JPH03157681A - Transferring device for image forming device - Google Patents

Transferring device for image forming device

Info

Publication number
JPH03157681A
JPH03157681A JP29628889A JP29628889A JPH03157681A JP H03157681 A JPH03157681 A JP H03157681A JP 29628889 A JP29628889 A JP 29628889A JP 29628889 A JP29628889 A JP 29628889A JP H03157681 A JPH03157681 A JP H03157681A
Authority
JP
Japan
Prior art keywords
transfer
environment
voltage
paper
transfer means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29628889A
Other languages
Japanese (ja)
Inventor
Koichi Hiroshima
康一 廣島
Junichi Kato
淳一 加藤
Masahiro Goto
正弘 後藤
Hideyuki Yano
秀幸 矢野
Koichi Suwa
諏訪 貢一
Tatsuichi Tsukida
辰一 月田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29628889A priority Critical patent/JPH03157681A/en
Publication of JPH03157681A publication Critical patent/JPH03157681A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)

Abstract

PURPOSE:To carry out stable transferring by controlling a transfer means to be a constant current at least twice at the time when no paper is passed and controlling to the constant voltage by setting a controlled voltage of the transfer means at the time when paper is passed according to a factor decided from electrical current and a voltage value. CONSTITUTION:In a low temperature low humidity environment L/L and a high temperature high humidity environment H/H, a resistance value is greatly varied by environmental change when inverse developing is carried out by negative toner utilizing a transfer roll 2, etc., and an OPC photosensitive body. Then the fixed current value of ATVC at the time of the rotation of the roll 2 are set at I1 and I2, each generating voltage of V1 and V2 are retained, by deriving slant alpha=(V2-V1)/I2-I1, the environment is detected, and by varying the factor K which is multiplied to the generating voltage according to the change in the environment and an appropriate bias can always be impressed. With this constitution, there is no transfer failure or toner scattering in the L/L environment, deterioration of image can be prevented even in the H/H environment, and in a normal temperature normal pressure N/N environment none of above as a matter of course.

Description

【発明の詳細な説明】 (1)発明の目的 (産業上の利用分野) この発明は静電複写機、同プリンタなど、静電転写プロ
セスを利用する画像形成装置、と(にその転写装置に関
するものである。
Detailed Description of the Invention (1) Object of the Invention (Field of Industrial Application) This invention relates to an image forming apparatus that uses an electrostatic transfer process, such as an electrostatic copying machine and a printer, and to a transfer apparatus thereof. It is something.

(従来技術と解決すべき課題) 像担持体と、これに当接する転写ローラなどの接触型の
転写手段とをそな^、両者の当接部を転写部位として、
該部位に転写材を案内し、このとき迄に像担持体表面に
形成した可転写l・ナー像を転写材に転写する工程を含
む画像形成装置がすでに提案されている。
(Prior art and problems to be solved) An image bearing member and a contact type transfer means such as a transfer roller that comes into contact with the image carrier are provided, and the abutment area between the two is used as a transfer site.
An image forming apparatus has already been proposed which includes a step of guiding a transfer material to the region and transferring the transferable l/toner image formed on the surface of the image carrier up to this point to the transfer material.

このような装置においては、転写のさいに転写手段に印
加するバイアスを、定電圧制御または定電流制御し5で
いるが、転写ローラなどの転写手段は、opc43光体
を使用し、ネガトナーを用いて反転現像を行なう装置の
場合、抵抗が通常半導電性領域たる108〜1010Ω
程度のものを使用するので抵抗値の調整が容易でなく、
また調整できたとしても、その抵抗値が環境変動によっ
て太き(変化し、低温低湿環境(15℃、lO%RH1
L / i−という)と高温高湿環境(32℃、85%
RH1+(/ Hという)では抵抗値が1桁以上変化す
ることがあって、単一の電流ないしは電圧ですべての状
況に対応することは事実上不可能であった。
In such a device, the bias applied to the transfer means during transfer is controlled by constant voltage or constant current (5), but the transfer means such as the transfer roller uses an OPC43 optical body and uses negative toner. In the case of a device that performs reversal development, the resistance is usually in the semiconductive range of 108 to 1010 Ω.
It is not easy to adjust the resistance value because it uses a
Furthermore, even if it can be adjusted, the resistance value will increase (change) due to environmental changes, and in a low temperature and low humidity environment (15℃, 1O%RH1
(referred to as L/i-) and a high temperature and high humidity environment (32℃, 85%
At RH1+ (referred to as /H), the resistance value may vary by more than one order of magnitude, making it virtually impossible to deal with all situations with a single current or voltage.

このような事態に対処すべく、本出願人は、すでに、環
境変動による転写手段、転写材の抵抗変化、転写材サイ
ズの差異に対応すべく、前記のJ:うに、OPC感光体
を用い、ネガトナーを使用して反転現像を行なう装置に
おいて、転写手段として転写ローラを使用する場合、転
写ローラが感光体に接触回転している状態において、感
光体の一次帯電された部分で、転写ローラを定電流制御
して、そのときの発生電圧をホールドし、転写材が転写
部位に到来したときにその電圧で定電圧制御して転写を
行なうような制御手段(ATVCという)を提案し、環
境変動などに対応して一定の効果を奏することを可能な
らしめた。
In order to cope with such a situation, the present applicant has already used the above-mentioned J: Uni OPC photoreceptor in order to cope with changes in the resistance of the transfer means and transfer material due to environmental changes, and differences in the size of the transfer material. When using a transfer roller as a transfer means in an apparatus that performs reversal development using negative toner, when the transfer roller is rotating in contact with the photoreceptor, the primary charged portion of the photoreceptor is used to stabilize the transfer roller. We proposed a control means (called ATVC) that controls the current, holds the voltage generated at that time, and when the transfer material arrives at the transfer site, performs transfer by controlling the voltage at a constant voltage. It has been made possible to achieve a certain effect in response to the

しかしながら、上記ATVCは、非通紙時に定電流制御
を行なう際に感光体にプラスメモリーを発生し、これが
発生すると以後の画像にカブリとして表われるいう問題
がある。
However, the above-mentioned ATVC has a problem in that positive memory is generated in the photoreceptor when performing constant current control when paper is not passing, and when this occurs, it appears as fog in subsequent images.

これを回避するには、ATVCの定電流値を小さくすれ
ばよいが、これでは発生電圧が低下して転写不良を招来
する。
In order to avoid this, the constant current value of ATVC may be reduced, but this will lower the generated voltage and cause transfer defects.

そこで、ATVCの定電流値を可及的に小さくしてメモ
リーの発生を回避するとともに、発生する電圧に適宜の
係数を乗じて転写バイアスを設定することによって、と
くに低温低湿環境下における転写不良の発生を阻止する
ことを可能ならしめた。
Therefore, by reducing the constant current value of ATVC as much as possible to avoid the occurrence of memory, and by setting the transfer bias by multiplying the generated voltage by an appropriate coefficient, it is possible to prevent transfer defects, especially in low temperature and low humidity environments. This made it possible to prevent the outbreak.

しかし、このような仕方では、低電圧で所望の転写性が
得られる高温高温環境下では、電荷が過剰となって転写
材を突き抜けて転写不良や、リークによる転写抜けなど
を生ずることがある。
However, in such a method, in a high-temperature environment where the desired transferability can be obtained with a low voltage, the charge may become excessive and penetrate the transfer material, resulting in transfer defects or transfer omissions due to leakage.

本発明はこのような現状に対処すべくなされたものであ
って、前述のATVCによる定電流制御または定電圧制
御を少なくとも2つ以上の定電流値または定電圧値で行
ない、発生する2つ以上の電圧値または電流値を比較し
て環境を検知して、発生する電圧に乗する係数を可変と
して、最適転写バイアスを得られるようにし、換言する
と、L/L環境では高く、H/H環境では低いバイアス
値が得られるようにして、環境にかかわらず常時安定し
て良好な転写が行なわれるような転写装置を提供するこ
とを目的とするものである。
The present invention has been made in order to cope with such a current situation, and the above-described constant current control or constant voltage control by ATVC is performed with at least two or more constant current values or constant voltage values, and two or more generated constant current values or constant voltage values are The environment is detected by comparing the voltage or current value of The object of the present invention is to provide a transfer device that can obtain a low bias value and perform stable and good transfer at all times regardless of the environment.

(2)発明の構成 (課題を解決する技術手段、その作用)上記の目的を達
成するため、本発明は1画像形成装置の転写装置であっ
て、像担持体と、これに圧接する接触型の転写手段とを
そなえ、両者の圧接部たる転写部位に転写材を挿通する
ようにした画像形成装置において、非通紙時に前記転写
手段を少なくとも2回定電流制御し、それぞれの電流値
と、各場合に発生する電圧値から決定される係数によっ
て、通紙時に転写手段の制御電圧を設定して定電圧制御
を行なうことを特徴とするものである。
(2) Structure of the invention (technical means for solving the problem and its operation) In order to achieve the above object, the present invention provides a transfer device for an image forming apparatus, which includes an image carrier and a contact type transfer device that is in pressure contact with the image carrier. In an image forming apparatus, the transfer means is provided with a transfer means, and a transfer material is inserted through a transfer site that is a pressure contact portion between the two, and the transfer means is controlled with a constant current at least twice when paper is not passing, and each current value and The present invention is characterized in that the control voltage of the transfer means is set at the time of sheet passing using a coefficient determined from the voltage value generated in each case, thereby performing constant voltage control.

このように構成することによって、環境の如何にかかわ
らず常時安定した転写性を得ることができる。
With this configuration, stable transferability can be obtained at all times regardless of the environment.

(実施例の説明) 第1図は本発明の実施例を示す画像形成装置の概略側面
図であって、紙面に垂直方向に軸線を有し、図示矢印方
向に回転する円筒状の感光体1の表面のOPC感光層が
、電源4aに接続されている帯電ローラ3によって一様
に負帯電され、該帯電面に画像変調されたレーザビーム
5が照射されると、当該部分の電位が減衰して静電潜像
が形成される。
(Description of Embodiments) FIG. 1 is a schematic side view of an image forming apparatus showing an embodiment of the present invention, in which a cylindrical photoreceptor 1 having an axis perpendicular to the plane of the paper and rotating in the direction of the arrow shown in the figure. The OPC photosensitive layer on the surface of is uniformly negatively charged by a charging roller 3 connected to a power source 4a, and when the charged surface is irradiated with an image-modulated laser beam 5, the potential of that portion is attenuated. An electrostatic latent image is formed.

感光体lと現像器6が対向する現像部位に、前記潜像が
到来すると、現像器から負帯電トナーが前記潜像に供給
され、反転現像によってトナー像が形成される。
When the latent image arrives at a development site where the photoreceptor 1 and the developing device 6 face each other, negatively charged toner is supplied from the developing device to the latent image, and a toner image is formed by reversal development.

感光体1の走行方向にみて現像部位の下流側には、感光
体lとこれに圧接する転写ローラ2の圧接ニップ部とし
て形成される転写部位があり、前記トナー像が転写部位
に到達すると、これにタイミンクを合わせて、搬送路7
から転写材Pが転写部位に供給され、これとともに、転
写ローラ2に、ADコンバータ10a%DAコンバータ
lOb、CPU9を介して制御される高圧電源4bによ
って転写ローラ2に転写バイアスが印加され、感光体側
のトナー像は転写材に転移する。
On the downstream side of the development area when viewed in the traveling direction of the photoreceptor 1, there is a transfer area formed as a pressure nip between the photoreceptor 1 and the transfer roller 2 that is in pressure contact with the photoreceptor 1, and when the toner image reaches the transfer area, At the same time, transport path 7
The transfer material P is supplied to the transfer site, and at the same time, a transfer bias is applied to the transfer roller 2 by the high voltage power supply 4b controlled via the AD converter 10a%DA converter lOb and the CPU 9. The toner image is transferred to the transfer material.

その後、トナー像を担持する転写材は感光体から分離さ
れて不図示の定着部位に搬送され、感光体に残った一部
のトナーは、クリーナ8によって除去されて、次の画像
形成工程に入ることになる。
Thereafter, the transfer material carrying the toner image is separated from the photoconductor and conveyed to a fixing site (not shown), and some of the toner remaining on the photoconductor is removed by a cleaner 8, and the next image forming process begins. It turns out.

実験に用いた装置についてさらに具体的に説明する。The apparatus used in the experiment will be explained in more detail.

感光体の直径を30ψ、プロセススピード30ffiI
II/sec、最大通紙中2161とし、転写ローラの
直径を18φとした。
The diameter of the photoreceptor is 30ψ, and the process speed is 30ffiI.
II/sec, the maximum paper passing speed was 2161, and the diameter of the transfer roller was 18φ.

転写ローラは、直径6φの芯金に、発泡EPDMにZn
O、SnOxのようなフィラーを分散させて抵抗を10
s〜1010Ω程度に調整したものを用い、硬度は、ア
スカ−C硬度で20〜40度の範囲に収めた。
The transfer roller has a core metal with a diameter of 6φ and is made of foamed EPDM and Zn.
By dispersing fillers such as O, SnOx, the resistance can be increased to 10
The hardness was adjusted to about s to 1010 Ω, and the hardness was in the range of 20 to 40 degrees in terms of Asker-C hardness.

抵抗値は、該ローラと導電性板とを、荷重500grで
4mraのニップが形成されるように圧接し、IKV印
加の時の抵抗値をとった。
The resistance value was determined by pressing the roller and the conductive plate together so that a nip of 4 mra was formed under a load of 500 gr, and taking the resistance value when IKV was applied.

上記のローラを用い、感光体表面が一600Vに帯電し
ている状態で、ATVCによる定電流値と対応する発生
電圧特性(I−V特性)を、L/L、N/N (23℃
、60%RH1常温常圧)。
Using the above roller, with the surface of the photoreceptor charged at 1600V, the generated voltage characteristics (IV characteristics) corresponding to the constant current value by ATVC are determined by L/L, N/N (23℃
, 60%RH1 normal temperature and normal pressure).

H/Hの各環境で測定した結果を第2図に示す。Figure 2 shows the results measured in each H/H environment.

N/NにおけるI−V特性についてさらに説明する。The IV characteristic at N/N will be further explained.

前回転時のATVCの定電流値を■1μAおよびI2μ
Aに設定して感光体に流し、夫々の発生電圧をV 1.
 V *としてホールドする。
The constant current value of ATVC during pre-rotation is 1μA and I2μ.
A, the voltage is applied to the photoreceptor, and each generated voltage is set to V1.
Hold as V*.

前記定電流値I+、I=の差が小さければ、その近傍に
おけるニー■特性曲線はほぼ直線状とみて差し支えない
から、この部分のI −V特性曲線の傾きaは、近似的
に、 a= (Vi  Vl)/ (I−−I、)で表せる。
If the difference between the constant current values I+ and I= is small, the knee characteristic curve in the vicinity can be considered to be almost linear, so the slope a of the I-V characteristic curve in this part is approximately as follows: a= It can be expressed as (Vi Vl)/(I--I,).

傾きaは環境によって異なる値を示し、前述の測定方法
によって測定した抵抗値が1.5X 10’Ωの転写ロ
ーラを用いた場合、傾きaの、N/N環境での値axは
、aH= (v* −v+l/ (I。
The inclination a shows different values depending on the environment. When using a transfer roller with a resistance value of 1.5×10'Ω measured by the measurement method described above, the value ax of the inclination a in an N/N environment is aH= (v* −v+l/ (I.

−L)= (1470−920)/ (2−1)Xl 
0−’ =5.5x 10’ トtt6゜同様に、H/
Hでの傾きaH=4.3 x l O’またL/Lでの
傾きaL=8.0×lol′となる。
-L)=(1470-920)/(2-1)Xl
0-' = 5.5x 10' tt6°Similarly, H/
The slope at H is aH = 4.3 x l O', and the slope at L/L is aL = 8.0 x lol'.

実験によると、転写ローラの抵抗値が10”〜10I0
Ωの範囲で変化した場合、 L / L EM環境下は、at、≧7X10”N /
 N 環境下では、5X 10” <aN<7X10’ H/ Htii境下では、as≦5X10’いう値が得
られた。
According to experiments, the resistance value of the transfer roller is 10"~10I0
When changing within the range of Ω, L/L under EM environment, at, ≧7X10”N/
Under the N environment, the following values were obtained: 5X 10''<aN<7X10' H/ Under the Htii environment, the values as≦5X10' were obtained.

即ち、ATVCを2つの電流値で行ない、これらから傾
きaを求めることによって環境を検知でき、これによっ
てbi境の変化に応じて係数を変化させて、常時最適な
バイアスを印加することが可能となる。
In other words, the environment can be detected by performing ATVC with two current values and finding the slope a from these, and by changing the coefficient according to changes in the bi boundary, it is possible to always apply the optimum bias. Become.

下記の表は、前述の転写ローラを用いて、係数設定のた
めの実験結果を示すものである。
The table below shows the experimental results for setting the coefficients using the transfer roller described above.

(以下余白) L以上の実験結果から、係数を、L/Lにおいては1.
2〜1,4、N/Nにおいては1.0〜】、2.11/
Hにおいては0.8〜1.0の範囲に設定する事によっ
て良好な結果が得られることが判る。
(Left below) From the experimental results for L and above, the coefficient is set to 1 for L/L.
2~1,4, 1.0~ in N/N], 2.11/
It can be seen that good results can be obtained by setting H in the range of 0.8 to 1.0.

第3図は以上の過程を示すアルゴリズムである。FIG. 3 is an algorithm showing the above process.

前記第1図の装置に以上の結果を適用して通紙天験を行
なったところ、N/Nff1墳下では勿論、L / L
 Eス境下で、放置乾燥した転写紙、OHP用紙のよう
な高抵抗の転写材でも、転写不良、トナーの飛び敗りな
どのない、良好な転写性が得られ、H/ H環境下にお
いても、過剰電荷による転写材の突き抜けやリークの発
生による画質の劣化を阻止することが可能であることを
確認した。
When we applied the above results to the apparatus shown in Fig. 1 and conducted a paper passing test, we found that not only L/L in the N/Nff1 mound.
Even in high-resistance transfer materials such as transfer paper and OHP paper that have been left to dry under the E environment, good transfer performance is obtained without transfer defects or toner scattering, and even in the H/H environment. It was also confirmed that it is possible to prevent deterioration of image quality due to penetration or leakage of the transfer material due to excessive charge.

次に、前回転時など非通紙時に、転写手段を2回定電圧
制御して環境を検知し、これによって転写バイアスを設
定する実施態様について説明する。
Next, an embodiment will be described in which the transfer means is controlled with a constant voltage twice to detect the environment when paper is not passing, such as during pre-rotation, and the transfer bias is set based on this.

画像形成装置自体は第1図々示のものを利用するものと
し、プロセススピード60 mm/ sec 、ネガト
ナーを使用して反転現像するもので、転写ローラとして
は、抵抗値を5X I O’ 〜10XIO’Ωに調整
した発泡EPDM製のものを使用した。
The image forming apparatus itself is the one shown in Figure 1, and the process speed is 60 mm/sec, and negative toner is used for reversal development.The transfer roller has a resistance value of 5XIO' to 10XIO. A material made of foamed EPDM adjusted to 'Ω was used.

第4図に5X10’Ω(IKV時)の転写ローラを用い
、N/N環境において感光体が一600■に帯電された
状態で、転写ローラを定電圧制御し、感光体に流入する
電流値を転写ローラー周分に渡って測定して平均化した
ときのV−I特性を示しである。
Figure 4 shows a transfer roller of 5 x 10'Ω (at IKV), a photoreceptor charged to 1600 Ω in an N/N environment, a constant voltage control of the transfer roller, and a current value flowing into the photoreceptor. This figure shows the VI characteristics when measured over the circumference of the transfer roller and averaged.

このように平均値をとることによって、転写ローラの周
方向の抵抗値にムラがあっても、発生電流が大きく振れ
ることはない。
By taking the average value in this way, even if there is unevenness in the resistance value in the circumferential direction of the transfer roller, the generated current will not fluctuate greatly.

定電圧V、 %V、を夫々o、5KV、1.0に■に設
定し、発生電流な1..11を保持する。
The constant voltage V and %V were set to o, 5KV, and 1.0, respectively, and the generated current was 1. .. Hold 11.

V、 、V、の間隔が小さければ、両者間の特性は直線
状に変化するものと見做せるから、曲線の傾きaは、a
= (It −I+ )/ (Va −Vl)で近似的
に表わせる。
If the distance between V, , and V is small, the characteristics between them can be considered to change linearly, so the slope a of the curve is a
It can be approximately expressed as = (It - I+) / (Va - Vl).

傾きaは各環境によって異なるから、前述の場合と同様
にこれらの値を求めると、 N/N環境での傾きaNは、 a−= (I −I + ) / (Va −■+ )
= (2,2−0,9)xlO−’/ (1−0,5)
XIO−” =2.6X10−’、同様にして、aH=
4.2X10−9、aL= 1.4x t O−”を得
る。
Since the slope a differs depending on each environment, if these values are found in the same way as in the previous case, the slope aN in an N/N environment is a-= (I - I + ) / (Va - ■ + )
= (2,2-0,9)xlO-'/ (1-0,5)
XIO-" = 2.6X10-', similarly, aH=
4.2X10-9, aL=1.4xtO-'' is obtained.

実験によると、転写ローラの抵抗値が5X、10’〜5
X10’Ωの範囲で振れる場合、 L/Lでは、aL≦2、OX I O−’N/Nでは、
2 、 OX I O−9< a N<3.5X10−
9 H/Hでは、aH≧3.5X10−” という値が得られた。
According to experiments, the resistance value of the transfer roller is 5X, 10'~5
If it swings within the range of X10'Ω, for L/L, aL≦2, for OX I O-'N/N,
2, OXIO-9<aN<3.5X10-
At 9 H/H, a value of aH≧3.5×10−” was obtained.

したがって、この場合にも、非通紙時に任意の2つの電
圧で定電圧制御を行ない、これらに対応する発生電流を
測定して傾きaを求めて環境を検知できる。
Therefore, in this case as well, the environment can be detected by performing constant voltage control using two arbitrary voltages when paper is not passing, measuring the generated currents corresponding to these voltages, and determining the slope a.

そこで環境を検知した後に、ATVCを行ない、発生電
圧に乗する係数を環境ごとに設定することができる。こ
の場合非道紙時に5μAの定電流制御を行ない、発生電
圧を各環境での最適転写バイアスとするための係数を求
めたところ、前述の実施態様の場合とほぼ同様の値にな
り、L/Lでは1.2〜1.4、N/Nでは1.0〜1
.2、H/Hでは0.8〜1.0であった。
After detecting the environment, ATVC is performed, and a coefficient by which the generated voltage is multiplied can be set for each environment. In this case, a constant current control of 5 μA was performed when using non-standard paper, and when the coefficient for making the generated voltage the optimum transfer bias in each environment was determined, the value was almost the same as that in the above embodiment, and L/L 1.2-1.4 for N/N, 1.0-1 for N/N
.. 2, H/H was 0.8 to 1.0.

以上のような実施態様のものを第1図々示の装置に適用
して通紙したところ、各環境において、転写不良のない
良質の画像を得ることが出来た。
When the above-described embodiment was applied to the apparatus shown in Figure 1 and paper was fed, high-quality images without transfer defects could be obtained in each environment.

なお、前述の実施態様の場合も同様であるが、上記の方
式をプロセススピードを異にする装置に適用した場合に
は、転写ローラ等接触転写手段のV−I特性を測定して
、新たに係数を設定することによって以上の場合と同様
の作用効果を奏し得ることは勿論である。
Note that, although the same applies to the above-mentioned embodiment, when the above method is applied to a device with different process speeds, the V-I characteristics of the contact transfer means such as the transfer roller are measured and newly calculated. Of course, by setting the coefficients, the same effects as in the above case can be achieved.

第5図は上記の実施態様のアルゴリズムを示すものであ
る。
FIG. 5 shows the algorithm of the above embodiment.

次に、これまで述べた転写バイアスを設定する係数を連
続的に変化させる手段について説明する。
Next, a description will be given of means for continuously changing the coefficients for setting the transfer bias described above.

装置としては前記第1図に示したと同様のものを用い、
プロセススピード30 mm/ secで、ネガトナー
を使用し、反転現像を行なう場合について述べる。
The same device as shown in FIG. 1 was used,
A case will be described in which reversal development is performed using negative toner at a process speed of 30 mm/sec.

転写手段としては、1.5X10”Ωの抵抗値を有する
転写ローラを使用した。
As the transfer means, a transfer roller having a resistance value of 1.5×10”Ω was used.

第6図はL/L、H/Hi境でI−■特性を測定したと
きの上限、下限を示し、したがって、斜線部分は環境変
動による特性曲線の変動範囲を示すことになる。
FIG. 6 shows the upper and lower limits when measuring the I-■ characteristic at the L/L and H/Hi boundaries, and therefore the shaded area shows the variation range of the characteristic curve due to environmental changes.

特性曲線がこのように連続的に変化するから、したがっ
て、傾きaも連続的に変化することになり、その範囲は
、第6図から、 (Vi□−V−J / (I z −I r )≦a≦
(V、L−V、L) / (L −I 、 )となる。
Since the characteristic curve changes continuously in this way, the slope a also changes continuously, and its range is defined as (Vi□-V-J / (I z -I r )≦a≦
(V, LV, L) / (L - I, ).

この傾きaの変化の一次関数として発生電圧に乗する係
数Kを連続的に変化させるべく、前述の第1の実施態様
の場合に得られた数値をもとにして作成した、傾きaと
係数にの関係を第7図に示した。
In order to continuously change the coefficient K that multiplies the generated voltage as a linear function of change in the slope a, the slope a and the coefficient are created based on the values obtained in the first embodiment described above. The relationship between is shown in Figure 7.

これによれば、a≦5X10’のとき、K=1.4、 
5X10” <a<7X10’のとき、K=  3x1
0−”a+2.9、 a≧7X10”のとき、K=0.
8としている。
According to this, when a≦5X10', K=1.4,
5X10''< a <7X10', K= 3x1
0-"a+2.9, when a≧7X10", K=0.
It is set at 8.

前記抵抗値の転写ローラを用い、このように係数Kを環
境に応じて設定して通紙実験を行ない、環境変動にかか
わらず良質の画像が得られることを確認した。第8図は
上記の場合のアルゴリズムを略示するものである。
Using a transfer roller having the above-mentioned resistance value, a paper passing experiment was conducted with the coefficient K set according to the environment as described above, and it was confirmed that high quality images could be obtained regardless of environmental changes. FIG. 8 schematically shows the algorithm for the above case.

転写ローラの抵抗値が異なる場合には、それによって1
−V曲線を求めて、係数を設定する事によって同様の効
果か得られることは云う迄もない。
If the resistance values of the transfer rollers are different, 1
It goes without saying that the same effect can be obtained by finding the -V curve and setting the coefficients.

(3)′R明の効果 以1、説明したように、感光体に接触する転写手段をそ
なえた画像形成装置において、前回転などのノ[通紙時
に、該転写手段によって2つ以上の電流または電圧値を
印加することによって発生する電圧まt:は電流を検知
し、これによって、環境に応じてATVCによる発生電
圧に乗する係数を変化させたので、環境に適合した最適
の転写バイアスを印加することが可能となり、低温低湿
環境におけるトヅーの飛び敗り等の転写不良、高温高ン
早環境における過剰電荷による転写材の突き抜&J、ノ
ーク等による画質の劣化をいずれも排除し、環境にかか
わらず、常時安定した転写性が得られるので良質の画像
を得るのに顕著な効果がある。
(3) Effects of R Bright As explained in 1., in an image forming apparatus equipped with a transfer means that contacts a photoreceptor, two or more currents are generated by the transfer means during paper feeding such as pre-rotation. Alternatively, the voltage or current generated by applying a voltage value is detected, and the coefficient by which the voltage generated by ATVC is multiplied is changed depending on the environment, so the optimum transfer bias suitable for the environment can be determined. This eliminates transfer failures such as skipping of tozu in low-temperature, low-humidity environments, and deterioration of image quality due to excessive charge in high-temperature, high-speed environments such as punch-through & J, nok, etc. Regardless of the conditions, stable transfer performance can be obtained at all times, and this has a remarkable effect on obtaining high-quality images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す画像形成装置の要部の概
略側面図、 第2図は同上転写ローラのI −V特性を示すグラフ、 第3図は同上のアルゴリズム、 第4図は本発明の他の実施態様を示ず転写ローラのI−
V特性を示すグラフ、 第5図は同上のアルゴリズム、 第6図は本発明の他の実施態様を示す転写ローラのI 
−v特性を示すグラフ。 第7図は同上の傾きaと係数にとの関係を示すグラフ。 第8図は同上のアルゴリズムを示す図である。 1・・・感光体、2・・・転写ローラ、3・・・帯電ロ
ーラ、4・・・電源、5・・・画像信号、(3・・・現
像器、8・・・クリーナ、9・・・CI:) IJ、1
0・・・コンバータ。 第 2 図 ATVC足電淀値 1 (uA) 第 図 転写ロー−7印g3電圧 ■□、(kv) 第 図 第 図 第 6 図 種さ 91 第 図
FIG. 1 is a schematic side view of the main parts of an image forming apparatus showing an embodiment of the present invention, FIG. 2 is a graph showing the I-V characteristics of the above transfer roller, FIG. 3 is the same algorithm as above, and FIG. 4 is Transfer roller I-
FIG. 5 is a graph showing the V characteristic; FIG. 5 is a graph showing the same algorithm as above; FIG.
-Graph showing v characteristics. FIG. 7 is a graph showing the relationship between the slope a and the coefficient. FIG. 8 is a diagram showing the same algorithm as above. DESCRIPTION OF SYMBOLS 1...Photoreceptor, 2...Transfer roller, 3...Charging roller, 4...Power source, 5...Image signal, (3...Developer, 8...Cleaner, 9...・・CI:) IJ, 1
0...Converter. Fig. 2 ATVC foot voltage stagnation value 1 (uA) Fig. Transfer low-7 mark g3 voltage □, (kv) Fig. Fig. 6 Fig. Type 91 Fig.

Claims (3)

【特許請求の範囲】[Claims] (1)像担持体と、これに圧接する接触型の転写手段と
をそなえ、両者の圧接部たる転写部位に転写材を挿通す
るようにした画像形成装置において、 非通紙時に前記転写手段を少なくとも2回定電流制御し
、それぞれの電流値と、各場合に発生する電圧値から決
定される係数によって、通紙時に転写手段の制御電圧を
設定して定電圧制御を行なうことを特徴とする転写装置
(1) In an image forming apparatus comprising an image bearing member and a contact type transfer means that is in pressure contact with the image carrier, and in which a transfer material is inserted through a transfer portion that is a pressure contact portion between the two, the transfer means is inserted when the paper is not passing. The present invention is characterized in that constant current control is performed at least twice, and the control voltage of the transfer means is set at the time of sheet feeding by a coefficient determined from each current value and the voltage value generated in each case, thereby performing constant voltage control. Transfer device.
(2)像担持体と、これに圧接する接触型の転写手段と
をそなえ、両者の圧接部たる転写部位に転写材を挿通す
るようにした画像形成装置において、 非通紙時に転写手段を少なくとも2回定電圧制御し、そ
れぞれの電圧値と、各場合に発生する電流値から決定さ
れる係数によって、通紙時に転写手段の制御電圧を設定
して定電圧制御を行なう転写装置。
(2) In an image forming apparatus that includes an image carrier and a contact type transfer means that is in pressure contact with the image carrier, and in which a transfer material is inserted through the transfer portion that is the pressure contact portion between the two, at least the transfer means is moved when paper is not passing. A transfer device that performs constant voltage control twice and sets the control voltage of the transfer means when paper is passed using a coefficient determined from each voltage value and the current value generated in each case.
(3)非通紙時に制御される電流、電圧値から決定され
る係数が環境によって連続的に変化する特許請求の範囲
第1項、第2項のいずれか記載の転写装置。
(3) The transfer device according to any one of claims 1 and 2, wherein the coefficient determined from the current and voltage values controlled when paper is not passing continuously changes depending on the environment.
JP29628889A 1989-11-16 1989-11-16 Transferring device for image forming device Pending JPH03157681A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29628889A JPH03157681A (en) 1989-11-16 1989-11-16 Transferring device for image forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29628889A JPH03157681A (en) 1989-11-16 1989-11-16 Transferring device for image forming device

Publications (1)

Publication Number Publication Date
JPH03157681A true JPH03157681A (en) 1991-07-05

Family

ID=17831620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29628889A Pending JPH03157681A (en) 1989-11-16 1989-11-16 Transferring device for image forming device

Country Status (1)

Country Link
JP (1) JPH03157681A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646717A (en) * 1991-06-28 1997-07-08 Canon Kabushiki Kaisha Image forming apparatus having charging member
US6035151A (en) * 1997-12-19 2000-03-07 Fuji Xerox Co., Ltd. Image forming system and control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646717A (en) * 1991-06-28 1997-07-08 Canon Kabushiki Kaisha Image forming apparatus having charging member
US6035151A (en) * 1997-12-19 2000-03-07 Fuji Xerox Co., Ltd. Image forming system and control method thereof

Similar Documents

Publication Publication Date Title
JPH02300774A (en) Image forming device
JP2004280069A (en) Image forming apparatus
JP3196329B2 (en) Image forming device
JP2614309B2 (en) Image forming device
JP2717574B2 (en) Image forming device
JP3140186B2 (en) Image recording device
JP3895784B2 (en) Image forming apparatus
JPH03157681A (en) Transferring device for image forming device
JP2770186B2 (en) Image forming device
JP7350536B2 (en) Image forming device
JPH04251276A (en) Transfer device for image forming device
JPH03264975A (en) Transfer device for image forming device
JPH0425885A (en) Transfer device
JP2004163475A (en) Image forming apparatus
JP2780043B2 (en) Image forming device
JP2704296B2 (en) Image forming device
JPH0540418A (en) Image forming device
JP4667099B2 (en) Image forming apparatus
JPH04168465A (en) Image forming device
JPH04275583A (en) Transfer device
JP2005173002A (en) Image forming apparatus
JP3310054B2 (en) Transfer belt device
JP2002162844A (en) Image forming device and transfer bias control method
JPS6019177A (en) Adjusting device of image density
JPH05289552A (en) Contact transfer device