JPH03157622A - Liquid crystal device and its manufacture - Google Patents

Liquid crystal device and its manufacture

Info

Publication number
JPH03157622A
JPH03157622A JP2295138A JP29513890A JPH03157622A JP H03157622 A JPH03157622 A JP H03157622A JP 2295138 A JP2295138 A JP 2295138A JP 29513890 A JP29513890 A JP 29513890A JP H03157622 A JPH03157622 A JP H03157622A
Authority
JP
Japan
Prior art keywords
liquid crystal
substrate
polyimide
crystal material
glow discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2295138A
Other languages
Japanese (ja)
Inventor
Grzegorz Kaganowicz
グルゼゴルツ カガノビツチ
John Walter Robinson
ジヨン ウオルター ロビンソン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JPH03157622A publication Critical patent/JPH03157622A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

PURPOSE: To obtain a liquid crystal device improved in time constant by arranging transparent conductors on the surfaces of substrates, coating these conductors and substrate surfaces with polyimide alignment layers and further, exposing these alignment layers to a glow discharge of an inert gas. CONSTITUTION: This liquid crystal device 10 is constituted by arranging a liquid crystal material 11 between two sheets of transparent insulating substrates 12 and 13. The transparent electrode 14 is arranged on the surface on the liquid crystal material 11 side of the substrate 13 and the surface on the liquid crystal material side of the substrate 12 is provided with the transparent electrodes 15. The surface of the transparent electrode 14 is provided with the polyimide alignment layer 16 which apply a required molecular arrangement and good inclination angle. Similarly, the polyimide alignment layer 17 is formed to cover the transparent electrode 15. When the surfaces 18, 19 of the alignment layers 16, 17 are exposed to the glow discharge of the inert gas such as Ar or N2 , etc., by a glow discharge method prior to assembling the device 10, the value of the RC time constant of the device increases drastically and the stability of the resistance and the stability of the resistance to the time when the device is exposed to a high temp. are improved. The substrates are rubbed after the polyimide is subjected to the glow discharge, by which the molecules of the liquid crystal material are aligned to the treated polyimide layers.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、液晶装置(液晶セルを含む)に、特に、時
定数が改善された液晶装置とその製造方法とに関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to liquid crystal devices (including liquid crystal cells), and particularly to a liquid crystal device with an improved time constant and a manufacturing method thereof.

〔発明の背景〕[Background of the invention]

ツイストネマチック形液晶を用いた表示装置は、少なく
とも一方が透明な2枚の絶縁性基板の間に配置された液
晶材料を含んでいる。この液晶材料に面する基板の表面
には、電気的制御電極が配置されている。あるタイプの
液晶装置においては、2枚の基板もそれに付随する電極
も透明とされ、液晶材料の細長い分子が1つの配向(オ
リエンテーション)をとった時に光が全構造体を通過で
き、液晶分子が別の配向の時には光を透過させないよう
になっている。別のタイプの液晶装置では、一方の基板
とそれに付属する電極のみが透明とされる。この装置に
おいては、液晶材料が1つの状態の時、光が基板を通過
して液晶材料によって反射され、液晶材料が別の状態の
時は、光は液晶材料を通過し、他方の基板によって反射
される。上述した2つのタイプの装置の双方において、
選択された装置の制御電極に電圧バイアスを与えて、付
勢された装置の光透過能を変えることによって像が形成
される。
A display device using twisted nematic liquid crystal includes a liquid crystal material disposed between two insulating substrates, at least one of which is transparent. Electrical control electrodes are arranged on the surface of the substrate facing the liquid crystal material. In one type of liquid crystal device, both the substrates and their associated electrodes are transparent, allowing light to pass through the entire structure when the elongated molecules of the liquid crystal material assume one orientation; When it is in another orientation, it does not allow light to pass through. In another type of liquid crystal device, only one substrate and its associated electrodes are transparent. In this device, when the liquid crystal material is in one state, light passes through the substrate and is reflected by the liquid crystal material, and when the liquid crystal material is in another state, light passes through the liquid crystal material and is reflected by the other substrate. be done. In both of the two types of devices mentioned above,
An image is formed by applying a voltage bias to the control electrodes of selected devices to alter the light transmission capabilities of the energized devices.

両方のタイプの液晶装置において、液晶材料の分子は細
長く、かつ、均一な動作及び表示情報の高コントラスト
を確実に達成するためには基板の表面に対して適正に配
列されていなければならない、液晶分子を整列させるこ
とは、電極の表面を整列材料でコーティングし、液晶分
子の整列を得るに必要な方向に整列材料をラビングする
ことによって行なわれる。
In both types of liquid crystal devices, the molecules of the liquid crystal material are elongated and must be properly aligned with respect to the surface of the substrate to ensure uniform operation and high contrast of the displayed information. Aligning the molecules is done by coating the surface of the electrode with an alignment material and rubbing the alignment material in the direction required to obtain alignment of the liquid crystal molecules.

能動(アクティブ)マトリクス型液晶表示装置では1例
えば薄膜トランジスタ(TPT)とか固体ダイオードな
どのようなスイッチング装置が表示装置中の液晶素子の
各々に対して設けられる。能動マトリクス液晶装置の液
晶分子整列層は、最適動作と最適コントラストを得るた
めには3つの特性を制御せねばならない、これらの特性
とは、分子の主軸と基板との間の傾斜(ティルト)角、
分子配列(液晶分子の平行配向)、及び、高RC時定数
である。傾斜角は、適正な応答時間を与え、装置の見易
さを適正なものとするために、10〜5°とすべきであ
る。液晶分子の良好な分子整列は、動作の均−性及び付
勢状態と消勢状態の間で高いコントラストを与えるため
に必要である。高いRC時定数が必要とされるので、液
晶材料の抵抗は、所望の像を表示するために充分な長さ
の時間、液晶装置が電荷を蓄積しておくことができるよ
うに充分に高くなければならない。
In active matrix liquid crystal displays, a switching device, such as a thin film transistor (TPT) or solid state diode, is provided for each liquid crystal element in the display. The liquid crystal molecular alignment layer of an active matrix liquid crystal device must control three properties in order to obtain optimum operation and optimum contrast: the tilt angle between the principal axis of the molecule and the substrate; ,
Molecular alignment (parallel alignment of liquid crystal molecules) and high RC time constant. The tilt angle should be between 10 and 5 degrees to give adequate response time and good visibility of the device. Good molecular alignment of the liquid crystal molecules is necessary to provide uniformity of operation and high contrast between energized and deenergized states. Since a high RC time constant is required, the resistance of the liquid crystal material must be high enough to allow the liquid crystal device to store charge long enough to display the desired image. Must be.

直接駆動型液晶装置、例えば、固体スイッチング装置を
採用していない液晶装置では、整列層は傾斜角と液晶分
子の配列のみを制御するだけでよい、この場合、液晶装
置は情報表示期間中に電荷を蓄積しておく必要はないの
で、液晶材料の時定数、あるいは抵抗は問題とはならな
い、従って。
In direct-drive liquid crystal devices, for example liquid crystal devices that do not employ solid-state switching devices, the alignment layer only needs to control the tilt angle and the alignment of liquid crystal molecules; in this case, the liquid crystal device is charged during the information display period. Since there is no need to store , the time constant or resistance of the liquid crystal material is not an issue.

直接駆動型表示装置用の整列層としては、しばしば、ポ
リイミドが用いられる。ポリイミドは良好な分子整列を
もたらし、また、 1.5°〜3°の範囲内の望ましい
傾斜角を与える。しかし、ポリイミドを用いた装置の電
気的な特性は、能動マトリクス液晶表示装置には不充分
である。液晶の抵抗は90℃で劣化する。ポリイミド整
列層を有する装置の時定数は、当初は30〜100終秒
であるが、高温にさらされると1時定数はlO〜30p
秒に低下してしまう、この長さの時定数では能動マトリ
クス液晶表示装置には不充分である。
Polyimide is often used as an alignment layer for direct drive displays. Polyimide provides good molecular alignment and also provides desirable tilt angles in the range of 1.5° to 3°. However, the electrical properties of devices using polyimide are insufficient for active matrix liquid crystal display devices. The resistance of liquid crystal deteriorates at 90°C. The time constant of the device with polyimide alignment layer is initially 30-100 seconds, but when exposed to high temperature the time constant decreases to 10-30p.
A time constant of this length, which drops to seconds, is insufficient for active matrix liquid crystal displays.

以上のような理由により、能動マトリクス型液晶装置と
共に用いることができ、許容し得る傾斜角と、良好な液
晶分子配列と、長い時間にわたって安定し、かつ高温に
さらされても安定したRC時定数とを持った液晶装置が
望まれる。この発明は、上記の如き要求を満たそうとす
るものである。
For the above reasons, it can be used with active matrix liquid crystal devices, has an acceptable tilt angle, good liquid crystal molecular alignment, and an RC time constant that is stable over long periods of time and even when exposed to high temperatures. A liquid crystal device with the following is desired. This invention attempts to satisfy the above requirements.

〔発明の概要〕[Summary of the invention]

この発明による液晶装置の製造方法は、基板の表面に透
明な導電体を配置するステップを含んでいる。この導電
体と基板表面とは、ポリイミド整列層で被覆される。こ
の整列層を不活性ガスのグロー放電にさらす。
A method of manufacturing a liquid crystal device according to the present invention includes the step of disposing a transparent conductor on the surface of a substrate. The conductor and substrate surface are coated with a polyimide alignment layer. This alignment layer is exposed to a glow discharge of an inert gas.

〔実施例の説明〕[Explanation of Examples]

図の液晶装置lOは、2枚の透明絶縁基板12と13の
間に配置された液晶材料11を含んでいる。基板13の
液晶材料11側の表面上には透明電極14が配置されて
いる。能動マトリクス表示装置に必要な、例えば、TP
T  (薄膜トランジスタ)とかMIM  (金属−絶
縁体−金属ダイオード)のような固体スイッチング装置
は図示されていない、しかし、固体スイッチング装置に
必要なスペースは、一般には、電極14の隅の小さな部
分を除去して形成し、そのスペースに、この分野で公知
の固体製造技法により固体スイッチング装置を設ける。
The illustrated liquid crystal device IO includes a liquid crystal material 11 disposed between two transparent insulating substrates 12 and 13. A transparent electrode 14 is arranged on the surface of the substrate 13 on the liquid crystal material 11 side. For example, TP required for active matrix display devices.
Solid state switching devices such as T (Thin Film Transistor) or MIM (Metal-Insulator-Metal Diode) are not shown, but the space required for solid state switching devices is generally limited by eliminating a small portion of the corner of electrode 14. and the space is provided with a solid state switching device using solid state manufacturing techniques known in the art.

透明電極15が基板12の液晶材料側の表面に設けられ
ている。所要の分子整列と良好な傾斜角を与えるポリイ
ミド整列層16が透明電極14上に設けられている。同
様に、同じく所要の分子整列と良好な傾斜角を与えるポ
リイミド整列層17が基板12上の透明電極15を覆っ
て設けられている。
A transparent electrode 15 is provided on the surface of the substrate 12 on the liquid crystal material side. A polyimide alignment layer 16 is provided on the transparent electrode 14 to provide the required molecular alignment and good tilt angle. Similarly, a polyimide alignment layer 17 is provided over the transparent electrode 15 on the substrate 12, which also provides the required molecular alignment and good tilt angle.

装置lOの組立てに先立って、ポリイミド整列層16と
17の表面18と19を、通常のグロー放電技法を用い
て1例えばアルゴンとか窒素などの不活性ガスのグロー
放電に露出する。このようにすると。
Prior to assembly of the device IO, surfaces 18 and 19 of polyimide alignment layers 16 and 17 are exposed to a glow discharge of an inert gas, such as argon or nitrogen, using conventional glow discharge techniques. If you do it like this.

装置のRC時定数の値が大幅に上昇し、かつ、高温にさ
らされた時の抵抗の安定性及び時間に対する抵抗の安定
性も改善される。ポリイミドを上記グロー放電にさらし
た後、基板を通常のやり方でラビングして液晶材料の分
子が処理済みのポリイミド層に整合するようにする。
The value of the RC time constant of the device is significantly increased, and the stability of the resistance when exposed to high temperatures and the stability of the resistance over time is also improved. After exposing the polyimide to the glow discharge described above, the substrate is rubbed in the conventional manner to bring the molecules of the liquid crystal material into alignment with the treated polyimide layer.

九−」 ポリイミドで被覆した液晶装置基板をグロー放電装置内
に、電極から約2.54c層(1インチ)離したプレー
ト上に置いた。グロー放電装置を10−5トルまで排気
し、75ミクロンの圧力、50c腸37分でアルゴンを
装置に導入した。 13.56MHz、100Wの電力
を1分間電極に供給した。
A polyimide coated liquid crystal device substrate was placed in a glow discharge device on a plate approximately 1 inch away from the electrodes. The glow discharge apparatus was evacuated to 10-5 Torr and argon was introduced into the apparatus at a pressure of 75 microns and 50 cm for 37 minutes. A power of 100 W at 13.56 MHz was supplied to the electrode for 1 minute.

に−ヱ ポリイミドで被覆した液晶装置の基板を、アルゴンの代
りに窒素を用いる点を除けば、例1と同じようにして処
理した。
A liquid crystal device substrate coated with polyimide was treated as in Example 1, except that nitrogen was used instead of argon.

上記例1と例2によって作った装置と、処理を施さない
ポリイミドを用いた対照装置とを組立て、時定数を各装
置について、製作直後と110℃の温度に30分間露出
した後とで測定した。測定結果をまとめると次の表の通
りである。
Devices made according to Examples 1 and 2 above and a control device using untreated polyimide were assembled and time constants were measured for each device immediately after fabrication and after 30 minutes of exposure to a temperature of 110°C. . The measurement results are summarized in the table below.

初−一期     霞」[盪 例 1   734 m秒   615m秒例 2  
 564 m秒   426m秒対  照     5
0  m秒     20  m秒
1st period Kasumi” [Example 1 734 msec 615 msec Example 2
564 msec 426 msec comparison 5
0 msec 20 msec

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この発明の推奨実施例の概略断面図であ!2.1
3・・・基板、14.15・・・導電体(電極)、16
.17・・・ポリイ ミド整列層。
The figure is a schematic cross-sectional view of a recommended embodiment of this invention! 2.1
3... Substrate, 14.15... Conductor (electrode), 16
.. 17...Polyimide alignment layer.

Claims (2)

【特許請求の範囲】[Claims] (1)基板の表面に透明導電体を配置するステップと、
上記導電体と基板表面とをポリイミド整列層でコーティ
ングするステップと、さらに、上記整列層を不活性ガス
のグロー放電にさらすステップとを含む液晶装置の製造
方法。
(1) placing a transparent conductor on the surface of the substrate;
A method of manufacturing a liquid crystal device comprising the steps of: coating the conductor and substrate surface with a polyimide alignment layer; and further exposing the alignment layer to a glow discharge of an inert gas.
(2)一対の基板間に配置された液晶材料と、この液晶
材料に隣接して上記基板の表面に配列された電極と、こ
の電極と上記基板の表面とを覆って設けられたポリイミ
ド整列層とを有し、このポリイミド整列層が不活性ガス
のグロー放電にさらされたものであることを特徴とする
液晶装置。
(2) A liquid crystal material disposed between a pair of substrates, an electrode arranged on the surface of the substrate adjacent to the liquid crystal material, and a polyimide alignment layer provided covering the electrode and the surface of the substrate. 1. A liquid crystal device comprising: a polyimide alignment layer exposed to glow discharge of an inert gas.
JP2295138A 1989-10-30 1990-10-30 Liquid crystal device and its manufacture Pending JPH03157622A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42869689A 1989-10-30 1989-10-30
US428696 1989-10-30

Publications (1)

Publication Number Publication Date
JPH03157622A true JPH03157622A (en) 1991-07-05

Family

ID=23700000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2295138A Pending JPH03157622A (en) 1989-10-30 1990-10-30 Liquid crystal device and its manufacture

Country Status (5)

Country Link
JP (1) JPH03157622A (en)
KR (1) KR910008465A (en)
DE (1) DE4034408A1 (en)
FR (1) FR2653907A1 (en)
GB (1) GB2237890A (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60120326A (en) * 1983-12-02 1985-06-27 Matsushita Electric Ind Co Ltd Liquid crystal orientation film and its manufacture
JPS61219029A (en) * 1985-03-26 1986-09-29 Ulvac Corp Formation of liquid crystal orienting film
JPS61219028A (en) * 1985-03-26 1986-09-29 Ulvac Corp Formation of liquid crystal orienting film
JPH0240628A (en) * 1988-07-29 1990-02-09 Fuji Photo Film Co Ltd Liquid crystal display element

Also Published As

Publication number Publication date
KR910008465A (en) 1991-05-31
DE4034408A1 (en) 1991-05-02
GB2237890A (en) 1991-05-15
GB9023245D0 (en) 1990-12-05
FR2653907A1 (en) 1991-05-03

Similar Documents

Publication Publication Date Title
JPS6275619A (en) Glare-proof mirror
US5013139A (en) Alignment layer for liquid crystal devices and method of forming
US5926243A (en) Liquid crystal display
US4812018A (en) Liquid crystal display element having alignment film formed of plasma-polymerized acetonitrile
JPH03157622A (en) Liquid crystal device and its manufacture
JPH06289358A (en) Production of liquid crystal display device and liquid crystal display device
US5011268A (en) Inorganic alignment layer for liquid crystal devices and method of forming
US4136933A (en) Liquid crystal alignment film birefringence compensation
JPH10133205A (en) Liquid crystal display device
JP3037056B2 (en) Liquid crystal display
JP2002341358A (en) Manufacturing method for liquid crystal display panel
US4980041A (en) Method of making liquid crystal devices with improved adherence
JPS62121424A (en) Liquid crystal cell
JPS5937527A (en) Liquid crystal display element
JPH0194320A (en) Liquid crystal display panel
JP3329721B2 (en) Liquid crystal display
JPH02149820A (en) Liquid crystal device
JP2545976B2 (en) Liquid crystal alignment method
JPH0695133A (en) Liquid crystal electrooptical device
KR890003631B1 (en) The element of liquid crystal using conducting spacer
KR0140118Y1 (en) The structure of lcd
JP2910790B2 (en) LCD panel
US4088394A (en) Electro-optical light control element
JPH10104586A (en) Liquid crystal display device
KR100873979B1 (en) Sputter device