JPH03157420A - Thermosetting epoxy resin composition, casting material of epoxy resin and mold coil - Google Patents
Thermosetting epoxy resin composition, casting material of epoxy resin and mold coilInfo
- Publication number
- JPH03157420A JPH03157420A JP29494389A JP29494389A JPH03157420A JP H03157420 A JPH03157420 A JP H03157420A JP 29494389 A JP29494389 A JP 29494389A JP 29494389 A JP29494389 A JP 29494389A JP H03157420 A JPH03157420 A JP H03157420A
- Authority
- JP
- Japan
- Prior art keywords
- epoxy resin
- casting material
- acid anhydride
- inorganic
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003822 epoxy resin Substances 0.000 title claims abstract description 51
- 229920000647 polyepoxide Polymers 0.000 title claims abstract description 51
- 239000000463 material Substances 0.000 title claims abstract description 19
- 239000000203 mixture Substances 0.000 title claims abstract description 16
- 229920001187 thermosetting polymer Polymers 0.000 title claims description 8
- 238000005266 casting Methods 0.000 title abstract description 3
- 150000008065 acid anhydrides Chemical class 0.000 claims abstract description 20
- PAPBSGBWRJIAAV-UHFFFAOYSA-N ε-Caprolactone Chemical group O=C1CCCCCO1 PAPBSGBWRJIAAV-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000000843 powder Substances 0.000 claims abstract description 11
- 239000011256 inorganic filler Substances 0.000 claims abstract description 8
- 229910003475 inorganic filler Inorganic materials 0.000 claims abstract description 8
- 239000000835 fiber Substances 0.000 claims abstract description 7
- 239000002245 particle Substances 0.000 claims abstract description 6
- 239000000945 filler Substances 0.000 claims description 16
- 238000010125 resin casting Methods 0.000 claims description 14
- 239000002131 composite material Substances 0.000 claims description 10
- 239000003054 catalyst Substances 0.000 claims description 8
- 238000009826 distribution Methods 0.000 claims description 2
- 229920005989 resin Polymers 0.000 abstract description 16
- 239000011347 resin Substances 0.000 abstract description 16
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 abstract description 9
- -1 tetramethylene maleic anhydride Chemical compound 0.000 abstract description 4
- 238000003860 storage Methods 0.000 abstract description 3
- 238000000465 moulding Methods 0.000 abstract description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 9
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000004593 Epoxy Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000003365 glass fiber Substances 0.000 description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000005452 bending Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 3
- 238000010292 electrical insulation Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 150000008064 anhydrides Chemical class 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000001879 gelation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- LTVUCOSIZFEASK-MPXCPUAZSA-N (3ar,4s,7r,7as)-3a-methyl-3a,4,7,7a-tetrahydro-4,7-methano-2-benzofuran-1,3-dione Chemical compound C([C@H]1C=C2)[C@H]2[C@H]2[C@]1(C)C(=O)OC2=O LTVUCOSIZFEASK-MPXCPUAZSA-N 0.000 description 1
- AJHFBIPDUISYDU-UHFFFAOYSA-N 2-(2-ethyl-5-methyl-1h-imidazol-4-yl)propanenitrile Chemical compound CCC1=NC(C(C)C#N)=C(C)N1 AJHFBIPDUISYDU-UHFFFAOYSA-N 0.000 description 1
- LXBGSDVWAMZHDD-UHFFFAOYSA-N 2-methyl-1h-imidazole Chemical compound CC1=NC=CN1 LXBGSDVWAMZHDD-UHFFFAOYSA-N 0.000 description 1
- XYXBMCIMPXOBLB-UHFFFAOYSA-N 3,4,5-tris(dimethylamino)-2-methylphenol Chemical compound CN(C)C1=CC(O)=C(C)C(N(C)C)=C1N(C)C XYXBMCIMPXOBLB-UHFFFAOYSA-N 0.000 description 1
- WADSJYLPJPTMLN-UHFFFAOYSA-N 3-(cycloundecen-1-yl)-1,2-diazacycloundec-2-ene Chemical compound C1CCCCCCCCC=C1C1=NNCCCCCCCC1 WADSJYLPJPTMLN-UHFFFAOYSA-N 0.000 description 1
- HLLSOEKIMZEGFV-UHFFFAOYSA-N 4-(dibutylsulfamoyl)benzoic acid Chemical compound CCCCN(CCCC)S(=O)(=O)C1=CC=C(C(O)=O)C=C1 HLLSOEKIMZEGFV-UHFFFAOYSA-N 0.000 description 1
- FKBMTBAXDISZGN-UHFFFAOYSA-N 5-methyl-3a,4,5,6,7,7a-hexahydro-2-benzofuran-1,3-dione Chemical compound C1C(C)CCC2C(=O)OC(=O)C12 FKBMTBAXDISZGN-UHFFFAOYSA-N 0.000 description 1
- ULKLGIFJWFIQFF-UHFFFAOYSA-N 5K8XI641G3 Chemical compound CCC1=NC=C(C)N1 ULKLGIFJWFIQFF-UHFFFAOYSA-N 0.000 description 1
- MWSKJDNQKGCKPA-UHFFFAOYSA-N 6-methyl-3a,4,5,7a-tetrahydro-2-benzofuran-1,3-dione Chemical compound C1CC(C)=CC2C(=O)OC(=O)C12 MWSKJDNQKGCKPA-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- WJRBRSLFGCUECM-UHFFFAOYSA-N hydantoin Chemical compound O=C1CNC(=O)N1 WJRBRSLFGCUECM-UHFFFAOYSA-N 0.000 description 1
- 229940091173 hydantoin Drugs 0.000 description 1
- 150000002460 imidazoles Chemical class 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 239000004850 liquid epoxy resins (LERs) Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- KNRCVAANTQNTPT-UHFFFAOYSA-N methyl-5-norbornene-2,3-dicarboxylic anhydride Chemical compound O=C1OC(=O)C2C1C1(C)C=CC2C1 KNRCVAANTQNTPT-UHFFFAOYSA-N 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 150000003003 phosphines Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000007142 ring opening reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- TUQOTMZNTHZOKS-UHFFFAOYSA-N tributylphosphine Chemical compound CCCCP(CCCC)CCCC TUQOTMZNTHZOKS-UHFFFAOYSA-N 0.000 description 1
- WLPUWLXVBWGYMZ-UHFFFAOYSA-N tricyclohexylphosphine Chemical compound C1CCCCC1P(C1CCCCC1)C1CCCCC1 WLPUWLXVBWGYMZ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Epoxy Resins (AREA)
- Organic Insulating Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、熱硬化性エポキシ樹脂組成物、エポキシ樹脂
注型材料及びモールドコイルに関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a thermosetting epoxy resin composition, an epoxy resin casting material, and a molded coil.
(従来の技術)
エポキシ樹脂組成物は機械特性、電気的絶縁性、接着性
等の優れた特徴によって、電気絶縁用として特に重用さ
れている。さらに近年、電気機器の大型化や複雑な構成
物を一体成形する製品の増加に伴い、耐クラツク性の向
上要求が高電圧電気機器絶縁用を中心に高まってきてい
る。特に高電圧ブッシングや高電圧コイル等では、規定
電圧以下でコロナ放電の発生しないことが必須の条件で
あることから、ボイドレス化や密着あるいは接着性が要
求され、加えて運転一体止の繰り返し冷熱サイクルによ
って生じる熱歪に耐える耐クラブり性、耐ハクリ性等が
必要とされる。(Prior Art) Epoxy resin compositions are particularly important for electrical insulation due to their excellent characteristics such as mechanical properties, electrical insulation properties, and adhesive properties. Furthermore, in recent years, with the increase in the size of electrical equipment and the increase in the number of products integrally molded with complex components, there has been an increasing demand for improved crack resistance, especially for insulation of high-voltage electrical equipment. In particular, for high-voltage bushings and high-voltage coils, it is essential that corona discharge does not occur below the specified voltage, so void-free, adhesion, or adhesive properties are required, and in addition, repeated cooling and heating cycles without operation are required. Scratch resistance, peeling resistance, etc. are required to withstand thermal distortion caused by heat distortion.
こうした耐クラツク性等の改善手法は種々知られてはい
るが、液状樹脂を用いる注型成形法に限定すればその手
法は限られている。Although various methods for improving crack resistance and the like are known, the methods are limited to cast molding methods using liquid resin.
即ち、■可撓性付与材等の添加によってガラス転移温度
を下げる、■柔軟性エポキシ樹脂を用いる、■フィラー
を高充填化するなどの手法である。Namely, these methods include (1) lowering the glass transition temperature by adding a flexibility-imparting material, (2) using a flexible epoxy resin, and (2) increasing the filler content.
しかしながらこれらの手法には、耐熱性の低下、成形品
強度の低下、製造性で重要な流動性の低下等を伴い未だ
満足すべき解決に至っていない。However, these methods have not yet resulted in a satisfactory solution due to problems such as a decrease in heat resistance, a decrease in molded product strength, and a decrease in fluidity, which is important for manufacturability.
一方硬化剤成分においても、従来はアミン系硬化剤が多
用されていたが近年、毒性の問題から酸無水物系硬化剤
の使用が増加しているが、一般に酸無水物系を用いた場
合はその硬化物が硬く、アミン系に比べて耐クラツク性
が低いため一層の向上が望まれていた。On the other hand, regarding curing agent components, amine-based curing agents were traditionally used frequently, but in recent years, acid anhydride-based curing agents have been increasingly used due to toxicity issues. Since the cured product is hard and has lower crack resistance than amine-based products, further improvement has been desired.
(発明が解決しようとする課題)
本発明は上記課題を解決するためになされたもので、硬
化剤として酸無水物を用いた場合に有効なものであり、
耐クラック性2強靭性、に優れ、かつ優れた製造性を有
する熱硬化性エポキシ樹脂組成物及びエポキシ樹脂注型
材料を提供し、更に、このエポキシ樹脂注型材料を用い
て成形した高電圧用のモールドコイルを提供することを
目的とする。(Problems to be Solved by the Invention) The present invention was made to solve the above problems, and is effective when an acid anhydride is used as a curing agent.
We provide thermosetting epoxy resin compositions and epoxy resin casting materials that have excellent crack resistance, toughness, and excellent manufacturability, and we also provide high-voltage products molded using this epoxy resin casting material. The purpose is to provide molded coils.
[発明の構成]
(課題を解決するための手段と作用)
本発明は上述した目的を達成するためになされたもので
あって、
(a)エポキシ樹脂と、
(b)酸無水物と、
(c)ε−カプロラクトンモノマーとからなることを特
徴とする熱硬化性エポキシ樹脂組成物である。[Structure of the invention] (Means and effects for solving the problem) The present invention has been made to achieve the above-mentioned objects, and includes (a) an epoxy resin, (b) an acid anhydride, ( c) ε-caprolactone monomer.
また、本発明は、上記(a) 、(b) 、(c)に、
さらに<d)無機質充填材を加えてなることを特徴とす
るエポキシ樹脂注型材料である。In addition, the present invention provides the above (a), (b), and (c),
Furthermore, it is an epoxy resin casting material characterized by adding <d) an inorganic filler.
さらに本発明は、上記エポキシ樹脂注型材料を用いて成
形したことを特徴とするモールドコイルである。Furthermore, the present invention is a molded coil characterized by being molded using the above-mentioned epoxy resin casting material.
本発明に使用するエポキシ樹脂は、通常エポキシとして
公知のものであればいかなるものであってもよく、例え
ばビスフェノールA型エポキシ樹脂、ビスフェノールF
型エポキシ樹脂、ノボラック型エポキシ樹脂、脂環式エ
ポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、ト
リグリシジルイソシアネートやヒダントインエポキシの
如き複素環式エポキシ樹脂等が挙げられるが、特に30
℃で液状のエポキシ樹脂を用いることが好ましい。The epoxy resin used in the present invention may be any resin commonly known as epoxy, such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, etc.
type epoxy resins, novolac type epoxy resins, alicyclic epoxy resins, hydrogenated bisphenol A type epoxy resins, and heterocyclic epoxy resins such as triglycidyl isocyanate and hydantoin epoxy, but in particular 30
It is preferable to use an epoxy resin that is liquid at °C.
具体例としては、ビスフェノールA型エポキシ樹脂の場
合、シェル化学社製のEp:cote815.819,
827゜828、チバ社製のGY250.252.28
0 、ダウ社製DER330,331,332、三井石
油社製R−140.R−140P等があげられる。As a specific example, in the case of bisphenol A type epoxy resin, Ep:cote815.819 manufactured by Shell Chemical Co., Ltd.
827°828, GY250.252.28 manufactured by Ciba
0, DER330, 331, 332 manufactured by Dow, R-140 manufactured by Mitsui Oil Company. Examples include R-140P.
また、脂環式エポキシ樹脂゛の場合は、チソノックス2
01,221,21119 、アラルダイトCY175
,178.179等があげられる。これらの樹脂は単独
あるいは数種類を混合物として使用してもよい。In addition, in the case of alicyclic epoxy resin, Tisonox 2
01,221,21119, Araldite CY175
, 178.179, etc. These resins may be used alone or as a mixture of several types.
−力木発明に使用する硬化剤である酸無水物はいかなる
ものであってもよいが、好ましくは30℃で液状の酸無
水物である。具体例としてはテトラメチレン無水マレイ
ン酸、メチルテトラヒドロ無水フタル酸(大日本インキ
社製のB−570、日立化成社製のHN−2200)、
メチルエンドメチレンテトラヒドロ無水フタル酸(日本
火薬社製のカヤハードMCD 、日立化成社製のHMA
C) 、無水メチルナジック酸(日本チバガイギ社製の
HY9013 ”) 、4−メチルへキサヒドロ無水フ
タル酸(新日本理化社製のMl−700)の他、変性酸
無水物として日本チバガイギ社製のHY905,915
,917,919,920 、油化シェル社のエビキュ
ア103,121.136などがあげられる。これらの
酸無水物は単独あるいは数種類を混合物として使用して
もよい。- The acid anhydride that is the hardening agent used in the strength wood invention may be of any kind, but is preferably an acid anhydride that is liquid at 30°C. Specific examples include tetramethylene maleic anhydride, methyltetrahydrophthalic anhydride (B-570 manufactured by Dainippon Ink, HN-2200 manufactured by Hitachi Chemical),
Methylendomethylenetetrahydrophthalic anhydride (Kayahard MCD manufactured by Nippon Kapaku Co., Ltd., HMA manufactured by Hitachi Chemical Co., Ltd.)
C) In addition to methylnadic anhydride (HY9013'' manufactured by Nippon Ciba-Geigi Co., Ltd.) and 4-methylhexahydrophthalic anhydride (Ml-700 manufactured by Shin-Nippon Chemical Co., Ltd.), HY905 manufactured by Nippon Ciba-Geigi Co., Ltd. as a modified acid anhydride. ,915
, 917, 919, 920, and Ebicure 103, 121.136 manufactured by Yuka Shell Co., Ltd. These acid anhydrides may be used alone or as a mixture of several types.
また本発明に使用されるε−カプロラクトンモノマーは
、シクロヘキサノンを過酸化水素や過酢酸などで、バイ
ヤーピリ力反応によって酸化することにより得られ、工
業的にも製造販売されている。(例えばダイセル化学社
製、プラクセル−挿等)
本発明において用いるε−カプロラクトンは特にモノマ
ーであることが必要である。モノマーの場合は酸無水物
やエポキシ樹脂との相溶性に優れ低粘度であり、かつ酸
無水物とエポキシが反応を始めるまでは安定に存在して
いることが可能である。Further, the ε-caprolactone monomer used in the present invention is obtained by oxidizing cyclohexanone with hydrogen peroxide, peracetic acid, etc. by Bayer pyrolysis reaction, and is also manufactured and sold industrially. (For example, Daicel Chemical Co., Ltd., Plaxel-Set, etc.) The ε-caprolactone used in the present invention particularly needs to be a monomer. In the case of monomers, they have excellent compatibility with acid anhydrides and epoxy resins, have low viscosity, and can stably exist until the acid anhydride and epoxy begin to react.
本発明の熱硬化性エポキシ樹脂の必須成分であるこれら
(a)エポキシ樹脂、(b)酸無水物、(c)ε−カプ
ロラクトンモノマーの関係については次のように考えら
れる。即ちε−カプロラクトンモノマーは水酸基がある
と容易に開環して反応するが、酸無水物や液状エポキシ
樹脂にはほとんど水酸基がないために反応せず、樹脂中
に長期間安定して存在することができる。そして硬化時
には、先ず酸無水物とエポキシが反応することによって
水酸基が生成し、その生成した水酸基にε−カプロラク
トンが開環反応して、直線状に伸び末端に水酸基をもち
、この水酸基が酸無水物やエポキシと反応するものと考
えられる。従ってε−カプロラクトンモノマーの添加量
の増加によって平均架橋点間分子量が長くなり二次転移
温度の低下を判うが、同時に熱応力を緩和して結果とし
て耐クラツク性向上の効果が発現される。一方、このε
−カプロラクトンモノマーは粘度が低く(20℃で6〜
7cp)、かつ酸無水物とエポキシ樹脂への相溶性に優
れ、樹脂全体を低粘度化して充填材の増量を可能にする
働きもある。The relationship among these (a) epoxy resin, (b) acid anhydride, and (c) ε-caprolactone monomer, which are essential components of the thermosetting epoxy resin of the present invention, can be considered as follows. In other words, if ε-caprolactone monomer has a hydroxyl group, it easily opens the ring and reacts, but acid anhydrides and liquid epoxy resins do not react because they have almost no hydroxyl groups, and remain stable in the resin for a long period of time. Can be done. During curing, hydroxyl groups are first generated by the reaction between acid anhydride and epoxy, and ε-caprolactone undergoes a ring-opening reaction with the generated hydroxyl groups, extending in a straight line and having a hydroxyl group at the end. It is thought to react with substances and epoxy. Therefore, as the amount of ε-caprolactone monomer added increases, the average molecular weight between crosslinking points increases and the second-order transition temperature decreases, but at the same time thermal stress is alleviated, resulting in the effect of improving crack resistance. On the other hand, this ε
-Caprolactone monomer has a low viscosity (6 to 6 at 20°C)
7 cp), and has excellent compatibility with acid anhydrides and epoxy resins, and also has the function of lowering the viscosity of the entire resin and making it possible to increase the amount of filler.
本発明においては、(a)エポキシ樹脂1モルに対して
(b)酸無水物は0.3〜1.5モル、(c)ε−カプ
ロラクトンモノマーは0.05〜0.8モル、さらには
、(b)酸無水物0.5〜1.2モル、(c)ε−カプ
ロラクトンモノマーは0.1〜0.5モルの割合とする
ことが好ましい。これはε−カプロラクトンが0.05
モルより少いと耐クラツク性に与える効果が、一方なく
0.8モルをこえるとガラス転移温度が極端に低下して
強度が低くなるからである。In the present invention, (a) per mole of epoxy resin, (b) acid anhydride is 0.3 to 1.5 mole, (c) ε-caprolactone monomer is 0.05 to 0.8 mole, and , (b) acid anhydride in a proportion of 0.5 to 1.2 mole, and (c) ε-caprolactone monomer in a proportion of preferably 0.1 to 0.5 mole. This is 0.05 for ε-caprolactone.
This is because if the amount is less than 0.8 mol, the effect on crack resistance will be poor, and if it exceeds 0.8 mol, the glass transition temperature will be extremely lowered and the strength will be lowered.
方酸無水物は、ε−カプロラクトンモノマーとの関連も
あるが0.3モルより少いとガラス転移温度の低下を1
.5モルより多い場合には強度の低下が大きくなるので
上述した範囲とすることが好ましい。Although boric anhydride is related to the ε-caprolactone monomer, if the amount is less than 0.3 mol, the glass transition temperature decreases by 1 mol.
.. If the amount is more than 5 moles, the strength will be significantly lowered, so it is preferable to keep it within the above-mentioned range.
さらに上記必須三成分に加えて硬化反応を促進するため
の触媒を加えてもよい。使用する触媒としては、一般に
エポキシ樹脂の触媒として用いられるものであればいか
なる化合物であってもよく、例えば2−メチルイミダゾ
ール、2−エチル−4−メチルイミダゾール、1−シア
ノエチル−2=エチルメチルイミダゾール、などのイミ
ダゾール化合物、ベンジルジメチルアミン、トリスジメ
チルアミノメチルフェノールなどのアミン化合物、トリ
フェニルフォスフイン、トリシクロヘキシルフォスフイ
ン、トリブチルフォスフインなどの有機フォスフイン化
合物、ジアザビシクロウンデセンやその塩、金属アセチ
ルアセトナトキレート化合物などがあげられる。Furthermore, in addition to the above three essential components, a catalyst may be added to promote the curing reaction. The catalyst used may be any compound that is generally used as a catalyst for epoxy resins, such as 2-methylimidazole, 2-ethyl-4-methylimidazole, 1-cyanoethyl-2-ethylmethylimidazole. , imidazole compounds such as benzyldimethylamine, amine compounds such as trisdimethylaminomethylphenol, organic phosphine compounds such as triphenylphosphine, tricyclohexylphosphine, tributylphosphine, diazabicycloundecene and its salts, metal acetyl Examples include acetonatochelate compounds.
また、上述した(a)エポキシ樹脂、(b)酸無水物及
び(c)ε−カプロラクトンモノマーにさらに(d)無
機質充填材を加えることにより、高電圧電気機器絶縁用
として用いるのに適したエポキシ樹脂注型材料が得られ
る。In addition, by adding (d) an inorganic filler to the above-mentioned (a) epoxy resin, (b) acid anhydride, and (c) ε-caprolactone monomer, we have created an epoxy resin suitable for use in high-voltage electrical equipment insulation. A resin casting material is obtained.
本発明に使用する(d)無機質充填剤としては、石英粉
末、溶融シリカ粉末、ガラス粉末、ガラス繊維、各種の
ウィスカ、タルク、窒化ケイ素、窒化アルミニウムなど
のセラミックス粉末など公知の各種無機充填剤が使用で
きる。Examples of the inorganic filler (d) used in the present invention include various known inorganic fillers such as quartz powder, fused silica powder, glass powder, glass fiber, various whiskers, and ceramic powders such as talc, silicon nitride, and aluminum nitride. Can be used.
特に耐クラツク性と電気絶縁性の観点から、無機質短繊
維特にガラス短繊維と無機質粉末特にシリカ粉末(結晶
性または溶融タイプ)との組合わせからなる複合充填材
を用いることが好ましい。Particularly from the viewpoint of crack resistance and electrical insulation, it is preferable to use a composite filler consisting of a combination of inorganic short fibers, especially glass short fibers, and inorganic powder, especially silica powder (crystalline or fused type).
そして複合充填材の構成成分である無機質短繊維は、直
径3〜20μm1長さ3〜300μm1平均アスペクト
比2〜20の分布を有するガラス短繊維を用いることが
特に好ましい。具体例としては日本板硝子社製のマイク
ログラスサーフニーストランドREV−1、REV−4
,REV−6,REV−7,REV−8等があげられる
。またシリカ粉末等の無機質粉末は、その平均粒径が0
.05〜5μmであることが好ましい。It is particularly preferable to use short glass fibers having a distribution of 3 to 20 μm in diameter, 3 to 300 μm in length, and 2 to 20 in average aspect ratio as the inorganic short fibers that are a component of the composite filler. Specific examples include Micro Glass Surf Knee Strand REV-1 and REV-4 manufactured by Nippon Sheet Glass Co., Ltd.
, REV-6, REV-7, REV-8, etc. In addition, inorganic powders such as silica powder have an average particle size of 0.
.. The thickness is preferably 0.05 to 5 μm.
これらの無機質短繊維(x)と無機質粉末(y)の配合
割合はx/x+y−0,2〜0.7、望ましくは0,4
〜0.6である。その理由としてはこの範囲内では粘度
が低く、流動性が優れているからである。The blending ratio of these inorganic short fibers (x) and inorganic powder (y) is x/x+y-0.2 to 0.7, preferably 0.4
~0.6. The reason for this is that within this range, the viscosity is low and the fluidity is excellent.
本発明においては上記複合充填材の配合量は樹脂成分の
合計量(a+b+c)100重量部に対しテlOO〜5
00重量部、より好ましく ハ100〜400重量部の
範囲である。100重量部未満では、硬化物の機械的特
性や耐クラツク性が不十分であり、一方500市量部を
こえると樹脂組成物の粘度が高く、流動性が低下するた
め望ましくない。また、流動性を損なわない範囲におい
て本発明に使用される複合充填材以外、アルミナ、タル
ク、ウオラストナイト等の無機質充填材、あるいは平均
粒径が5μmをこえる粗粒子のシリカを適m添加して使
用してもよい。In the present invention, the compounding amount of the composite filler is 100 parts by weight per 100 parts by weight of the total amount of resin components (a+b+c).
00 parts by weight, more preferably 100 to 400 parts by weight. If it is less than 100 parts by weight, the mechanical properties and crack resistance of the cured product will be insufficient, while if it exceeds 500 parts by weight, the viscosity of the resin composition will be high and fluidity will be reduced, which is not desirable. In addition to the composite filler used in the present invention, an appropriate amount of inorganic filler such as alumina, talc, and wollastonite, or coarse particle silica with an average particle size exceeding 5 μm may be added to the extent that fluidity is not impaired. You may also use it.
さらには、本発明のエポキシ樹脂注型材料では硬化促進
剤として潜在性触媒を用いてもよい。この潜在性触媒は
、その表面を化学的、物理的に処理するか、もしくは触
媒の官能基を化学的にブロックして、一定温度以上で触
媒機能が活性化するようにしたものである。具体的には
、旭化成社製(7)IIX−3722,llX−374
1,llX−3742、味の索社製(7) MY−24
等があげられる。この硬化促進剤の使用量はエポキシ樹
脂100重量部に対して、0.1〜5重量部が好ましい
。Furthermore, in the epoxy resin casting material of the present invention, a latent catalyst may be used as a curing accelerator. This latent catalyst has its surface treated chemically or physically, or its functional groups are chemically blocked so that its catalytic function becomes activated at a certain temperature or higher. Specifically, Asahi Kasei Co., Ltd. (7) IIX-3722, llX-374
1,llX-3742, manufactured by Ajinosakusha (7) MY-24
etc. can be mentioned. The amount of the curing accelerator used is preferably 0.1 to 5 parts by weight per 100 parts by weight of the epoxy resin.
また本発明では、必要に応じて、着色材、界面活性剤、
カップリング剤などの添加剤を使用してもよい。In addition, in the present invention, colorants, surfactants,
Additives such as coupling agents may also be used.
(実施例)
実施例1〜10.比較例1〜2
第1表に示す材料を表中に示す割合(重量部)で配合し
て真空(1〜3 a+ml1g)攪拌容器で均一に混合
して本発明の熱硬化性エポキシ樹脂組成物及びエポキシ
樹脂注型材料を調製した。ここで、エポキシ樹脂はビス
フェノールAタイプのEP82g(シェル化学社製)、
酸無水物は4−メチルへキサヒドロ酸無水物M11−7
00 (新日本理化社製)、εカプロラクトンモノマー
はプラクセル−M(ダイセル化学社製)、触媒としては
、マイクロカプセル化して潜在性触媒とした!!X−3
741 (旭化成社製)及びベンジルジメチルアミン
(BDMA)を用いた。(Example) Examples 1 to 10. Comparative Examples 1 to 2 The materials shown in Table 1 were blended in the proportions (parts by weight) shown in the table and mixed uniformly in a vacuum (1 to 3 a+ml 1 g) stirring vessel to produce a thermosetting epoxy resin composition of the present invention. and an epoxy resin casting material was prepared. Here, the epoxy resin is bisphenol A type EP82g (manufactured by Shell Chemical Co., Ltd.),
Acid anhydride is 4-methylhexahydroic anhydride M11-7
00 (manufactured by Shin Nihon Rika Co., Ltd.), the ε-caprolactone monomer was Plaxel-M (manufactured by Daicel Chemical Co., Ltd.), and the catalyst was microencapsulated to form a latent catalyst! ! X-3
741 (manufactured by Asahi Kasei Corporation) and benzyldimethylamine (BDMA).
また比較例1.2としてε−カプロラクトンモノマーを
含まない組成のものも同様にして調製した。これらの組
成物の粘度を測定した後に100℃に予熱した金型に注
型し、減圧(1〜3 mm1g)脱泡した後に120℃
で2時間、次いで150℃で10時間硬化して成型物を
得た。In addition, as Comparative Example 1.2, a composition containing no ε-caprolactone monomer was also prepared in the same manner. After measuring the viscosity of these compositions, they were poured into a mold preheated to 100°C, defoamed under reduced pressure (1 to 3 mm/g), and then heated to 120°C.
The mixture was cured at 150° C. for 2 hours and then at 150° C. for 10 hours to obtain a molded product.
これらの硬化物を用いて、曲げ強さ、2次転移点、耐ク
ラツク性等について評価した。その結果を第1表に併記
した。なお、それぞれの評価法は次の通りである。Using these cured products, bending strength, secondary transition point, crack resistance, etc. were evaluated. The results are also listed in Table 1. The evaluation methods for each are as follows.
(1)粘 度ニガラス製トールビーカーに入れ樹脂
温度を調整した後B型粘度
計で1分値を測定。(1) Viscosity After adjusting the resin temperature in a Nigarasu tall beaker, measure the value for 1 minute using a B-type viscometer.
(2)ゲル化時間;内径18關φ、長さ180mmの試
験管に100 amの高さまで樹脂を入
れ、120℃に調整したオイル中
に浸漬して樹脂のゲル化する時
間を測定した。(2) Gelation time: A test tube with an inner diameter of 18 mm and a length of 180 mm was filled with resin to a height of 100 am, and the test tube was immersed in oil adjusted to 120°C to measure the gelation time of the resin.
(3)保存安定性ニガラス製トールビーカーに樹脂を密
封して40℃の水槽に浸して、
粘度が初期値の2倍になる時間
を終点と判定した。(3) Storage stability The resin was sealed in a Nigarasu tall beaker and immersed in a 40°C water tank, and the end point was determined to be the time when the viscosity reached twice its initial value.
(4)2 次転移点:成形物から約4mmX4mmX1
g+omの試験片を切り出し、
150°C×10分のアニーリン
グを行い荷重3gのもとで
5℃/分の昇温速度で熱膨
張を測定し変曲点を求めた。(4) Secondary transition point: Approximately 4mm x 4mm x 1 from the molded product
A test piece of g+om was cut out, annealed at 150°C for 10 minutes, and the thermal expansion was measured at a heating rate of 5°C/min under a load of 3g to determine the point of inflection.
(5)曲 げ 強 さ: 100 Xl0X 4報の試
験片を作成してJIS K 6911に従っ
て測定した。(10個の試料
の平均)
(6)耐クラツク指数ニオリフアントワッシャー法(工
業材料VO1129,N[L5゜
P59.1981)に従って測定し
た。(5個の試料の平均)
(7)モデルコイル:長軸50cm、短軸26cIIl
のAll導体(占積率80%)のモデ
ルコイルをモールド成形し
た。(5) Bending strength: 100X10X Four test pieces were prepared and measured according to JIS K 6911. (Average of 10 samples) (6) Crack resistance index Measured according to the Niori lift washer method (Industrial Materials VO1129, N [L5°P59.1981). (Average of 5 samples) (7) Model coil: Major axis 50cm, minor axis 26cIIl
A model coil made of an All conductor (space factor: 80%) was molded.
(8)冷−熱サイクル:液相のθ’CX1h−too℃
(9)
Xlhを10サイクル行なっ
た。(8) Cold-thermal cycle: liquid phase θ'CX1h-too℃
(9) Ten cycles of Xlh were performed.
コロナ開始電圧: 33kVまで課電して放電電荷(C
8V) I PCテml定。Corona starting voltage: Charge up to 33kV and discharge charge (C
8V) I PC temperature setting.
(以下余白)
第1表の実施例と比較例をみると、ε−カプロラクトン
モノマーを配合した実施例3〜5は充填材が粒子複合系
で比較例とほぼ同じであるが粘度が低下し、更に曲げ強
さ、耐クラック指数共大幅に向上している。更に充填材
をガラス短繊維とシリカ粒子を複合すると実施例6〜1
oに示すような高強度で耐クラツク性の優れた特性を示
す。(Leaving space below) Looking at the Examples and Comparative Examples in Table 1, Examples 3 to 5 in which ε-caprolactone monomer was blended had a particle composite filler and were almost the same as the Comparative Examples, but the viscosity decreased, Furthermore, both bending strength and crack resistance index have been significantly improved. Further, when the filler is composited with short glass fibers and silica particles, Examples 6 to 1 are obtained.
It exhibits high strength and excellent crack resistance as shown in (o).
特にガラス短繊維が180重量部以上になると耐クラツ
ク指数は18以上(170”C−−75℃液相)でクラ
ックが発生していない。又モデルコイルのコロナ13f
J姶電圧は放電電荷m1Pcの値で評価したが、実施例
においては33kVまでコロナの発生がなく優れている
。これは樹脂の靭性が高く、Apの密着性も優れている
ためと推定できる。In particular, when the short glass fiber is 180 parts by weight or more, the crack resistance index is 18 or more (170"C - 75°C liquid phase) and no cracks occur. Also, the corona 13F of the model coil
The J-voltage was evaluated based on the value of the discharge charge m1Pc, and in the example, no corona was generated up to 33 kV, which is excellent. This can be presumed to be because the resin has high toughness and Ap adhesion is also excellent.
一方比較例では、剥離あるいは微細クラックのためコロ
ナ開始電圧が低く、冷熱サイクルにおいてクラックが発
生している。On the other hand, in the comparative example, the corona initiation voltage was low due to peeling or fine cracks, and cracks occurred during the cooling/heating cycle.
さらに本発明における複合充填材の効果を確認するため
以下のような条件で試験を行なった。Furthermore, in order to confirm the effect of the composite filler in the present invention, tests were conducted under the following conditions.
まずエポキシ樹脂としてEP828(商品名ニジエル化
学社製)100重量部に充填材として平均粒径1μmの
シリカ5X (商品名:wr1森社製)と直径13μm
1平均繊維長70μmのガラス短繊維(試作品二日本板
硝子社製)とからなる複合充填材を250重量部加えた
。両充填材の配合率を変化して80℃における粘度をB
型粘度計で測定した結果を第1図に示した。単独の充填
材に比べ複合充填材とすることで粘度低下が大きく、約
50%のところに最低値があり、この50±lO%程度
の広範囲に特に安定した低粘度領域が存在する。First, 100 parts by weight of EP828 (product name: Nigel Chemical Co., Ltd.) as an epoxy resin, silica 5X (product name: wr1, manufactured by Morisha) with an average particle size of 1 μm as a filler, and a diameter of 13 μm.
250 parts by weight of a composite filler consisting of short glass fibers (prototype manufactured by Nippon Sheet Glass Co., Ltd.) with an average fiber length of 70 μm was added. By changing the blending ratio of both fillers, the viscosity at 80℃ is B.
The results measured using a type viscometer are shown in FIG. Compared to a single filler, a composite filler causes a greater decrease in viscosity, with a minimum value at about 50%, and a particularly stable low viscosity region exists within this wide range of about 50±1O%.
なお、本発明における硬化促進剤はエポキシ樹脂及び酸
無水物に使用できるものであれば、どれでも使用できる
が、潜在性硬化促進剤(例えば旭化成社製のマイクロカ
プセルタイプ(IIX−3741等))を使用すること
で長期保存安定性があり、作業性に優れると同時に耐ク
ラツク性、高強度にも優れたー液性注型樹脂を提供する
ことができる。The curing accelerator in the present invention can be any one that can be used for epoxy resins and acid anhydrides, but latent curing accelerators (for example, microcapsule type (IIX-3741, etc.) manufactured by Asahi Kasei Co., Ltd.) can be used. By using , it is possible to provide a liquid casting resin that has long-term storage stability, excellent workability, crack resistance, and high strength.
又用途は高電圧モールドコイル等のみに限らず、本発明
による優れた特性を考えれば液状の半導体封止樹脂、表
面実装用樹脂等への応用も可能である。Further, the application is not limited to high voltage molded coils, etc., but considering the excellent characteristics of the present invention, it can also be applied to liquid semiconductor sealing resin, surface mounting resin, etc.
[発明の効果]
以上詳述したように本発明の熱硬化性エポキシ樹脂組成
物及びエポキシ樹脂注型材料によれば耐クラツク性、樹
脂強度等の物性の向上と共に部分放電開始電圧で見られ
るような高電圧特性も良好である。又生産性に係る流動
性や貯蔵性に優れているため、複雑な形状物や金属等を
含む一体注型品などの応用にも広く適用が可能であり、
その工業的価値は極めて大きい。またこれらを用いて成
形したモールドコイルは、上記特性を有した高性能のも
のとなる。[Effects of the Invention] As detailed above, the thermosetting epoxy resin composition and epoxy resin casting material of the present invention improve physical properties such as crack resistance and resin strength, as well as improve partial discharge inception voltage. It also has good high voltage characteristics. In addition, it has excellent fluidity and storability related to productivity, so it can be widely applied to applications such as complex-shaped objects and integrally cast products containing metal, etc.
Its industrial value is extremely large. Moreover, a molded coil molded using these materials has the above-mentioned characteristics and has high performance.
第1図は複合充填材の配合割合と樹脂組成物の粘度との
関係を示した特性図である。
第1図FIG. 1 is a characteristic diagram showing the relationship between the compounding ratio of the composite filler and the viscosity of the resin composition. Figure 1
Claims (5)
に(d)無機質充填材を加えてなることを特徴とするエ
ポキシ樹脂注型材料。(2) An epoxy resin casting material characterized by adding (d) an inorganic filler to the thermosetting epoxy resin composition according to claim (1).
の無機質粉末および直径3〜20μm長さ3〜300μ
mの分布を有する無機質短繊維からなる複合充填材であ
ることを特徴とする請求項(2)記載のエポキシ樹脂注
型材料。(3) (d) Inorganic filler has an average particle size of 0.05 to 5 μm
inorganic powder and diameter 3-20μm length 3-300μ
The epoxy resin casting material according to claim 2, wherein the epoxy resin casting material is a composite filler made of inorganic short fibers having a distribution of m.
徴とする請求項(2)記載のエポキシ樹脂注型材料。(4) The epoxy resin casting material according to claim (2), characterized in that a latent catalyst is added as a curing accelerator.
て成形したことを特徴とするモールドコイル。(5) A molded coil characterized by being molded using the epoxy resin casting material according to claim (3).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29494389A JPH03157420A (en) | 1989-11-15 | 1989-11-15 | Thermosetting epoxy resin composition, casting material of epoxy resin and mold coil |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29494389A JPH03157420A (en) | 1989-11-15 | 1989-11-15 | Thermosetting epoxy resin composition, casting material of epoxy resin and mold coil |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH03157420A true JPH03157420A (en) | 1991-07-05 |
Family
ID=17814288
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29494389A Pending JPH03157420A (en) | 1989-11-15 | 1989-11-15 | Thermosetting epoxy resin composition, casting material of epoxy resin and mold coil |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH03157420A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171503A (en) * | 1997-08-29 | 1999-03-16 | Hitachi Chem Co Ltd | Epoxy resin composition and insulation treatment of electric instrument using the same |
JP2009117336A (en) * | 2007-10-18 | 2009-05-28 | Hitachi Chem Co Ltd | Epoxy resin composition for electric device insulation and electric equipment |
JP2018030944A (en) * | 2016-08-24 | 2018-03-01 | 信越化学工業株式会社 | Resin composition, resin film, and method for manufacturing semiconductor device and semiconductor device |
-
1989
- 1989-11-15 JP JP29494389A patent/JPH03157420A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1171503A (en) * | 1997-08-29 | 1999-03-16 | Hitachi Chem Co Ltd | Epoxy resin composition and insulation treatment of electric instrument using the same |
JP2009117336A (en) * | 2007-10-18 | 2009-05-28 | Hitachi Chem Co Ltd | Epoxy resin composition for electric device insulation and electric equipment |
JP2018030944A (en) * | 2016-08-24 | 2018-03-01 | 信越化学工業株式会社 | Resin composition, resin film, and method for manufacturing semiconductor device and semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1978049B1 (en) | Curable Epoxy Resin Composition | |
JP3896529B2 (en) | Epoxy resin casting composition | |
EP3317318B1 (en) | A thermosetting epoxy resin composition for the preparation of outdoor articles, and the articles obtained therefrom | |
EP1389631B1 (en) | Epoxy resin compositions | |
KR20110043738A (en) | Epoxy resin composition | |
FI96694C (en) | Curing mixture based on cycloaliphatic epoxy resins | |
US20180118922A1 (en) | A Thermosetting Resin Composition for the Preparation of Outdoor Articles and the Articles Obtained therefrom | |
JP2003041123A (en) | Thermosetting resin composition, method for producing the same and suspensionlike mixture | |
US5322864A (en) | Epoxy resin composition and cured product thereof | |
EP3765567B1 (en) | Storage stable and curable resin compositions | |
JP2003049074A (en) | Thermosetting resin composition | |
JPH03157420A (en) | Thermosetting epoxy resin composition, casting material of epoxy resin and mold coil | |
JP2009091471A (en) | Epoxy resin composition for casting, and ignition coil and method for producing the same | |
JP4322047B2 (en) | Cast epoxy resin composition for electrical insulation and cured product | |
JPH0797434A (en) | Epoxy resin composition | |
JP6655359B2 (en) | Method for producing electronic / electric parts and epoxy resin composition | |
JP3383134B2 (en) | Epoxy resin composition and cast insulator obtained therefrom | |
JP4517182B2 (en) | Epoxy resin composition for casting | |
JP2004204082A (en) | Epoxy resin composition for use in encapsulation of electronic component and its hardened product | |
JP2011246553A (en) | Varnish composition and coil device | |
JP3225574B2 (en) | One-part type thermosetting epoxy resin composition | |
JPH07238145A (en) | Epoxy resin composition | |
EP4306593A1 (en) | Magnetic paste | |
JP3949436B2 (en) | Casting epoxy resin composition and electrical / electronic component equipment | |
JPH03192148A (en) | Epoxy resin casting material for insulating electrical apparatus |