JPH0315740A - Characteristic measuring instrument for sheet-shaped object - Google Patents

Characteristic measuring instrument for sheet-shaped object

Info

Publication number
JPH0315740A
JPH0315740A JP1123932A JP12393289A JPH0315740A JP H0315740 A JPH0315740 A JP H0315740A JP 1123932 A JP1123932 A JP 1123932A JP 12393289 A JP12393289 A JP 12393289A JP H0315740 A JPH0315740 A JP H0315740A
Authority
JP
Japan
Prior art keywords
light
sheet
paper
guiding means
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1123932A
Other languages
Japanese (ja)
Inventor
Hideaki Yamagishi
秀章 山岸
Hitoshi Hara
仁 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP1123932A priority Critical patent/JPH0315740A/en
Publication of JPH0315740A publication Critical patent/JPH0315740A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To improve the sensitivity by arranging a first light transmission means between a light throwing part and a sheet of paper and emitting the light from the light throwing part to an optical fiber through the sheet of paper and transmitting the light turned back by the optical fiber through the sheet of paper again and allowing the light to go and return plural times. CONSTITUTION:The light from the light throwing part is made incident on a first light transmission means 20 in the direction of an arrow (a), and a sheet 3 of paper is irradiated with this light. Though most of this light is transmitted through the sheet 3 of paper, a part of this light is propagated in the transverse direction while being scattered by cellulose of the sheet 3 of paper as shown by an arrow (b) and is made incident on a second light transmission means 21, which is arranged a certain length apart from the side face of the means 20, and is led in the direction of an arrow (c) and reaches a light receiving part. This certain length is different by relations to the distance from the light exit to the sheet 3 of paper and is set to such value that the direct reflected light from the sheet 3 of paper which is not related to moisture detection is not made incident on the light receiving part of the means 21. Thus, the sensitivity is improved and the extent of attenuation of light is reduced.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は,シート状e+体に含まれる水分量或は厚さ等
の物理的特性を測定する装置に関する.〈従来の技術〉 第14図及び第15図は.抄紙機等においてシート状物
体の水分量を測定する水分計の従来例を示す.第14図
において.1は投光部,2は受光部で,これらは被測定
体である紙3を挾んで対向配置されている. 投光部1では.光源6からの光がレンズ7で平行光とさ
れ,更にチョッパー・ホイール8で断続光とされた後,
照射窓4を介し紙3に照射される.チョッパー・ホイー
ル8には水分による吸収を受ける1.94μmの光(測
定光)を透過するフィルタ9と1水分による吸収を受け
ない1.8μmの光(比較光)を透過するフィルタ10
とが設けられ,回転に従い測定光と比較光とを交互に紙
3に照射する.受光部2では,入射窓5より紙3を透過
した光が入射し,レンズ11で集束され受光素子12に
集光される.この受光素子では測定光Mと比較光Rとを
時系列的に検出し,演算器13に与えM/Rの演算を行
い出力する. 第15に示す従来例では.投光部1において光源6から
の光をレンズ7で平行光とし,チョッパー・ホイール8
′で断続光とした後,照射窓4より紙3に照射する.こ
のチョッパー・ホイールには第14図の従来例のような
フィルタは載置されておらず,ホイールは専ら迷光の影
響を除去するためにだけ使用される.照射窓4より照射
された白色光は紙3を挾んで投光部1と受光部2の対向
面に設けられた乱反射面16.17で多重反射され.照
射窓4とずれた位置に設けられた入射窓5より受光部2
内に入る. 受光部2において.入射光はプリズム18で2分され,
一方は測定光を透過するフィルタ9.レンズ11を経て
受光素子12に導かれ,他方は比較光を透過するフィル
タ10,レンズ11′を経て受光素子12′に導かれる
.受光素子l2で検出された測定光Mと受光素子12′
で検出された比較光Rは同時に演算器13に与えられ,
 M/Hの演算が行なわれ出力される. く発明が解決しようとする課題〉 上記従来の装置において.第14図に示す構成のものは
,構造が簡単で.光量減衰も少ないという利点が有る半
面,測定対象は紙1枚であるため.この紙の厚さが薄い
場合は感度のよいものが得られないという問題が有る.
また.第15図に示す構成のものは,投光部と受光部の
光軸が数十mm離れた所に配置され1散乱面によって紙
を透過散乱しながら受光部に達するので光の減衰量が多
くなり信号自体が小さくなるという問題が有った.本発
明は上記従来技術の問題を解決するために成されたもの
で1紙に当った光が横方向に伝搬する性質を利用したり
,透過光を折返して複数回透過させる事によりS/N比
が高く,かつ.減衰量の少ない装置を提供することを目
的とする.〈課題を解決するための手段〉 上記課題を解決する為の本発明の横成は,請求項1に関
しては,投光部からの光をシー1〜状物体を介して受光
する受光素子を有し,前記受光素子からの信号に基づい
て前記シート状物体の物理的特性を測定するシート状物
体の特性測定装置において.前記投光部とシート状物体
の間に配置され.前記投光部からの光を受光して前記シ
ート状物体側に出射する第lの導光手段と.前記第1の
導光手段の曲面に配置され前記第1の導光手段からの出
射光が前記シート状物体中を横方向に伝搬した光を受光
し.前記受光素子に入射させる第2の導光手段を備えた
ことを特徴とするものであり, 請求項2に関しては,投光部からの光をシート状物体を
介して受光する受光素子を有し,前記受光素子からの信
号に基づいて前記シート状物体の物理的特性を測定する
シート状物体の特性測定装置において.前記投光部とシ
ート状物体の間に配置され.前記投光部からの光を受光
して前記シート状物体側に出射する第1の導光手段と,
前記第lの導光手段からの出射光が前記シート状物体を
透過した光を受光し,再び前記シート状物体に光を出射
する少なくとも一つの第3の導光手段と,この第3の導
光手段からの光が前記シート状物体を透過した光を受光
し前記受光素子に入射させる第2の導光手段を備えたこ
とを特徴とするものであり. 請求項3に関しては.第3の導光手段を一つとし.その
受光面を前記第1の導光手段の出射面に対して傾けて配
置した事を特徴とするものであり,請求項4〜6に関し
ては,第1〜第3の導光手段は光ファイバ束または光フ
ァイバプリフォームで構成し.各導光手段の受光ffl
(f41部)の径を出射側の径より大きく形成するか.
または.光ファイバの受光側に集光用レンズを設けた事
を特徴とするものである. く作用〉 第1の導光手段から出射して紙を@射する光の大部分は
紙を透過するが,とくに薄紙のような坪量の小さいもの
においては紙の横方向への伝搬光路長が長いので.その
横方向からの光を第1の導光手段の測面に配置した第2
の導光手段を介して受光すれば高感度な測定信号を得る
事が出来る.また,第1の導光手段から出射した光が折
返し部を有する第3の導光手段を介して紙を複数回透過
するのでj&度が高くなる.その場合,第3の導光手段
を1つとし第1の導光手段の出射面に対して第3の導光
手段の受光面を傾けて配置すれば坪量の異なる複数種の
紙を同一の装置で測定する事が出来る.また,光が入射
する各導光手段の端部の径を大きくしたり集光用レンズ
を設けて光の減衰の度合を少なくする事が出来る. く実施例〉 以下,図面に従い本発明の装置の一実施例を説明する.
第1図は請求項1に関するもので,第14図.第15図
に示す投光部.受光部を省略した本発明の要部を示す横
成図である.20は第1の樽光手段であり1例えば光フ
ァイバ束で楕成されている.21は第2の導光手段であ
り同じく光ファイバ束で構成されている.3はその物理
特性を測定すべき紙である. 上記横成において,図示しない投光部からの光が第1の
導光手段20の矢印イから入射して紙3を照射する.そ
の光の大半は紙を透過するが一部は紙中を矢印ロで示す
ように紙のセルロースによる散乱を受けながら横方向に
伝搬し.第■の導光手段の側面に一定の距離を保って配
置された第2の導光手段21に入射して矢印ハ方向に導
かれ図示しない受光部に達する.なお.ここでいう一定
の距離とは光の出射口から紙までの距離との関係により
異なるが,水分検出に関与しない紙からの直接反射光が
第2の導光手段の受光部に入射しない程度の距離とする
. 第2図は薄紙として坪i 1 0 g / m 2のテ
ィッシュペーバと坪量10(Ig/m2の上質紙を用い
紙を透過した光と横方向に伝搬した光についてその含有
水分量(g/m2)に対する検出器の出力を測定したも
のである。図によればテイヅシュベーバの様な薄紙の水
分を測定する場合においては透過した光を利用するより
横方向に伝搬した光を測定した方が格段に検出感度が高
いことが分る.この事は伝搬光は坪量の小さい紙は紙中
伝搬光路が長いので.水分の吸収が大きく(高感度).
透過光は水分子による測定光の吸収が小さい事を示し.
逆に坪量の大きな紙は紙中伝搬光路が短いので水分の吸
収が小さく(低感度).透過光は水分子による測定光の
吸収が大きい(高感度)事を示している. 第3図〜第5図はこの様に横方向に伝搬する光を検出す
る場合の第1,第2の導光手段の他の配置例を示すもの
である.即ち,第3図(a)(b)は複数の第1の導光
手段20を一定距離を保って複数の第2の導光手段21
で取囲んだものであり,これらの導光手段を形成する光
ファイバは適当な数の束とされ赤外光を吸収する(無反
射)樹脂などからなる固定部材5により一定の間隔を保
って固定されている.これら光ファイバ束の他端はそれ
ぞれ束ねられ図示しない発光部,受光部に対向するよう
に配置されている. 第4図は第l,第2の導光手段を赤外光を吸収する樹脂
等の固定部材5を介してアレイ状に配置したもの.第5
図は棒状に形成した第1の導光手段の周りを前記固定部
材5を介して筒状に形成した第2の導光手段で一定距離
を隔てて囲ったものである. 上記第3図〜第5図に示す横成によれば横方向に伝撮す
る伝搬光の成分を効率よくビックアップする事が出来る
. 第6図.第7図は請求項2に関する一実施例を示すもの
で.第l4図,第15図に示す投光部,受光部を省略し
た要部を示す楕成図である.これらの図において20お
よび21は第1,第2の導光手段.22は折返し部を有
する第3の導光手段であり,これらは光ファイバ束や光
ファイバプリフォームで形成されている.なお,導光手
段の径は光ファイバプリフォームの場合クラッド24の
外径が例えば12mm,コア25の外径が10mm程度
とされ,光ファイバ束の場合12mm程度とされる.ま
た.折返し部は光が漏れない程度の半径に形成されてい
る.3は紙である.これらの図において第1の導光手段
の出射lコ第3の導光手段の人出射口,第2の導光手段
の入射口はそれぞれ紙を挟んで対向して配置されている
.上記構成において,図示しない投光部からの光が第1
の導光手段20の矢印イから入射し,この光は紙3を透
過して第3の導光手段22aに入射し,再び紙3を透過
して第3の導光手段22bに入射する.この第3の導光
手段22bからの出射光は更に紙3を透過して第3の導
光手段22cに入射し.更に紙3を透過して第2の導光
手段21測に出射する. この光が矢印ロ部から出射して図示しない受光部の受光
素子を照射する様に楕成されている.上記第6図の構成
によれば投光部からの光が4度紙を透過し,第7図の横
成によれば8度透過することになる.その結果.従来例
で述べた比較光Rに対する測定光Mの感度の向上をはか
ることが出来る.また,第1の導光手段から出射した光
が紙を介して直接他の導光手段に入射するので第15図
に示す従来例に比較して光の減衰度合を少なくすること
が出来る. なお.この場合.第3の導光手段を1つとし第1の導光
手段からの出射光が紙を横方向に伝搬する光を受光可能
な位置に第2の導光手段を配置しておけば,同一の装置
で坪量の異なる紙の水分を測定する事が出来る.なお,
導光手段を桶成する光ファイバの数は感度と光の減衰量
を勘案しながら適宜増減すればよい. 第8図は上質紙とティッシュベーパの2種類の紙を含有
水分量を変化(この例では恒温槽の湿度を30%,70
%としてこの中に長時間紙を放置することにより含有水
分量を特定した)させた場合の測定光の紙透過後の散乱
分布状態と相対光強度の関係を示す実験結果を示すもの
である.実験は第9図に示すように紙を挟んで対向して
設けた光ファイバを図示の様にθ゜傾けながら測定した
.図によればθがOの場合はティッシュベーパにおいて
は湿度が変化しても測定光の出力には変化がなく20〜
40゜の範囲では相対光強度に変化が認められる. また,上質紙においてはθがOの場合においては充分な
相対光強度の変化があるが30゜近傍では相対光強度の
変化は認められない. 第10図は請求項3に関する一実施例を示すもので,上
記第8図に示す実験結果を元に2種類の紙の水分を効率
的に検出する為の構成を示す図である.ここでは第l,
第2の導光手段の出射面および受光面に対して第3の導
光手段の受光面が所定の角度(例えば30゜)傾けて配
置されている.この様な楕成によれば第1の導光手段か
ら出射して紙を透過した光は第3の導光手段に対して3
0゜±α(例えばlO゜)の角度を有して入射する.そ
の結果,2種類の紙の相対光強度が水分により変化する
部分を含むので12種類の紙に対して感度を有する事が
出来.一つの検出装置で複数の種顛の紙の水分を測定す
る事が出来る. また.この場合も第1の導光手段からの出射光が紙を横
方向に伝搬する光を受光可能な位置に第2の導光手段を
配置しておけば,特に薄紙に対してはより効率的な水分
の測定が可能となる.第II図,第12図は請求項4に
関する構成図を示すもので.第l図と同一要素には同一
符号が付してある.第11図は導光手段として光ファイ
バプリフォームを用い.その受光部開の径を大きくした
ものであり,例えば出射部が10mmであるとすれば2
0mm程度とする. 第12図は同じく導先手段として光ファイバ束を用いた
ものである. 上記第11図,第12図の構成によれば紙3を透過した
光をより多くの面積で捕える事がで来るので光の減衰の
度合を少なくする事が出来る.なお,図を簡単にするた
めに折返し用光ファイバ22は1つのみを示したが第6
図,第7に示すように1つ以上であってもよい.また,
図では省略したが大径部分は第2の導光手段21の受光
側にも設ける事が出来る.なお.端部の径を大きくする
加工は光ファイバフリフォームを加熱して引伸ばして数
十μの光ファイバを製作する一般的な技術により製作可
能である. 第13図は請求項6に関する楕戒図を示すもので,第1
図と同一要素には同一符号が付してある.この例におい
ては光ファイバの前方に光ファイバより大径の集光レン
ズ11を配置して広い範囲の光を光ファイバに入射する
様にし,光の減衰度を少なくしたものであり.第11図
,第12図に示す構成のものと同様の効果がある. く発明の効果〉 以上実施例とともに具体的に説明した様に本発明によれ
ば.第lの導先手段を投光部と紙の間に配置し,投光部
からの光を紙を介して光ファイバ側に出射し.光ファイ
バで折返した光を更に紙を透過させ,光が紙を複数回往
復する様にしたので.感度の向上をはかるとともに光の
減衰量を少なくすることが出来る. また,特に薄紙に対しては紙の横方向へ伝搬する光を受
光する様にしたので測定精度を向上させることが出来る
.更に横方向からの伝搬光と透過光を受光する様にした
ので坪量の異なる紙を一つの検出装置で測定する事が出
来る.また1光ファイバの受光部開を大径にしたり受光
部側の前方に集光レンズを配置したので光の減衰の少な
い測定装置を実現する事が出来る.
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for measuring physical properties such as moisture content or thickness of a sheet-like e+ body. <Prior art> Figures 14 and 15 are. A conventional example of a moisture meter that measures the moisture content of sheet-like objects in paper machines, etc. is shown below. In Figure 14. 1 is a light emitting part, and 2 is a light receiving part, and these are arranged opposite to each other with a paper 3, which is the object to be measured, sandwiched between them. In the light projecting section 1. After the light from the light source 6 is made into parallel light by the lens 7 and further made into intermittent light by the chopper wheel 8,
The paper 3 is irradiated through the irradiation window 4. The chopper wheel 8 includes a filter 9 that transmits 1.94 μm light (measurement light) that is absorbed by moisture, and a filter 10 that transmits 1.8 μm light (comparison light) that is not absorbed by moisture.
is provided, and irradiates the paper 3 with measurement light and comparison light alternately as it rotates. In the light receiving section 2, light that has passed through the paper 3 enters through the entrance window 5, is focused by the lens 11, and is focused on the light receiving element 12. This light-receiving element detects the measurement light M and the comparison light R in time series, and supplies them to the arithmetic unit 13, which calculates M/R and outputs them. In the conventional example shown in No. 15. In the light projection unit 1, the light from the light source 6 is converted into parallel light by a lens 7, and the chopper wheel 8
’ to make the light intermittent, and then irradiate the paper 3 through the irradiation window 4. This chopper wheel is not equipped with a filter like the conventional example shown in Fig. 14, and the wheel is used exclusively to remove the effects of stray light. The white light irradiated from the irradiation window 4 is multiple-reflected on the diffuse reflection surfaces 16 and 17 provided on the opposing surfaces of the light emitter 1 and the light receiver 2 while holding the paper 3 between them. The light-receiving section 2
Go inside. In the light receiving section 2. The incident light is split into two by the prism 18,
One is a filter 9 that transmits the measurement light. The light is guided to a light receiving element 12 through a lens 11, and the other light is guided to a light receiving element 12' through a filter 10 that transmits the comparison light, and a lens 11'. Measurement light M detected by light receiving element l2 and light receiving element 12'
The comparison light R detected at is simultaneously given to the arithmetic unit 13,
The M/H calculation is performed and output. Problems to be Solved by the Invention In the above conventional device. The configuration shown in Figure 14 has a simple structure. On the one hand, it has the advantage of less light attenuation, but on the other hand, the object to be measured is a single sheet of paper. If the thickness of this paper is thin, there is a problem that high sensitivity cannot be obtained.
Also. In the configuration shown in Figure 15, the optical axes of the light emitting part and the light receiving part are placed several tens of millimeters apart, and the light reaches the light receiving part while being transmitted and scattered through the paper by one scattering surface, so the amount of light attenuation is large. There was a problem that the signal itself became smaller. The present invention was made to solve the above-mentioned problems of the prior art, and utilizes the property that light that hits a sheet of paper propagates in the horizontal direction, and by folding the transmitted light and transmitting it multiple times, the S/N is improved. The ratio is high, and. The purpose is to provide a device with low attenuation. <Means for Solving the Problems> The present invention for solving the above problems is, with respect to claim 1, comprising a light-receiving element that receives light from a light projecting section through a sheet-shaped object. and a sheet-like object characteristic measuring device for measuring physical characteristics of the sheet-like object based on a signal from the light receiving element. It is arranged between the light projecting section and the sheet-like object. a first light guiding means that receives light from the light projecting section and emits the light toward the sheet-like object; The first light guiding means is disposed on the curved surface of the first light guiding means, and receives light emitted from the first light guiding means and propagated laterally in the sheet-like object. The present invention is characterized by comprising a second light guiding means for causing the light to enter the light receiving element, and with respect to claim 2, the light receiving element includes a light receiving element that receives light from the light projecting section via a sheet-like object. , in a sheet-like object characteristic measuring device that measures physical characteristics of the sheet-like object based on a signal from the light receiving element. It is arranged between the light projecting section and the sheet-like object. a first light guiding means that receives light from the light projecting section and emits it to the sheet-like object side;
at least one third light guide means for receiving the light emitted from the first light guide means and transmitting the light through the sheet-like object and emitting the light to the sheet-like object again; The present invention is characterized by comprising a second light guide means for receiving the light transmitted through the sheet-like object from the light means and making it enter the light receiving element. Regarding claim 3. The third light guide means is one. The light-receiving surface thereof is arranged at an angle with respect to the output surface of the first light-guiding means. Consists of bundles or optical fiber preforms. Light receiving ffl of each light guiding means
Should the diameter of (f41 part) be made larger than the diameter of the exit side?
or. The feature is that a condensing lens is provided on the receiving side of the optical fiber. Most of the light that is emitted from the first light guiding means and enters the paper passes through the paper, but especially for thin paper with a small basis weight, the optical propagation path length in the lateral direction of the paper Because it is long. A second light guiding means arranged on the surface of the first light guide means transmits the light from the lateral direction.
If the light is received through the light guiding means, a highly sensitive measurement signal can be obtained. Furthermore, since the light emitted from the first light guiding means passes through the paper multiple times through the third light guiding means having a folding portion, the j& degree becomes high. In that case, if there is only one third light guiding means and the light receiving surface of the third light guiding means is arranged at an angle with respect to the output surface of the first light guiding means, multiple types of paper with different basis weights can be printed on the same paper. It can be measured with the following equipment. Furthermore, the degree of attenuation of light can be reduced by increasing the diameter of the end of each light guiding means into which light enters, or by providing a condensing lens. Embodiment> An embodiment of the device of the present invention will be described below with reference to the drawings.
Figure 1 relates to claim 1, and Figure 14. The light projecting section shown in Fig. 15. FIG. 2 is a horizontal diagram showing the main parts of the present invention, with the light receiving section omitted. Reference numeral 20 denotes a first barrel light means, which is formed of, for example, an optical fiber bundle. 21 is a second light guiding means, which is also composed of an optical fiber bundle. 3 is the paper whose physical properties are to be measured. In the above-mentioned horizontal formation, light from a light projector (not shown) enters the first light guiding means 20 from the arrow A and illuminates the paper 3. Most of the light passes through the paper, but some of it propagates laterally through the paper, being scattered by the paper's cellulose, as shown by the arrows. The light enters the second light guiding means 21, which is arranged at a constant distance from the side surface of the second light guiding means, and is guided in the direction of the arrow C, reaching a light receiving section (not shown). In addition. The certain distance here differs depending on the relationship between the light output port and the paper, but it is a certain distance that does not directly reflect light from the paper that is not involved in moisture detection and enters the light receiving part of the second light guiding means. Let it be the distance. Figure 2 shows the water content (g /m2).According to the figure, when measuring the moisture content of thin paper like Teizchbeba, it is better to measure the light that propagates in the lateral direction than to use the transmitted light. It can be seen that the detection sensitivity is extremely high.This is because the propagating light has a long optical path in the paper with a small basis weight.The absorption of moisture is large (high sensitivity).
The transmitted light indicates that the absorption of the measurement light by water molecules is small.
Conversely, paper with a large basis weight has a short propagation path in the paper, so water absorption is small (low sensitivity). The transmitted light shows that the measurement light is highly absorbed by water molecules (high sensitivity). FIGS. 3 to 5 show other examples of the arrangement of the first and second light guide means when detecting light propagating laterally in this manner. That is, in FIGS. 3(a) and 3(b), a plurality of first light guide means 20 are connected to a plurality of second light guide means 21 while maintaining a constant distance.
The optical fibers forming these light guide means are bundled in an appropriate number and kept at constant intervals by a fixing member 5 made of infrared light absorbing (non-reflective) resin or the like. It is fixed. The other ends of these optical fiber bundles are each bundled and arranged to face a light emitting section and a light receiving section (not shown). In FIG. 4, the first and second light guiding means are arranged in an array via a fixing member 5 made of resin or the like that absorbs infrared light. Fifth
In the figure, a first light guiding means formed in a rod shape is surrounded by a second light guiding means formed in a cylindrical shape with the fixing member 5 interposed therebetween at a constant distance. According to the horizontal control shown in Figs. 3 to 5 above, it is possible to efficiently surprise up the components of the propagating light transmitted in the lateral direction. Figure 6. FIG. 7 shows an embodiment related to claim 2. 14 is an elliptical diagram showing the main parts with the light emitter and light receiver shown in FIGS. 4 and 15 omitted; FIG. In these figures, 20 and 21 are first and second light guiding means. 22 is a third light guiding means having a folded portion, and these are formed of an optical fiber bundle or an optical fiber preform. The diameter of the light guiding means is, for example, in the case of an optical fiber preform, the outer diameter of the cladding 24 being about 12 mm, and the outer diameter of the core 25 being about 10 mm, and in the case of an optical fiber bundle, it is about 12 mm. Also. The folded part is formed with a radius that does not allow light to leak. 3 is paper. In these figures, the output of the first light guide, the exit port of the third light guide, and the entrance of the second light guide are arranged to face each other with a sheet of paper in between. In the above configuration, the light from the light projecting section (not shown) is the first
The light enters the light guide means 20 from arrow A, passes through the paper 3, enters the third light guide means 22a, passes through the paper 3 again, and enters the third light guide means 22b. The light emitted from the third light guiding means 22b further passes through the paper 3 and enters the third light guiding means 22c. Further, the light passes through the paper 3 and is emitted to the second light guiding means 21. The ellipse is formed so that this light is emitted from the part shown by the arrow and illuminates a light-receiving element of a light-receiving section (not shown). According to the configuration shown in FIG. 6 above, the light from the light projector passes through the paper four times, and according to the configuration shown in FIG. 7, it passes through the paper eight times. the result. It is possible to improve the sensitivity of the measurement light M to the comparison light R mentioned in the conventional example. Furthermore, since the light emitted from the first light guiding means directly enters the other light guiding means through the paper, the degree of attenuation of the light can be reduced compared to the conventional example shown in FIG. In addition. in this case. If there is only one third light guiding means and the second light guiding means is placed in a position where it can receive the light emitted from the first light guiding means and propagates laterally through the paper, the same The device can measure the moisture content of papers with different basis weights. In addition,
The number of optical fibers that make up the light guiding means can be increased or decreased as appropriate, taking into account sensitivity and light attenuation. Figure 8 shows two types of paper, high-quality paper and tissue vapor, with varying moisture content (in this example, the humidity in the thermostatic chamber is 30%, 70%).
This shows the experimental results showing the relationship between the scattering distribution state of the measurement light after it passes through the paper and the relative light intensity when the moisture content is determined by leaving the paper in the paper for a long time. In the experiment, as shown in Figure 9, the optical fibers were placed facing each other with a piece of paper in between, and measurements were taken while tilting them at θ° as shown. According to the figure, when θ is O, there is no change in the output of the measurement light even if the humidity changes in the tissue vapor;
Changes in relative light intensity are observed in the 40° range. In addition, for high-quality paper, there is a sufficient change in relative light intensity when θ is O, but no change in relative light intensity is observed near 30°. FIG. 10 shows an embodiment related to claim 3, and is a diagram showing a configuration for efficiently detecting moisture in two types of paper based on the experimental results shown in FIG. 8 above. Here, the lth,
The light-receiving surface of the third light-guiding means is inclined at a predetermined angle (for example, 30 degrees) with respect to the light-emitting surface and the light-receiving surface of the second light-guiding means. According to such an ellipse, the light emitted from the first light guiding means and transmitted through the paper is 3 times larger than the third light guiding means.
It is incident at an angle of 0°±α (for example, lO°). As a result, it is possible to have sensitivity to 12 types of paper because it includes a portion where the relative light intensity of the two types of paper changes depending on moisture. One detection device can measure the moisture content of multiple types of paper. Also. In this case as well, if the second light guide is placed in a position where the light emitted from the first light guide can receive the light that propagates laterally through the paper, it will be more efficient, especially for thin paper. This makes it possible to measure moisture content. FIG. II and FIG. 12 show configuration diagrams related to claim 4. Elements that are the same as in Figure 1 are given the same reference numerals. Figure 11 shows an optical fiber preform used as the light guiding means. The diameter of the opening of the light receiving part is increased, for example, if the emitting part is 10 mm, the diameter of the opening of the light receiving part is increased.
It should be approximately 0mm. Figure 12 also shows an optical fiber bundle used as the guiding means. According to the configurations shown in FIGS. 11 and 12, the light transmitted through the paper 3 can be captured over a larger area, so that the degree of attenuation of the light can be reduced. Note that only one folding optical fiber 22 is shown to simplify the diagram, but the sixth
There may be one or more as shown in Figure 7. Also,
Although omitted in the figure, the large diameter portion can also be provided on the light receiving side of the second light guiding means 21. In addition. Processing to increase the diameter of the end can be done using a general technique that heats and stretches an optical fiber freeform to produce an optical fiber with a thickness of several tens of micrometers. Figure 13 shows an elliptical diagram regarding claim 6, and the first
Elements that are the same as those in the figure are given the same symbols. In this example, a condensing lens 11 with a diameter larger than that of the optical fiber is placed in front of the optical fiber to allow a wide range of light to enter the optical fiber, thereby reducing the degree of attenuation of the light. It has the same effect as the configuration shown in Figs. 11 and 12. Effects of the Invention> As specifically explained above with the embodiments, according to the present invention. A first guide means is arranged between the light projecting section and the paper, and the light from the light projecting section is emitted to the optical fiber side through the paper. The light that has been folded back by the optical fiber is further transmitted through the paper, so that the light travels back and forth through the paper multiple times. It is possible to improve sensitivity and reduce light attenuation. In addition, especially for thin paper, the measurement accuracy can be improved because it receives light that propagates in the lateral direction of the paper. Furthermore, since it receives propagating light and transmitted light from the lateral direction, it is possible to measure papers with different basis weights with a single detection device. Furthermore, by increasing the diameter of the light-receiving part of one optical fiber and placing a condenser lens in front of the light-receiving part, it is possible to realize a measuring device with less light attenuation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の請求項lに関するシート状物体の特性
測定装置の一実施例を示す構成図,第2図は紙の含有水
分量と検出器出力の関係を示す図,第3図〜第5図は横
方向に伝搬する光を検出する場合の他の配置例を示す図
.第6図,第7図は請求項2に関する一実施例を示す構
成図,第8図は紙透過後の測定光の散乱分布と相対光強
度の関係を示す図.第9図は測定光の散乱分布と相対光
強度の関係を測定するための装置の構成図.第10図は
請求項3に関する一実施例を示す横成図,第11図.第
12図は請求項4および5に関する−実施例を示す構成
図,第13図は請求項第6に関する一実施例を示す図1
第14図および第15図は従来装置の構成図である. 1・・・投光部.2・・・受光部,3・・・シート状物
体(紙),5・・・固定部材.11・・・集光レンズ,
20・・・第1の導光手段,21・・・第2の導光手段
,22第 ! 図 第 2 図 第 b 図 第 7 回 第 S 図 第 9 図 第 ノ0 図 (c1) 第 /2 図 l3 図 (b)
Fig. 1 is a configuration diagram showing an embodiment of a characteristic measuring device for a sheet-like object related to claim 1 of the present invention, Fig. 2 is a diagram showing the relationship between water content of paper and detector output, and Figs. Figure 5 is a diagram showing another example of arrangement when detecting light propagating in the horizontal direction. FIGS. 6 and 7 are configuration diagrams showing an embodiment related to claim 2, and FIG. 8 is a diagram showing the relationship between the scattering distribution of the measurement light after passing through the paper and the relative light intensity. Figure 9 is a configuration diagram of an apparatus for measuring the relationship between the scattering distribution of measurement light and relative light intensity. FIG. 10 is a horizontal diagram showing an embodiment related to claim 3, and FIG. 11. FIG. 12 is a block diagram showing an embodiment related to claims 4 and 5, and FIG. 13 is a diagram 1 showing an embodiment related to claim 6.
Figures 14 and 15 are configuration diagrams of conventional equipment. 1...Light projection part. 2... Light receiving section, 3... Sheet-like object (paper), 5... Fixing member. 11... Condensing lens,
20...first light guide means, 21...second light guide means, 22nd! Figure 2 Figure b Figure 7 S Figure 9 Figure No. 0 Figure (c1) Figure 2 Figure l3 Figure (b)

Claims (1)

【特許請求の範囲】 1)投光部からの光をシート状物体を介して受光する受
光素子を有し、前記受光素子からの信号に基づいて前記
シート状物体の物理的特性を測定するシート状物体の特
性測定装置において、前記投光部とシート状物体の間に
配置され、前記投光部からの光を受光して前記シート状
物体側に出射する第1の導光手段と、前記第1の導光手
段の側面に配置され、前記第1の導光手段からの出射光
が前記シート状物体中を横方向に伝搬した光を受光し、
前記受光素子に入射させる第2の導光手段を備えたこと
を特徴とするシート状物体の特性測定装置。 2)投光部からの光をシート状物体を介して受光する受
光素子を有し、前記受光素子からの信号に基づいて前記
シート状物体の物理的特性を測定するシート状物体の特
性測定装置において、前記投光部とシート状物体の間に
配置され、前記投光部からの光を受光して前記シート状
物体側に出射する第1の導光手段と、前記第1の導光手
段からの出射光が前記シート状物体を透過した光を受光
し、再び前記シート状物体に光を出射する少なくとも一
つの第3の導光手段と、この第3の導光手段からの光が
前記シート状物体を透過した光を受光し前記受光素子に
入射させる第2の導光手段を備えたことを特徴とするシ
ート状物体の特性測定装置。 3)前記第3の導光手段を一つとし、前記第1の導光手
段からの出射光が前記シート状物体を横方向に伝搬した
光を受光可能な位置に前記第2の導光手段を配置した事
を特徴とする請求項2記載のシート状物体の特性測定装
置。 4)前記第3の導光手段を一つとし、その受光面を前記
第1の導光手段の出射面に対して傾けて配置した事を特
徴とする請求項2および3項記載のシート状物体の特性
測定装置。5)前記第1〜第3の導光手段は光ファイバ
プリフォームまたは光ファイバ束で形成した事を特徴と
する請求項1または2記載のシート状物体の特性測定装
置。 6)前記第3の導光手段の受光側(端部)の径を出射側
の径より大きく形成した事を特徴とする請求項2記載の
シート状物体の特性測定装置。 7)前記光ファイバの受光側に集光用レンズを設け、集
光した光を前記光ファイバに入射させるようにした事を
特徴とする請求項2記載のシート状物体の特性測定装置
[Scope of Claims] 1) A sheet having a light-receiving element that receives light from a light projecting section via a sheet-like object, and measuring physical characteristics of the sheet-like object based on a signal from the light-receiving element. In the apparatus for measuring characteristics of a shaped object, a first light guiding means is arranged between the light projecting section and the sheet-like object, and receives light from the light projecting section and emits it to the sheet-like object side; disposed on a side surface of the first light guiding means, receiving light emitted from the first light guiding means and propagated laterally in the sheet-like object;
An apparatus for measuring characteristics of a sheet-like object, comprising a second light guiding means for causing light to be incident on the light-receiving element. 2) A characteristic measuring device for a sheet-like object, which has a light-receiving element that receives light from a light projecting section through a sheet-like object, and measures physical characteristics of the sheet-like object based on a signal from the light-receiving element. , a first light guide means disposed between the light projector and the sheet-like object, which receives light from the light projector and emits it toward the sheet-like object; and the first light guide means. at least one third light guide means for receiving the light emitted from the sheet-like object and emitting the light to the sheet-like object again; An apparatus for measuring characteristics of a sheet-like object, comprising a second light guiding means that receives light transmitted through the sheet-like object and causes the light to enter the light-receiving element. 3) The third light guiding means is one, and the second light guiding means is located at a position where it can receive the light emitted from the first light guiding means and propagated laterally through the sheet-like object. 3. The apparatus for measuring characteristics of a sheet-like object according to claim 2, further comprising: a. 4) The sheet-shaped sheet according to claim 2 or 3, characterized in that the third light guide means is one, and the light receiving surface thereof is arranged at an angle with respect to the output surface of the first light guide means. Device for measuring properties of objects. 5) The apparatus for measuring characteristics of a sheet-like object according to claim 1 or 2, wherein the first to third light guiding means are formed of an optical fiber preform or an optical fiber bundle. 6) The apparatus for measuring properties of a sheet-like object according to claim 2, wherein the diameter of the light receiving side (end) of the third light guide means is larger than the diameter of the light emitting side. 7) The apparatus for measuring characteristics of a sheet-like object according to claim 2, characterized in that a condensing lens is provided on the light receiving side of the optical fiber, and the condensed light is made to enter the optical fiber.
JP1123932A 1988-08-23 1989-05-17 Characteristic measuring instrument for sheet-shaped object Pending JPH0315740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1123932A JPH0315740A (en) 1988-08-23 1989-05-17 Characteristic measuring instrument for sheet-shaped object

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP63-208541 1988-08-23
JP20854188 1988-08-23
JP1-80072 1989-03-30
JP1123932A JPH0315740A (en) 1988-08-23 1989-05-17 Characteristic measuring instrument for sheet-shaped object

Publications (1)

Publication Number Publication Date
JPH0315740A true JPH0315740A (en) 1991-01-24

Family

ID=26460723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1123932A Pending JPH0315740A (en) 1988-08-23 1989-05-17 Characteristic measuring instrument for sheet-shaped object

Country Status (1)

Country Link
JP (1) JPH0315740A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261928A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Turbidity detector
JP2011069824A (en) * 2009-09-25 2011-04-07 Xerox Corp Substrate evaluation device
US8148690B2 (en) 2009-09-24 2012-04-03 ABB, Ltd. Method and apparatus for on-line web property measurement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08261928A (en) * 1995-03-17 1996-10-11 Aretsuku Denshi Kk Turbidity detector
US8148690B2 (en) 2009-09-24 2012-04-03 ABB, Ltd. Method and apparatus for on-line web property measurement
JP2011069824A (en) * 2009-09-25 2011-04-07 Xerox Corp Substrate evaluation device

Similar Documents

Publication Publication Date Title
KR880003180A (en) Systems and Methods for Moving Web Measurement
JP2014504366A (en) Single-sided infrared sensor for thickness and weight measurement of products containing a reflective layer
JPH02500117A (en) Method and device for measuring twist of a running, elongated object
EP0670486B1 (en) Spectroscopic measuring sensor for the analysis of mediums
US6462808B2 (en) Small optical microphone/sensor
US4183666A (en) Method of measuring light transmission losses of optical materials
JPH0315740A (en) Characteristic measuring instrument for sheet-shaped object
US9952150B2 (en) Device for measuring the scattering of a sample
JPH03199941A (en) Measuring apparatus for property of sheet shaped object
JPH06500401A (en) light detection device
JPH03225258A (en) Instrument for measuring characteristics of sheet-like substance
JPH03105236A (en) Apparatus for measuring water content of sheet-like object
JP2590616Y2 (en) Turbidimeter
JP5011302B2 (en) Polarimeter
JPH01316640A (en) Instrument for measuring characteristic of sheet-like object
JPH01245134A (en) Characteristic measuring instrument for sheet-like object
JP6642667B2 (en) Infrared moisture meter
JPH01257244A (en) Measuring apparatus for characteristics of sheet-shaped substance
JPS6385336A (en) Turbidity meter
JP2932783B2 (en) Equipment for measuring characteristics of sheet-like objects
JP3057270B2 (en) Equipment for measuring characteristics of sheet-like objects
JP7069786B2 (en) Detection device
RU2222033C1 (en) Photoread-out facility
JP3265700B2 (en) Moisture measuring device for sheet-like objects
JP3325690B2 (en) Gas concentration measurement device