil in the heating air conditioner 19 of the station hot water system may freeze in winter.

この発明は、上記事情を考慮してなされたものであり、
冬用にCUW循環ボンブが停止して、所内漏水系熱交換
器がCUW非再生熱交換器からの廃熱を利用できなくな
っても、所内温水系の暖房用空調機のコイルの凍結を防
止できる原子力発電プラントのROW設備を提供するこ
とを目的とする。
This invention was made in consideration of the above circumstances,
Even if the CUW circulation bomb stops in the winter and the in-house water leakage heat exchanger cannot utilize the waste heat from the CUW non-regenerative heat exchanger, the coils of the in-house hot water system's heating air conditioner can be prevented from freezing. The purpose is to provide ROW equipment for nuclear power plants.

(発明の構成〕 (課題を解決するための手段〉 この発明は、常用機器、非常用Ia器およびCUW非再
生熱交換器等へ冷用水を供給してこれらの機器を冷fJ
1するとともに、上記CUW非再生熱交換器を冷用した
冷却水を所内温水系の所内温水系熱交換器へ導いて、上
記CUW非再生熱交3!J8器からの廃熱を利用し上記
所内腸水系の暖房用空調機を加熱する原子力発電プラン
トのRCW設備において、CUWのCUW循環ポンプ停
止時にも、RCWを流れる上記冷却水を上記所内温水系
熱交W4器へ導くよう構戒したことを特徴とするもので
ある。
(Structure of the Invention) (Means for Solving the Problems) This invention supplies cold water to regular equipment, emergency Ia equipment, CUW non-regenerative heat exchangers, etc.
At the same time, the cooling water cooled by the CUW non-regenerative heat exchanger is guided to the in-house hot water system heat exchanger of the in-house hot water system, and the CUW non-regenerative heat exchanger 3! In the RCW equipment of a nuclear power plant that uses waste heat from the J8 unit to heat the heating air conditioner of the above-mentioned station hot water system, even when the CUW circulation pump of the CUW is stopped, the above-mentioned cooling water flowing through the RCW is used to heat the above-mentioned station hot water system. It is characterized by the fact that it is designed to lead to the W4 vessel.

(作用〉 一般に、RCWを流れる冷却水の温度は約30℃前後で
ある。したがって、CUW循環ポンプの停止時にRCW
を流れる冷却水が所内温水系熱交換器へ導かれると、所
内温水系を流れる温水温度の低下が防止されて、所内温
水系の暖房用空調機のコイルの凍結を防止できる。
(Function) Generally, the temperature of the cooling water flowing through the RCW is around 30°C. Therefore, when the CUW circulation pump is stopped, the RCW
When the cooling water flowing through the station is guided to the station hot water system heat exchanger, the temperature of the hot water flowing through the station hot water system is prevented from decreasing, and the coil of the heating air conditioner of the station hot water system can be prevented from freezing.

(実庵例〉 以下、この発明に係る実備例を図面に基づいて説明する
(Practical example) Hereinafter, a practical example according to the present invention will be described based on the drawings.

第1図は、この発明に係る原子力発電プラントのRCW
設備の第1実施例を示す系統図である。
FIG. 1 shows the RCW of the nuclear power plant according to the present invention.
It is a system diagram showing a first example of equipment.

この第1実施例において前記従来例と同様な部分は同一
の符弓を付すことにより説明を省略する。
In this first embodiment, the same parts as those in the conventional example are given the same arrows and the explanation will be omitted.

RCWk:l3けるCUW非再生熱交換器7および所内
温水系熱交換器8間の管路に、温度調節弁12をバイパ
スするようにしてバイパスライン20が設諏される。こ
のバイパスライン20の配管口径は、CUW循環ボンプ
14が停止してRCWの温度調節弁12が全開となった
ときに、RCWの約30゜前後の冷却水を、暖房用空調
Il19のコイルの凍結を防止し得るに必要な流量だけ
供給できる口径に設定される。
A bypass line 20 is installed in the pipeline between the CUW non-regenerative heat exchanger 7 and the in-house hot water heat exchanger 8 in RCWk:l3 so as to bypass the temperature control valve 12. The piping diameter of this bypass line 20 is such that when the CUW circulation pump 14 is stopped and the RCW temperature control valve 12 is fully opened, the cooling water of about 30° of the RCW is frozen in the coil of the heating air conditioner Il 19. The diameter is set to be able to supply only the necessary flow rate to prevent this.

CUW*環ボンプ14が万一停止し、これに連動してR
CWの温度講節弁12が全閉しても、RCWを流れる約
30’Clyr後の冷却水がバイパスライン20を介し
て所内温水系熱交換器8へ供給される。したがって、所
内温水系の温水温度の低下を防止でき、その結果、暖房
用空調機19のコイルの凍結を防止できる。
In the unlikely event that CUW* ring bomb 14 stops, R
Even if the temperature control valve 12 of the CW is fully closed, the cooling water flowing through the RCW after about 30'Cyr is supplied to the in-house hot water system heat exchanger 8 via the bypass line 20. Therefore, it is possible to prevent the temperature of the hot water in the in-house hot water system from decreasing, and as a result, the coil of the heating air conditioner 19 can be prevented from freezing.

第4図を参照して貝体的一に述べる。第4図は、バイパ
スライン20を介して所内・温水系熱交換器8へ供給さ
れるRCWの冷却水17の流量比と、所内温水系の温水
温度との閏係を示すグラフである。このグラフにおける
横軸は、所内温水系熱交換器8へ供給されるRCWの冷
却水17の流預比を示し、流伍比1.0は所内編水系熱
交換器8の設計流量である。縦軸は、所内潟水系の温水
温度を示す。第4図の実線は所内温水系熱交換器8の出
口温度{暖房用空調機19の入口温度}を示し、破線は
同然交換器8の入口温度(暖房用空調機19の出口温度
)を示す。
This will be explained in detail with reference to FIG. FIG. 4 is a graph showing the relationship between the flow rate ratio of the RCW cooling water 17 supplied to the station hot water system heat exchanger 8 via the bypass line 20 and the hot water temperature of the station hot water system. The horizontal axis in this graph indicates the flow rate ratio of the RCW cooling water 17 supplied to the in-house hot water system heat exchanger 8, and the flow rate ratio of 1.0 is the design flow rate of the in-house hot water system heat exchanger 8. The vertical axis shows the temperature of the hot water in the lagoon water system. The solid line in FIG. 4 indicates the outlet temperature of the station hot water system heat exchanger 8 {the inlet temperature of the heating air conditioner 19}, and the broken line indicates the inlet temperature of the exchanger 8 (the outlet temperature of the heating air conditioner 19). .

所内温水系熱交換器8の入口編度(暖房用空調機19の
出口温度)は、所内温水系熱交換器8に供給する約30
℃のRCWの冷却水17の流最比を変化させると変動し
、この冷加水の流吊比が約0.5付近において0℃を下
廻り、暖房用空調機19のコイルが凍結ずる。したがっ
て、ROWの冷却水17の流履比を0.5以上に設定す
れば、暖房用空14機19のコイルの凍結を防止できる
The inlet knitting temperature of the in-house hot water system heat exchanger 8 (the outlet temperature of the heating air conditioner 19) is approximately 30 mm, which is supplied to the in-house hot water system heat exchanger 8
When the flow rate ratio of the RCW cooling water 17 of °C is changed, the flow rate ratio of the chilled water drops below 0 °C around about 0.5, and the coil of the heating air conditioner 19 freezes. Therefore, by setting the flow ratio of the cooling water 17 of the ROW to 0.5 or more, freezing of the coils of the heating air 14 machine 19 can be prevented.

なお、凍結を防止するためのRCW冷却水17の流量比
は、各発電所毎に外気温度や空調設備の構成等が相違す
るため、各R雷所毎に決定されるものである。
Note that the flow rate ratio of the RCW cooling water 17 for preventing freezing is determined for each R lightning station because the outside air temperature, the configuration of the air conditioning equipment, etc. are different for each power station.

第2図およ・び第3図は、この発明に係る原子力発電プ
ラントのRCW設備の第2J5よび第3実施例をそれぞ
れ示す系統図である。これらの第2および第3実施例に
おいて、前記第1実施例と同様な部分は同一の符号を付
すことにより説明を省略する。
FIGS. 2 and 3 are system diagrams respectively showing 2J5 and 3rd embodiments of RCW equipment for a nuclear power plant according to the present invention. In these second and third embodiments, the same parts as in the first embodiment are designated by the same reference numerals, and a description thereof will be omitted.

第2図に示す第2実施例では、RCWの管路に、温度調
節弁12およびCUW非再生熱交換器7をバイパスして
バイパスライン21が配設され、このバイパスライン2
1にバイパス弁22が設置される。このバイパス弁22
は温度調節弁12が万一全閉したときに自動的に開弁さ
れるものである。
In the second embodiment shown in FIG. 2, a bypass line 21 is provided in the RCW pipe line, bypassing the temperature control valve 12 and the CUW non-regenerative heat exchanger 7.
A bypass valve 22 is installed at 1. This bypass valve 22
is automatically opened in the event that the temperature control valve 12 is completely closed.

第3図に示す第3実施例では、第1実施例の温度:J4
節弁12の代りに閏方向ロック付温度調節弁23が設置
される。この温度調節弁23は、温度調節弁12に閉方
向ストツパを設置して弁が全閏とならないようにしたも
のである。これらの第2および第3実庫例においてもC
UW循環ボンプ14の停止時にRCWの冷が水1γを所
内温水系熱交換器8へ供給でき、暖房用空調i19のコ
イルの凍結を防止できる。
In the third embodiment shown in FIG. 3, the temperature of the first embodiment is J4.
A temperature control valve 23 with a leap direction lock is installed in place of the control valve 12. This temperature control valve 23 is constructed by installing a stopper in the closing direction on the temperature control valve 12 to prevent the valve from being fully closed. In these second and third storage examples, C
When the UW circulation pump 14 is stopped, the RCW cold water 1γ can be supplied to the in-house hot water system heat exchanger 8, and the coil of the heating air conditioner i19 can be prevented from freezing.

〔発明の効果〕 以上のように、この発明に係る原子力発電プラントのR
CW設備によれば、CUWのCLIW循環ポンプ停止時
にも、RCWを流れる冷却水を所内温水系熱交換器へ導
くことから、所内温水系を流れる温水温度の低下を防止
でき、所内温水系の暖房用空調機のコイル凍結を防止で
きる。
[Effects of the invention] As described above, the R of the nuclear power plant according to this invention is
According to the CW equipment, even when the CLIW circulation pump of the CUW is stopped, the cooling water flowing through the RCW is guided to the in-house hot water system heat exchanger, which prevents a drop in the temperature of the hot water flowing through the in-house hot water system, thereby preventing heating of the in-house hot water system. Prevents the coils of commercial air conditioners from freezing.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る原子力発電プラントのRCW設
備の第1実施例を示す系統図、第2図および第3図はこ
の発明の第2および第3実施例をそれぞれ示す系統図、
第4図は第1実施例におけるRCWの冷却水流量比と所
内温水系の温水温度との関係を示すグラフ、第5図は従
来のRCW設備を示す系統図、第6図は従来のCUWお
よび所内温水系を示す系統図である。 4・・・非常用機器、5・・・常用l!機器、7・・・
原子炉冷却材循環系(CLJW)非再生熱交換器、8・
・・所内温水系熱交換器、12・・・温度調節弁、14
・・・原子炉冷m材浄化系(CUW)循環ボンブ、17
・・・冷却水、19・・・暖房用空調機、20・・・バ
イパスライン。
FIG. 1 is a system diagram showing a first embodiment of RCW equipment for a nuclear power plant according to the present invention, and FIGS. 2 and 3 are system diagrams showing second and third embodiments of the invention, respectively.
Fig. 4 is a graph showing the relationship between the RCW cooling water flow rate ratio and the hot water temperature of the in-house hot water system in the first embodiment, Fig. 5 is a system diagram showing the conventional RCW equipment, and Fig. 6 is the conventional CUW and It is a system diagram showing an in-house hot water system. 4... Emergency equipment, 5... Regular use l! Equipment, 7...
Reactor coolant circulation system (CLJW) non-regenerative heat exchanger, 8.
... In-house hot water system heat exchanger, 12 ... Temperature control valve, 14
... Reactor cold material purification system (CUW) circulation bomb, 17
...Cooling water, 19...Heating air conditioner, 20...Bypass line.

Claims (1)

【特許請求の範囲】[Claims] 常用機器、非常用機器および原子炉冷却材浄化系非再生
熱交換器等へ冷却水を供給してこれらの機器を冷却する
とともに、上記原子炉冷却材浄化系非再生熱交換器を冷
却した冷却水を所内温水系の所内温水系熱交換器へ導い
て、上記原子炉冷却材浄化系非再生熱交換器からの廃熱
を利用し上記所内温水系の暖房用空調機を加熱する原子
力発電プラントの原子炉補機冷却系設備において、原子
炉冷却材浄化系の原子炉冷却材浄化系循環ポンプ停止時
にも、原子炉補機冷却系を流れる上記冷却水を上記所内
温水系熱交換器へ導くよう構成したことを特徴とする原
子力発電プラントの原子炉補機冷却系設備。
Cooling water is supplied to regular equipment, emergency equipment, non-regenerative heat exchangers of the reactor coolant purification system, etc. to cool these equipment, and cooling water is supplied to cool the non-regenerative heat exchangers of the reactor coolant purification system. A nuclear power generation plant in which water is guided to the station hot water system heat exchanger of the station hot water system, and the waste heat from the non-regenerative heat exchanger of the reactor coolant purification system is used to heat the heating air conditioner of the station hot water system. In the reactor auxiliary cooling system equipment, the cooling water flowing through the reactor auxiliary cooling system is guided to the station hot water system heat exchanger even when the reactor coolant purification system circulation pump of the reactor coolant purification system is stopped. A reactor auxiliary cooling system equipment for a nuclear power plant characterized by being configured as follows.
JP1149369A 1989-06-14 1989-06-14 Reactor auxiliary cooling system equipment for atomic power plant Pending JPH0315800A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149369A JPH0315800A (en) 1989-06-14 1989-06-14 Reactor auxiliary cooling system equipment for atomic power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149369A JPH0315800A (en) 1989-06-14 1989-06-14 Reactor auxiliary cooling system equipment for atomic power plant

Publications (1)

Publication Number Publication Date
JPH0315800A true JPH0315800A (en) 1991-01-24

Family

ID=15473633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149369A Pending JPH0315800A (en) 1989-06-14 1989-06-14 Reactor auxiliary cooling system equipment for atomic power plant

Country Status (1)

Country Link
JP (1) JPH0315800A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080588A (en) * 2014-10-20 2016-05-16 三菱重工業株式会社 Cooling device and nuclear power facility
CN105679388A (en) * 2014-11-20 2016-06-15 中广核工程有限公司 Multifunctional nuclear power plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080588A (en) * 2014-10-20 2016-05-16 三菱重工業株式会社 Cooling device and nuclear power facility
CN105679388A (en) * 2014-11-20 2016-06-15 中广核工程有限公司 Multifunctional nuclear power plant

Similar Documents

Publication Publication Date Title
JP2003121024A (en) Integrated heat source system
JPH0315800A (en) Reactor auxiliary cooling system equipment for atomic power plant
CN109159883B (en) Marine nuclear power platform reactor cabin refrigerating system
JPH02290455A (en) Cooling system of air conditioning device
JP3359495B2 (en) Thermal storage air conditioning system
JP2954256B2 (en) Nuclear power plant hot water system
JP3270272B2 (en) Control system for heat source system for air conditioning
JP2001188094A (en) Cooling facility for reactor and the like
JPS6086488A (en) Air-conditioning facility for nuclear facility
JPH05126990A (en) Temperature control device for cooling water
JP3878325B2 (en) Cold water equipment for ventilation and air conditioning in nuclear facilities
JPS6052796A (en) Cooling dehumidifying device for primary container of nuclear reactor
JPH06272987A (en) Chilled water system controlling method for air conditioning facility
JPH0248783Y2 (en)
JPH03236534A (en) Water-cooled cooling device of refrigerating machine
JPH03236532A (en) Water-cooled cooling device of refrigerating machine
JPS6093298A (en) Cooling equipment
JPH01163407A (en) Circulating system for cooling water for bearing oil
JPH01248099A (en) Chilled water feeder for air conditioner of nuclear power station
JPH0236198B2 (en)
SU1341468A1 (en) Method of operation of air heater unit
JPS60256736A (en) Ventilating and air-conditioning device
SU1573312A1 (en) Heat recovery system
JPS5984196A (en) Cooling facility for auxiliary machine
JPS60165597A (en) Heating system of nuclear power plant