JPH0315779A - Magnetism detector - Google Patents

Magnetism detector

Info

Publication number
JPH0315779A
JPH0315779A JP14959389A JP14959389A JPH0315779A JP H0315779 A JPH0315779 A JP H0315779A JP 14959389 A JP14959389 A JP 14959389A JP 14959389 A JP14959389 A JP 14959389A JP H0315779 A JPH0315779 A JP H0315779A
Authority
JP
Japan
Prior art keywords
magnetic flux
laser
magnetic
light
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14959389A
Other languages
Japanese (ja)
Inventor
Masaaki Matsumoto
真明 松本
Fumio Kugiya
文雄 釘屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14959389A priority Critical patent/JPH0315779A/en
Publication of JPH0315779A publication Critical patent/JPH0315779A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To detect a change in magnetic flux with a high sensitivity and high S/N by introducing the magnetic flux into the resonator of a laser and utilizing a change in the frequency of the light oscillated by a Zeeman effect. CONSTITUTION:The detector is so formed that the magnetic flux 1 of a magnetic flux density B is applied perpendicularly to the light emission axis of the laser 3 of the semiconductor laser 2. This laser 2 emits the light of the frequency corresponding to an energy level difference as the electrons in atoms transfer from the high energy level to the low energy level. The magnetic field by the magnetic flux 1 introduced into the light emitting part, i.e., the resonator of the laser 2 is cloven and changed in the energy level by the Zeeman effect. The degree of the change in the energy level corresponds to the intensity of the magnetic field. The change in the frequency of the light corresponding to the intensity of the magnetic field is, therefore, obtd. and since this change is sensitive to the magnetic field, the magnetic flux is detected with the high accuracy.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク装置,磁気テープ装置等で用いら
れる磁気検出器に関する. 〔従来の技術〕 従来の磁気検出器としては,コイルによる誘導起電力を
利用したもの,磁気抵抗効果を利用したもの,ホール効
果を利用したもの,磁気感応トランジスタによるものな
どがある.また最近では高温超電導体を利用した量子磁
束計のアイデアも提案されている.誘導形,磁気抵抗形
,ホール効果形はいずれも実績があり、地道な改良の結
果性能は着実に向上している.特開昭58 − 220
239記載の磁気感応トランジスタは,さらに高感度化
をねらったもので,実用化のための研究が行なわれてい
る. しかしたとえば磁気ディスク装置では、磁気記録膜への
磁気的情報の記録能力よりも,記録信号の読み出し能力
の方に不足があり,飛躍的な記録密度向上の可能性を秘
めなかに、十分生かしきれていない.従って検出器の感
度向上とS/Nの低減が望まれている.一方竜子磁束計
は非常に良い感度が得られるが、超電導を利用する点で
実用化までにまだかなりの改良が必要である.〔発明が
解決しようとする課題〕 本発明は,上記従来技術の共通の課題である高感度化と
実用性を兼ねそなえた磁気検出器を提供することを目的
とする. 〔課題を解決するための手段〕 上記目的を達威するために、本発明は半導体レーザ等の
レーザの共振器内に磁束を導き、ゼーマン効果により発
振光周波数が変化することを利用して磁束変化を検出す
るようにしたものである.Hθ−Neレーザ等の共振器
に磁場を印加する手法はレーザの単一縦モード化と波長
安定化のためによく使われている.その詳細は応用物理
第47巻第5号(1978)p432,r内部鏡型H 
e − N eレーザの横磁場による単一縦モード化と
波長安定化」などに記載されている.これは、磁場によ
るレーザ内の増幅媒質のゼーマン分離によって発振光周
波数が変化することを利用している.例えば通常のHe
−Neレーザの内部鏡は面内異方性を持っているため、
発振光はこの方位、またはこれに直交した方位の直線偏
光となっている.これに対し横ゼーマンレーザと呼ばれ
るH e − N aレーザでは、この異方性方位のう
ちの1つを横磁場方向に合わせてあるので、レーザ共振
器の光路には内部鏡以外に横磁場により誘起されたレー
ザ媒質の異方性が付加される.これらの異方性が複屈折
性であれば、共振器間の光路長は,水平,垂直の振動成
分に対してわずかに異なることになり、単一の縦モード
内で水平,垂直の二偏光威分がわずかの周波数差を持っ
て同時発振することになる.このような横磁場によるゼ
ーマン分離周波数Δfは、Ne原子の場合,Δf=1.
4gB  [MHzコ と表わせる.ここで,gはランデ(Lands’ )の
因子,Bは磁束密度(Gauge)である.gは1〜2
程L,(D値をとるので、Δfは一般に Δf − B     [ M H z ]である.即
ち、I Gaussの磁束密度によりI MHzのオー
ダの発振光周波数変化が得られる.これは半導体レーザ
でも同様に言える.この発振光周波数変化を,別の基準
光との干渉ビート信号として検出するなどして,磁束密
度と変化を検出することが可能となる.もともと基準光
と磁束検出光との間にωの光周波数差をもたせておけば
,磁束密度の変化による光周波数変化をΔωとすると、
ビート信号は磁場の有無でωからω+ΔωへとFM変調
された形となる.従ってこのビート信号をフォトデイテ
クタ等で検出し、F Mtxllの原理を用いれば,磁
束変化を検出することができる.〔作用〕 レーザは原子内の電子が高いエネルギ準位からより低い
エネルギ準位へ遷移することによりこのエネルギ準位差
に対応する周波数の光を発する.この発光部即ちレーザ
の共振器内に導いた磁場はゼーマン効果により上記エネ
ルギ準位を分裂し,変化させる.エネルギ準位の変化の
度合いは磁場の強さに対応している.従って磁場の強さ
に応じた光の周波数変化が得られる.この周波数変化は
磁場に対してΔf [MH z ] = B [Gau
g+1と敏感であるため,高感度の磁束検出ができる.
周波数が変化する光を,別の安定した周波数の光と干渉
させ、干渉光強度に現われるビート信号として周波数変
化を検出することにより、FM復調技術が適用でき、S
/Nよく磁束変化を検出できる.〔実施例〕 以下,本発明の実施例を説明する. 第1@は半導体レーザを用いた場合の、本発明の原理構
或を示すものである。半導体レーザ2のレーザ光3発光
軸に垂直に磁束密度Bの磁束1が加わるようになってい
る. 磁気ディスク装置などで磁気記録情報を検出する場合に
は第2図のようにリング状の磁極4を磁気記録膜5に対
向させ、リングの一部を半導体レーザに置き換えたよう
な構成とする.もちろん半導体レーザへの磁束の導き方
はこのリング状磁極に限定されるものではなく,単磁極
ヘッド等、いろいろな磁極構造を利用できる. 第3図は得られた光を、ミラー8とビームスプリンタ9
および偏光子10により参照用半導体レーザ7から発せ
られる光と干渉させ,フォトデイテクタ11により、ビ
ート信号を検出する構戒を示すものである.ここで用い
る半導体レーザは温度制御をすなるどして,単一モード
の発振がモードホッピングを行なわれないようにする方
が望ましい. この実施例によれば、半導体レーザを利用するため磁束
検出部が小型化できるという効果がある.第4図は、半
導体レーザに光学的異方性をもつハーフミラー12を外
altとし、図において水平および垂直方向の振動面を
もつ2種の光を発振させる.この半導体レーザに磁束l
を導き,周波数を遷移させる.この周波数の遷移量は2
種類の光で異なるので,この2fllil類の光の周波
数差は磁束により変化する.従ってこの2種類の光を偏
光子10で干渉させ、フォトデイテクタ11によりビー
ト信号を検出することで磁束変化を検出できる.この実
施例によれば,1つの半導体レーザによる2種の光を利
用するので、検出器の部品が単純にでき、また単一モー
ドのモードホッピングをおさえるための温度制御等を行
ないやすく,検出が安定に行なえる効果がある. 〔発明の効果〕 本発明によれば磁束の変化をレーザ光の光の周波数変化
,さらには参照光との干渉によるビート信号の周波数変
化として検出できるので、高感度高S/Nで磁束変化を
検出できる.
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic detector used in magnetic disk devices, magnetic tape devices, etc. [Conventional technology] Conventional magnetic detectors include those that utilize induced electromotive force by a coil, those that utilize magnetoresistive effect, those that utilize Hall effect, and those that utilize magnetically sensitive transistors. Recently, the idea of a quantum magnetometer using high-temperature superconductors has also been proposed. The induction type, magnetoresistive type, and Hall effect type all have a proven track record, and their performance has steadily improved as a result of steady improvements. Japanese Patent Publication No. 58-220
The magnetically sensitive transistor described in No. 239 is intended to have even higher sensitivity, and research is being conducted to put it into practical use. However, for example, in magnetic disk drives, the ability to read recorded signals is insufficient rather than the ability to record magnetic information on the magnetic recording film, and although it has the potential to dramatically increase recording density, it is not fully utilized. Not yet. Therefore, it is desired to improve the sensitivity of the detector and reduce the S/N. On the other hand, the Ryuko fluxmeter has very good sensitivity, but it still requires considerable improvement in terms of its use of superconductivity before it can be put into practical use. [Problems to be Solved by the Invention] The purpose of the present invention is to provide a magnetic detector that has both high sensitivity and practicality, which are common problems of the above-mentioned conventional technologies. [Means for Solving the Problems] In order to achieve the above object, the present invention guides magnetic flux into the resonator of a laser such as a semiconductor laser, and utilizes the change in oscillation optical frequency due to the Zeeman effect to increase the magnetic flux. It is designed to detect changes. A method of applying a magnetic field to a resonator such as an Hθ-Ne laser is often used to create a single longitudinal mode and stabilize the wavelength of the laser. For details, see Applied Physics Vol. 47, No. 5 (1978), p. 432, r Internal mirror type H
``Single longitudinal mode and wavelength stabilization of e-Ne laser using transverse magnetic field''. This utilizes the fact that the oscillation light frequency changes due to Zeeman separation of the amplification medium in the laser due to the magnetic field. For example, normal He
-The internal mirror of the Ne laser has in-plane anisotropy, so
The oscillated light is linearly polarized in this direction or in a direction perpendicular to this direction. On the other hand, in a He-Na laser called a transverse Zeeman laser, one of these anisotropic orientations is aligned with the direction of the transverse magnetic field, so the optical path of the laser resonator includes a transverse magnetic field in addition to the internal mirror. The induced anisotropy of the laser medium is added. If these anisotropies are birefringent, the optical path length between the resonators will be slightly different for the horizontal and vertical vibration components, and two horizontal and vertical polarizations will occur within a single longitudinal mode. The two components will oscillate simultaneously with a slight frequency difference. The Zeeman separation frequency Δf due to such a transverse magnetic field is Δf=1.
4gB [MHz] Here, g is Land's factor and B is the magnetic flux density (Gauge). g is 1-2
Since the value of L, (D is taken, Δf is generally Δf − B [MHz]. In other words, the oscillation optical frequency change on the order of I MHz can be obtained by the I Gaussian magnetic flux density. This also applies to semiconductor lasers. The same can be said.By detecting this oscillation light frequency change as an interference beat signal with another reference light, it is possible to detect changes in magnetic flux density.Originally, between the reference light and the magnetic flux detection light If there is an optical frequency difference of ω, and if the optical frequency change due to the change in magnetic flux density is Δω, then
The beat signal is FM modulated from ω to ω+Δω depending on the presence or absence of a magnetic field. Therefore, by detecting this beat signal with a photodetector or the like and using the principle of FMtxll, changes in magnetic flux can be detected. [Operation] A laser emits light at a frequency corresponding to this energy level difference when electrons within an atom transit from a higher energy level to a lower energy level. The magnetic field introduced into the light emitting part, that is, the laser cavity, splits and changes the above energy level due to the Zeeman effect. The degree of change in energy level corresponds to the strength of the magnetic field. Therefore, it is possible to obtain a change in the frequency of light depending on the strength of the magnetic field. This frequency change is expressed as Δf [MHz] = B [Gau
Since it is sensitive to g+1, highly sensitive magnetic flux detection is possible.
FM demodulation technology can be applied by interfering light whose frequency changes with light of another stable frequency and detecting the frequency change as a beat signal that appears in the interference light intensity.
/N Can detect magnetic flux changes well. [Examples] Examples of the present invention will be described below. The first @ shows the principle structure of the present invention when a semiconductor laser is used. A magnetic flux 1 having a magnetic flux density B is applied perpendicularly to the emission axis of the laser beam 3 of the semiconductor laser 2. When detecting magnetically recorded information in a magnetic disk device or the like, a ring-shaped magnetic pole 4 is opposed to a magnetic recording film 5, as shown in FIG. 2, and a part of the ring is replaced with a semiconductor laser. Of course, the method of guiding magnetic flux to a semiconductor laser is not limited to this ring-shaped magnetic pole, and various magnetic pole structures such as a single magnetic pole head can be used. Figure 3 shows how the obtained light is transferred to the mirror 8 and the beam splinter 9.
The polarizer 10 interferes with the light emitted from the reference semiconductor laser 7, and the photodetector 11 detects a beat signal. It is preferable to control the temperature of the semiconductor laser used here to prevent single mode oscillation from mode hopping. According to this embodiment, since a semiconductor laser is used, the magnetic flux detection unit can be miniaturized. In FIG. 4, a half mirror 12 having optical anisotropy is used as the outer alt of a semiconductor laser, and two types of light having vibration planes in the horizontal and vertical directions are oscillated. This semiconductor laser has a magnetic flux l
and transition the frequency. The amount of transition of this frequency is 2
Since it differs depending on the type of light, the frequency difference between these two types of light changes depending on the magnetic flux. Therefore, by interfering these two types of light with the polarizer 10 and detecting the beat signal with the photodetector 11, changes in magnetic flux can be detected. According to this embodiment, since two types of light from one semiconductor laser are used, the components of the detector can be simplified, and temperature control to suppress mode hopping in a single mode can be easily carried out, making detection possible. It has the effect of being stable. [Effects of the Invention] According to the present invention, changes in magnetic flux can be detected as changes in the frequency of the laser beam and also as changes in the frequency of the beat signal due to interference with the reference beam, so changes in magnetic flux can be detected with high sensitivity and high S/N. Can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の磁気検出柵の基本構或を示
す斜視図、第2図は磁気記録媒体の磁気検出ヘッドを構
威した実施例の斜視図、第3図は磁束によって周波数変
調を受けた光の周波数変化の参照光との干渉ビート信号
として検出する実施例の光学系の斜視図、第4図は、1
つの半導体レーザからの2種類の偏光血をもつ光を発振
させ,その差周波数から磁束を検出する実施例を示す光
学系の斜視図である. 1・・・磁束、2・・・半導体レーザ、3・・・レーザ
光、4・・・磁極、5・・・磁気記録膜、6・・・ベー
ス、7・・・参照用半導体レーザ,8・・・ミラー,9
・・・ビームスプリッタ.10・・・偏光子,1工・・
・フォトディテクタ、囁 図 名 2 図 ) t 3 閏 メ 4 勿
FIG. 1 is a perspective view showing the basic structure of a magnetic detection fence according to an embodiment of the present invention, FIG. 2 is a perspective view of an embodiment incorporating a magnetic detection head for a magnetic recording medium, and FIG. FIG. 4 is a perspective view of an optical system of an embodiment that detects a frequency change of frequency modulated light as an interference beat signal with a reference light.
FIG. 2 is a perspective view of an optical system showing an example of oscillating light with two types of polarized light from one semiconductor laser and detecting magnetic flux from the difference frequency. DESCRIPTION OF SYMBOLS 1... Magnetic flux, 2... Semiconductor laser, 3... Laser light, 4... Magnetic pole, 5... Magnetic recording film, 6... Base, 7... Semiconductor laser for reference, 8 ...mirror, 9
...beam splitter. 10...Polarizer, 1 piece...
・Photodetector, Whisper diagram name 2 Figure) t 3 Interceptor 4 Of course

Claims (1)

【特許請求の範囲】 1、レーザ共振器内に磁束を導き、この磁束によるゼー
マン効果によつて生ずる光の発振周波数の変化を検出す
ることによつて磁束変化を検出することを特徴とする磁
気検出器。2、レーザが半導体レーザである請求項第1
項記載の磁気検出器。 3、請求項第1項もしくは第2項記載の磁気検出器を浮
動スライダ上に搭載して磁気記録情報を検出することを
特徴とする磁気ヘッド。 4、磁束により周波数変化したレーザ光を、別の安定し
たレーザ光と干渉させ、この干渉光強度に表れるビード
周波数の変化から上記磁束を検出することを特徴とする
請求項第1項記載の磁気検出器。 5、レーザ光として、単一モード発振のレーザ光を用い
たことを特徴とする請求項第1項記載の磁気検出器。 6、磁束をレーザ共振器の発振軸に平行に作用するよう
に導くことを特徴とする請求項第1項記載の磁気検出器
。 7、磁束をレーザ共振器の発振軸に垂直に作用するよう
に導くことを特徴とする請求項第1項記載の磁気検出器
。 8、請求項第1項記載の磁束検出用レーザと、上記レー
ザとは発振周波数が別の、周波数が安定したレーザとを
有することを特徴とする磁気検出器。 9、レーザ共振器端面の内部鏡または適宜の外部鏡に光
学的異方性を持たせ、この異方性に平行または垂直な振
動面を持つ2種類の光を発振させ、この光学的異方性の
方向に平行または垂直になるように磁束を導き、上記2
種類の発振光の変化を検出することを特徴とする磁気検
出器。 10、請求項第9項記載の磁気検出器において、直交す
る2種類の光どうしを干渉させ、その干渉光強度に表れ
るビート信号の変化から磁束変化を求めることを特徴と
する磁気検出器。
[Claims] 1. A magnetism system characterized by guiding a magnetic flux into a laser resonator and detecting changes in the oscillation frequency of light caused by the Zeeman effect due to this magnetic flux. Detector. 2. Claim 1, wherein the laser is a semiconductor laser
Magnetic detector described in section. 3. A magnetic head, characterized in that the magnetic detector according to claim 1 or 2 is mounted on a floating slider to detect magnetically recorded information. 4. The magnetic flux according to claim 1, wherein the laser beam whose frequency has been changed by the magnetic flux is caused to interfere with another stable laser beam, and the magnetic flux is detected from the change in the bead frequency that appears in the intensity of the interference light. Detector. 5. The magnetic detector according to claim 1, wherein a single mode oscillation laser beam is used as the laser beam. 6. The magnetic detector according to claim 1, wherein the magnetic flux is guided so as to act parallel to the oscillation axis of the laser resonator. 7. The magnetic detector according to claim 1, wherein the magnetic flux is guided so as to act perpendicularly to the oscillation axis of the laser resonator. 8. A magnetic detector comprising the magnetic flux detection laser according to claim 1 and a stable frequency laser whose oscillation frequency is different from that of the laser. 9. Provide optical anisotropy to the internal mirror or appropriate external mirror on the end face of the laser resonator, oscillate two types of light with vibration planes parallel or perpendicular to this anisotropy, and create this optical anisotropy. Direct the magnetic flux parallel or perpendicular to the direction of the
A magnetic detector characterized by detecting changes in different types of oscillated light. 10. A magnetic detector according to claim 9, characterized in that two orthogonal types of light are caused to interfere with each other, and a change in magnetic flux is determined from a change in a beat signal that appears in the intensity of the interference light.
JP14959389A 1989-06-14 1989-06-14 Magnetism detector Pending JPH0315779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14959389A JPH0315779A (en) 1989-06-14 1989-06-14 Magnetism detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14959389A JPH0315779A (en) 1989-06-14 1989-06-14 Magnetism detector

Publications (1)

Publication Number Publication Date
JPH0315779A true JPH0315779A (en) 1991-01-24

Family

ID=15478597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14959389A Pending JPH0315779A (en) 1989-06-14 1989-06-14 Magnetism detector

Country Status (1)

Country Link
JP (1) JPH0315779A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184182A (en) * 1992-03-04 1993-02-02 Michlin Steven B Copier and printer toner hopper sealing device
EP1815588A2 (en) * 2004-11-22 2007-08-08 The Trustees Of Princeton University Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequence

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5184182A (en) * 1992-03-04 1993-02-02 Michlin Steven B Copier and printer toner hopper sealing device
EP1815588A2 (en) * 2004-11-22 2007-08-08 The Trustees Of Princeton University Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequence
JP2008522411A (en) * 2004-11-22 2008-06-26 プリンストン ユニバーシティ Method and system for operating a self-modulated laser with hyperfine vibrations of alkali metal atoms
EP1815588A4 (en) * 2004-11-22 2010-03-03 Univ Princeton Method and system for operating a laser self-modulated at alkali-metal atom hyperfine frequence

Similar Documents

Publication Publication Date Title
US4228473A (en) Pick-up device for magnetically recorded information and method and system for using same
US20080043225A1 (en) Solid-state laser gyro with a mechanically activated gain medium
US11054489B2 (en) Vector magnetometer in alignment with two differently polarised probe beams
US20080080100A1 (en) Magnetic sensor and magnetic recording/reproducing apparatus
JPH1038583A (en) Interference measurement type optical fiber gyroscope system
NL8302585A (en) MAGNETIC HEAD.
EP1461588A1 (en) Symmetrical depolarized fiber optic gyroscope
JPS58186065A (en) Optical magnetometer
CN114527414A (en) Biomagnetic measurement atomic magnetometer system and method capable of automatically compensating external interference magnetic field
US3445833A (en) Signal responsive apparatus with a polar azimuth vibrator
CN101903741B (en) Solid state multi-oscillating gyrolaser using a cut crystalline gain medium 100
JPH0315779A (en) Magnetism detector
JP5682344B2 (en) Magnetic measuring device and biological state measuring device
Kim et al. Fiber-optic gyroscopes: In harsh, confining environments this advanced gyroscope, a close cousin to the ring laser gyro, offers great advantages
JP2724178B2 (en) Nuclear magnetic logging
Srinivasan et al. Integrated high sensitivity hybrid silicon magnetometer
US4810065A (en) High-frequency light polarization modulator device
EP0802397B1 (en) Fiber optic gyroscope
Emge et al. Reduced minimum configuration fiber optic gyro for land navigation applications
US4658146A (en) Extended cavity laser readout apparatus
RU2825078C1 (en) Quantum magnetometer based on diamond laser
JP5907234B2 (en) Magnetic measuring device and biological state measuring device
Ding et al. Scalar magnetometer with large magnetic field dynamic range
JPS62177738A (en) Transfer type photomagnetic head
Dodge et al. Magneto-optic measurements with a sagnac interferometer