JPH03157163A - Very thin polymer film and its production - Google Patents

Very thin polymer film and its production

Info

Publication number
JPH03157163A
JPH03157163A JP29512189A JP29512189A JPH03157163A JP H03157163 A JPH03157163 A JP H03157163A JP 29512189 A JP29512189 A JP 29512189A JP 29512189 A JP29512189 A JP 29512189A JP H03157163 A JPH03157163 A JP H03157163A
Authority
JP
Japan
Prior art keywords
film
methacrylic acid
ultra
polymer
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29512189A
Other languages
Japanese (ja)
Inventor
Norihiro Kaiya
法博 海谷
Naoyuki Amaya
直之 天谷
Takashige Murata
村田 敬重
Takayuki Otsu
大津 隆行
Junko Shigehara
淳孝 重原
Akira Yamada
瑛 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NOF Corp
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Nippon Oil and Fats Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research, Nippon Oil and Fats Co Ltd filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP29512189A priority Critical patent/JPH03157163A/en
Priority to US07/590,908 priority patent/US5209847A/en
Priority to CA002026702A priority patent/CA2026702C/en
Priority to DE69024736T priority patent/DE69024736T2/en
Priority to EP90119076A priority patent/EP0421435B1/en
Publication of JPH03157163A publication Critical patent/JPH03157163A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE:To improve the chemical stability and heat resistance of a very thin polymer film of 10-1,000Angstrom thickness by forming the film by spin coating or the Langmuir-Elodgett's technique with a methacrylic ester polymer contg. repeating units of specified methacrylic ester. CONSTITUTION:A soln. contg. 0.1-20mg/C methacrylic ester polymer having repeating units of methacrylic ester represented by formula I (where R is 3-12C branched alkyl, 3-12C cycloalkyl, 2-6C substd. alkyl having 3-14C cyclic substituents, etc.) is prepd. and applied by spin coating at 1,000-15,000 rotational frequency to form a very thin polymer film of 10-1,000Angstrom thickness. This film has superior chemical stability, insulating property and mechanical strength.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、高分子超薄膜及びその製造方法に関し、更に
詳細には電気素子(MIM、MIS。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an ultra-thin polymer film and a method for manufacturing the same, and more particularly to electric devices (MIM, MIS, etc.).

S I S、TFT)、パターニング(液晶基板(ラビ
ング処理)、マイクロリソグラフィー)、光学素子(光
導波路、非線形三次素子用バインダー樹脂)等の分野で
用いられる高分子超薄膜およびその製造方法に関する。
The present invention relates to ultra-thin polymer films used in fields such as SIS, TFT), patterning (liquid crystal substrates (rubbing treatment), microlithography), optical elements (optical waveguides, binder resins for nonlinear tertiary elements), and methods for producing the same.

〈従来の技術〉 従来、電気素子、パターニング、光学素子等に用いる高
分子超薄膜は、分子の揃った。平滑かつ均質な薄膜であ
って、このような高分子超薄膜の作成法の一つにラング
ミュア・プロジェット法(以下LB法と略す)がある。
<Prior Art> Conventionally, ultrathin polymer films used for electrical elements, patterning, optical elements, etc. have uniform molecules. One of the methods for producing ultra-thin polymer films that are smooth and homogeneous is the Langmuir-Prodgett method (hereinafter abbreviated as LB method).

LB法は、有機分子を有機溶媒の希薄溶液とし1次いで
清浄な水面上に展開して、溶媒が蒸散した後に残る気体
膜を平面方向に圧縮して分子が密にバッキングされた固
体膜を形成させ、しかる後に固体基板表面に固体膜を移
し取り、累積させる方法であって、この結果形成された
基板上の薄膜をLB膜と称する(たとえば、文献に、 
B、 Blodgatt、 J、 Am、 Chew。
In the LB method, organic molecules are made into a dilute solution of an organic solvent and then spread on a clean water surface, and the gas film that remains after the solvent evaporates is compressed in the plane direction to form a solid film in which the molecules are densely backed. This is a method in which a solid film is transferred and accumulated on the surface of a solid substrate, and the thin film formed on the substrate is called an LB film (for example, in the literature,
B, Blodgatt, J, Am, Chew.

Soc、、 55.1007 (1935)を参照)、
[K、 Fukuda他。
Soc, 55.1007 (1935)),
[K, Fukuda et al.

J、 Co11oid Interface Sci、
 54.430 (1976)]。
J, Co11oid Interface Sci,
54.430 (1976)].

LB膜の特長は、分子オーダーの超薄膜から、積層を繰
返すことにより任意の厚みの累積膜まで作成でき、かつ
分子配向の揃った平滑・均質な膜であることにある。従
ってLB膜は、種々のエレクトロニクス用材料として期
待され、炭素数16以上の直鎖脂肪酸ないしそのアルカ
リ土類金属塩。
The feature of the LB film is that it can be made from an ultra-thin film on the molecular order to a cumulative film of any thickness by repeated lamination, and is a smooth and homogeneous film with uniform molecular orientation. Therefore, LB films are expected to be used as materials for various electronics, and are suitable for use with linear fatty acids having 16 or more carbon atoms or their alkaline earth metal salts.

カドミウム塩のLB膜化は広く検討されている[たとえ
ば、福田清成、中原弘雄(分担執筆)、化学総説40<
分子集合体〉p82〜104゜1983、及びその文献
コ。しがしながら、これらの脂肪酸ないしその金属塩の
LB膜は力学強度。
LB film formation of cadmium salts has been widely studied [for example, Kiyonari Fukuda, Hiroo Nakahara (co-author), Chemistry Review 40
Molecular Assembly〉p82-104゜1983, and its literature. However, the LB film of these fatty acids or their metal salts has a high mechanical strength.

耐熱性等に乏しく、実用的でないという欠点がある。そ
こで重合性脂肪酸をLB膜化してから重合処理を施すか
、あるいは水面上で重合してからLB膜化する手法が考
案されているが(文献、同上)、該重合法では、重合時
に膜のひきつりやクラックの形成が甚だしく、基板への
移し取りが極めて困難である。
It has the disadvantage that it has poor heat resistance and is not practical. Therefore, methods have been devised in which polymerizable fatty acids are formed into an LB film and then subjected to polymerization treatment, or where polymerizable fatty acids are polymerized on the water surface and then formed into an LB film (reference, ibid.). Severe twitching and crack formation makes transfer to the substrate extremely difficult.

一方、高分子を用いてLB膜を作成しておき、これを基
板に累積していく方法が考えられるが、一般の高分子は
、希薄溶液に於いてさえも糸まり状の集合状態を有して
おり、水面上に展開したときに気体膜状態にならず、L
B膜化が困難であり、例外的にポリペプチドやポリイタ
コネートを用いることにより、高分子鎖が棒状構造をと
り、LB膜を作ることが報告されている[文献J、 H
On the other hand, it is possible to create an LB film using a polymer and accumulate it on a substrate, but general polymers have a thread-like aggregated state even in dilute solutions. When deployed on the water surface, it does not become a gas film, and the L
It is difficult to form a B film, and it has been reported that by exceptionally using polypeptide or polyitaconate, the polymer chains take a rod-like structure and create a LB film [References J, H
.

McAlear他、Symposium on VLS
I Technology。
McAlear et al., Symposium on VLS
I Technology.

Digest of Tech、 Paper、 82
 (1981)、に、Shigehara他、J、 A
mer、 Chem、 Soc、、 1237. Vo
l、109゜(1987)] 。
Digest of Tech, Paper, 82
(1981), Shigehara et al., J.A.
mer, Chem, Soc,, 1237. Vo
l, 109° (1987)].

更に各種の素子に#@縁層を設けるために、基板上に合
成高分子の溶液をスピンコートすることなどが試みられ
てきているが、絶縁層に求められている性能として、耐
熱温度は少なくとも200℃以上であり、熱的にも化学
的にも安定で、耐湿性や機械的・電気特性に優れたもの
でなければならず、これらの要求を満足する高分子は限
られ、例えば、ポリイミド、ポリエーテルスルホン、ポ
リフェニレンスルフィド、ポリスルホン、ポリフェニレ
ンオキシド、ポリエチレンテレフタレート等が知られて
いる。これら高分子を有機溶媒にとかして希薄溶液を作
成しておき、これを基板上にスピンコートした後、溶媒
を蒸発させて絶縁膜を作るのであるが、例えば、ポリイ
ミドやポリスルホンを溶かす溶媒としては、ジメチルア
セトアミドやN−メチルピロリドン等の極性溶媒が、し
かも高沸点溶媒であるため、蒸発速度が遅く、絶縁膜中
に残存する可能性が高いという欠点がある。またポリマ
ー溶液の粘度は比較的高く、均一でしかも平滑な膜を作
成するにはかなりの技術を要するのが現状である。
Furthermore, attempts have been made to spin-coat a synthetic polymer solution onto a substrate in order to provide a #@edge layer on various devices, but the performance required for the insulating layer is that the heat resistance is at least It must be 200℃ or higher, thermally and chemically stable, and have excellent moisture resistance and mechanical and electrical properties.There are only a limited number of polymers that meet these requirements, such as polyimide. , polyether sulfone, polyphenylene sulfide, polysulfone, polyphenylene oxide, polyethylene terephthalate, etc. are known. These polymers are dissolved in an organic solvent to create a dilute solution, which is spin-coated onto a substrate and then the solvent is evaporated to form an insulating film. Since polar solvents such as dimethylacetamide and N-methylpyrrolidone are high boiling point solvents, their evaporation rate is slow and there is a high possibility that they remain in the insulating film. Furthermore, the viscosity of polymer solutions is relatively high, and the current situation is that considerable technology is required to create a uniform and smooth film.

〈発明が解決しようとする課題〉 本発明の目的は、機械的、化学的に安定で、しかも耐熱
性を有する高分子超薄膜及びその製造法を提供すること
にある。
<Problems to be Solved by the Invention> An object of the present invention is to provide an ultra-thin polymer film that is mechanically and chemically stable and heat resistant, and a method for producing the same.

〈課題を解決するための手段〉 本発明によれば、メタクリル酸エステル重合体をスピン
コート法もしくはラングミュアー・ブロージェット(L
B)法により形成してなる膜厚10〜100・O入の高
分子超薄膜であって、前記メタクリル酸エステル重合体
が、下記一般式(1)(式中、Rは炭素数3〜12の枝
分かれアルキル基、炭素数3〜12のシクロアルキル基
、炭素数3〜14の環構造の置換基を有する炭素数2〜
6の置換アルキル基、前記環構造の置換基を有する炭素
数3〜1oの置換シクロアルキル基又はシロキサン系炭
化水素基を表わし、前記各々の基にはへテロ原子が含ま
れていてもよく、またハロゲン原子で置換されていても
よい)で示されるメタクリル酸エステルの反復単位を含
有することを特徴とする高分子超薄膜が提供される。
<Means for Solving the Problems> According to the present invention, a methacrylic acid ester polymer is coated using a spin coating method or Langmuir-Blowgett (L
B) An ultra-thin polymer film with a film thickness of 10 to 100·O formed by the method, wherein the methacrylic acid ester polymer has the following general formula (1) (wherein R is a carbon number of 3 to 12 a branched alkyl group, a cycloalkyl group having 3 to 12 carbon atoms, and a substituent having a ring structure having 3 to 14 carbon atoms.
6 substituted alkyl group, a substituted cycloalkyl group having 3 to 1 o carbon atoms or a siloxane hydrocarbon group having a substituent in the ring structure, and each of the above groups may contain a heteroatom, There is also provided an ultra-thin polymer film characterized by containing a repeating unit of methacrylic acid ester (which may be substituted with a halogen atom).

また、本発明によれば、前記メタクリル酸エステル重合
体0.1〜20mg/mQを含む溶液を、回転数100
0〜15000の範囲でスピンニー1−法により薄膜化
することを特徴とする高分子超薄膜の製造方法が提供さ
れる。
Further, according to the present invention, a solution containing 0.1 to 20 mg/mQ of the methacrylic acid ester polymer is heated at a rotational speed of 100.
A method for producing an ultra-thin polymer film is provided, which is characterized in that the film is made into a thin film using the spin knee 1-method in the range of 0 to 15,000.

さらに本発明によれば、前記メタクリル酸エステル重合
体0.1〜IQmg/mQを含む溶液を、水面上に展開
した後、圧力を加え、表面圧を3〜30mN/mに保ち
、固体膜状態とし、該固体膜を垂直浸漬法または水平付
着法により累積することを特徴とする高分子超薄膜の製
造方法が提供される。
Further, according to the present invention, a solution containing 0.1 to IQ mg/mQ of the methacrylic acid ester polymer is spread on the water surface, and then pressure is applied to maintain the surface pressure at 3 to 30 mN/m to form a solid film. Provided is a method for producing an ultra-thin polymer film, characterized in that the solid film is deposited by a vertical dipping method or a horizontal deposition method.

以下、本発明をさらに詳細に説明する。The present invention will be explained in more detail below.

本発明では、下記一般式(1) で示されるメタクリル酸エステルの反復単位を含有する
メタクリル酸エステル重合体を用いる。式中Rは炭素数
3〜12の枝分かれアルキル基、炭素数3〜12のシク
ロアルキル基、炭素数3〜14の環構造の置換基を有す
る炭素数2〜6の置換アルキル基、前記環構造の置換基
を有する炭素数3〜10の置換シクロアルキル基又はシ
ロキサン系炭化水素を表わす。前記枝分かれアルキル基
、前記シクロアルキル基、前記置換アルキル基、前記置
換シクロアルキル基及びシロキサン系炭化水素基には窒
素原子、酸素原子、リン原子、イオウ原子等のへテロ原
子が含まれていてもよく、またハロゲン原子で置換され
ていてもよい。
In the present invention, a methacrylic ester polymer containing repeating units of methacrylic ester represented by the following general formula (1) is used. In the formula, R is a branched alkyl group having 3 to 12 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, a substituted alkyl group having 2 to 6 carbon atoms having a substituent having a ring structure having 3 to 14 carbon atoms, or the ring structure described above. represents a substituted cycloalkyl group having 3 to 10 carbon atoms or a siloxane hydrocarbon having a substituent. Even if the branched alkyl group, the cycloalkyl group, the substituted alkyl group, the substituted cycloalkyl group, and the siloxane hydrocarbon group contain a heteroatom such as a nitrogen atom, an oxygen atom, a phosphorus atom, a sulfur atom, etc. It may also be substituted with a halogen atom.

前記一般式(1)で表わされる反復単位を有するメタク
リル酸エステルの重合体は、例えばメタクリル酸イソプ
ロピル、メタクリル酸−tert−ブチル、メタクリル
酸シクロヘキシル、メタクノル酸アダマンチル、メタク
リル酸−4−メチル−2−ペンチル等の炭化水素基を有
するメタクリル酸エステル;(トリメチルシリル)メタ
クリレート、3−トリス(トリメチルシロキシ)シリル
プロピルメタクリレート、3−((ペンタメチル)ジシ
ロキサニル)プロピルメタクリレート等のシロキサン系
炭化水素基を有するメタクリル酸エステル;1−ブトキ
シ−2−プロピルメタクリレート、2−シアノエチルメ
タクリレート、グリシジルメタクリレート、ジエチルホ
スホノメチルメタクリレート、2−メチルチオエチルメ
タクリレート等のへテロ原子を含有するメタクリル酸エ
ステル;パーフルオロオクチルエチルメタクリレート、
トリフルオロメチルメタクリレート、ペンタフルオロエ
チルメタクリレート、ヘキサフルオロイソプロピルメタ
クリレート、1−クロロイソプロピルメタクリレート等
のハロゲン原子で置換されたメタクリル酸エステル等の
単独重合体又は共重合体、あるいはメタクリル酸エステ
ルと1種々の共重合可能なモノマーとの共重合により得
られるメタクリル酸エステル重合体を好ましく用いるこ
とができる。前記一般式(I)で表されるメタクリル酸
エステルの反復単位を有するメタクリル酸エステル重合
体を製造するには、通常のラジカル重合法により、重合
又は共重合させることにより得ることができる。前記重
合又は共重合させる際の反応条件は、特に限定されるも
のではないが、好ましくは0〜100℃、2〜30時間
の範囲で反応させるのが望ましく、また得られるメタク
リル酸エステル重合体の分子量は10000〜200o
oooであるのが好ましい。前記共重合可能なモノマー
としては、例えば酢酸ビニル、プロピオン酸ビニル、カ
プロン酸ビニル、安息香酸ビニル、スチレン、α−メチ
ルスチレン、クロロメチルスチレン、メチルビニルエー
テル、n−ブチルエーテル、脂肪族又は芳香族アリルエ
ステル、アクリル酸又はメタクリル酸エステル、アクリ
ロニトリル、塩化ビニル、塩化ビニリデン、エチレン、
ブタジェン、クロロプレン、イソプレン、イソブチレン
等を好ましく挙げることができる。
Polymers of methacrylic acid esters having repeating units represented by the general formula (1) include, for example, isopropyl methacrylate, tert-butyl methacrylate, cyclohexyl methacrylate, adamantyl methacnolate, and 4-methyl-2-methacrylate. Methacrylic acid esters having a hydrocarbon group such as pentyl; Methacrylic acid esters having a siloxane hydrocarbon group such as (trimethylsilyl) methacrylate, 3-tris(trimethylsiloxy)silylpropyl methacrylate, and 3-((pentamethyl)disiloxanyl)propyl methacrylate. ; methacrylic acid ester containing a hetero atom such as 1-butoxy-2-propyl methacrylate, 2-cyanoethyl methacrylate, glycidyl methacrylate, diethylphosphonomethyl methacrylate, 2-methylthioethyl methacrylate; perfluorooctylethyl methacrylate;
Homopolymers or copolymers of methacrylic acid esters substituted with halogen atoms, such as trifluoromethyl methacrylate, pentafluoroethyl methacrylate, hexafluoroisopropyl methacrylate, 1-chloroisopropyl methacrylate, or various copolymers with methacrylic esters. A methacrylic acid ester polymer obtained by copolymerization with a polymerizable monomer can be preferably used. A methacrylic acid ester polymer having a repeating unit of methacrylic acid ester represented by the general formula (I) can be produced by polymerization or copolymerization using a conventional radical polymerization method. The reaction conditions for the polymerization or copolymerization are not particularly limited, but it is preferable to carry out the reaction at 0 to 100°C for 2 to 30 hours. Molecular weight is 10000~200o
ooo is preferable. Examples of the copolymerizable monomer include vinyl acetate, vinyl propionate, vinyl caproate, vinyl benzoate, styrene, α-methylstyrene, chloromethylstyrene, methyl vinyl ether, n-butyl ether, aliphatic or aromatic allyl ester. , acrylic acid or methacrylic acid ester, acrylonitrile, vinyl chloride, vinylidene chloride, ethylene,
Preferred examples include butadiene, chloroprene, isoprene, isobutylene, and the like.

また重合開始触媒としては、過酸化ベンゾイル、ジイソ
プロピルペルオキシカーボネートLーブチルペルオキシ
ー2ーエチルヘキサノエート、tret−ブチルペルオ
キシピバレート、tret−ブチルペルオキシジイソブ
チレート、過酸化ラウロイル、アゾビスイソブチロニト
リル等が挙げられる。重合開始剤の使用量は、原料モノ
マー100重量部に対して10重量部以下が好ましく、
さらに好ましくは5重量部以下である。
Examples of polymerization initiation catalysts include benzoyl peroxide, diisopropyl peroxycarbonate L-butyl peroxy-2-ethylhexanoate, tret-butylperoxypivalate, tret-butylperoxydiisobutyrate, lauroyl peroxide, azobisisobutyroyl Examples include nitrile. The amount of the polymerization initiator used is preferably 10 parts by weight or less per 100 parts by weight of the raw material monomer,
More preferably, it is 5 parts by weight or less.

本発明に用いるメタクリル酸エステル重合体中には、前
記一般式(1)で表わされるメタクリル酸エステルの反
復単位が60モル%以上含有させるのが好ましい。重合
体中のメタクリル酸エステルの反復単位が60モル%未
満の場合には,メタクリル酸エステル重合体の本来の性
質である剛直棒状構造が保持できず、高分子溶液中で糸
鞠となるため、スピンコートあるいはLB法によって均
一な薄膜とするのが困難であり、また熱的にも。
The methacrylic ester polymer used in the present invention preferably contains 60 mol% or more of the repeating unit of the methacrylic ester represented by the general formula (1). If the repeating unit of methacrylic acid ester in the polymer is less than 60 mol%, the rigid rod-like structure, which is the original property of the methacrylic acid ester polymer, cannot be maintained and it becomes stringy in the polymer solution. It is difficult to form a uniform thin film by spin coating or LB method, and it is also thermally difficult.

化学的にも不安定となる恐れがあるので好ましくない。It is not preferable because it may become chemically unstable.

更にまた薄膜自身の作製が困難であり、均一性が低下す
るので好ましくない。
Furthermore, it is difficult to produce the thin film itself, and the uniformity decreases, which is undesirable.

本発明において,メタクリル酸エステル重合体の超薄膜
を製造するには、前記メタクリル酸エステル重合体を特
定量含む溶液を,特定の回転数の範囲でスピンコートす
ることにより得ることができる。具体的には例えば、ま
ず、前記メタクリル酸エステル重合体を蒸散性有機溶媒
に溶解してメタクリル酸エステルの希薄溶液を調製する
。蒸散性有機溶媒としては、汎用の有機溶媒、例えばク
ロロホルム、二塩化エチレン、ベンゼン、トルエン、1
,1.2−トリクロロ−1,2.2−トリフルオロエタ
ン等を挙げることができる。また、メタクリル酸エステ
ル重合体の溶液濃度は、メタグリル酸エステル重合体、
0.1〜20mg/mQを含む溶液とする必要があり、
好ましくは,0.5〜3mg/mQの範囲に調製するこ
とにより、メタクリル酸エステル重合体の溶液を得るこ
とができる。
In the present invention, an ultra-thin film of a methacrylic ester polymer can be produced by spin coating a solution containing a specific amount of the methacrylic ester polymer at a specific rotation speed. Specifically, for example, first, the methacrylic ester polymer is dissolved in a transpirationable organic solvent to prepare a dilute solution of the methacrylic ester. As the evaporative organic solvent, general-purpose organic solvents such as chloroform, ethylene dichloride, benzene, toluene,
, 1,2-trichloro-1,2,2-trifluoroethane and the like. In addition, the solution concentration of methacrylic acid ester polymer, methacrylic acid ester polymer,
The solution must contain 0.1 to 20 mg/mQ,
Preferably, by adjusting the amount in the range of 0.5 to 3 mg/mQ, a solution of the methacrylic acid ester polymer can be obtained.

次に、前記メタクリル酸エステル重合体の溶液をスピン
コート法により、膜厚10〜1000人の超薄膜とする
ためには、スピンコーターの回転数を1000〜150
00とする必要がある。また、膜厚は、作業温度によっ
ても若干変化するが、前記各条件の下では、通常10〜
35°C程度の作業温度でスピンコートすることにより
所望の高分子超薄膜を製造することができる。
Next, in order to form an ultra-thin film with a thickness of 10 to 1000 by spin coating the solution of the methacrylic acid ester polymer, the rotational speed of the spin coater is set to 1000 to 150.
It needs to be set to 00. In addition, the film thickness varies slightly depending on the working temperature, but under each of the above conditions, it is usually 10 to 10.
A desired ultra-thin polymer film can be produced by spin coating at an operating temperature of about 35°C.

また、本発明において,メタクリル酸エステル重合体の
超薄膜を作製する他の方法としては、メタクリル酸エス
テル重合体を特定量含む溶液を、水面上に展開した後、
表面圧を特定圧力に保持し、固体膜状態として、該固体
膜を垂直浸漬法または水平付着法により累積することに
より得ることができる。具体的には例えば、メタクリル
酸エステル重合体を,水と混和しない蒸散性有機溶媒に
溶解して,メタクリル酸エステル重合体の希薄溶液を作
り、次いで清浄水面上にメタクリル酸エステル溶液を展
開して気体膜を形成する。蒸散性有機溶媒としては、汎
用の有機溶媒、例えばクロロホルム、二塩化エチレン、
ベンゼン、トルエン等を挙げることができ、メタクリル
酸エステル重合体をこれらの有機溶媒の希薄溶液とし,
水面上に静かに展開する。水面上への展開に際しては,
メタクリル酸エステル重合体の溶液の濃度及び溶剤の種
類に注意を払う必要がある。展開する溶液の濃度は、0
.1〜IQmg/−の範囲であり、好ましくは、0.1
〜3mg/mQの範囲である。水面上へ展開して溶剤を
蒸発させると,各々の分子が互いに相互作用しない表面
圧1 m N / m以下の気体膜が得られる。以上の
ようにして得られた気体膜に対して、例えば水平方向か
ら圧力を加え,表面圧を3〜30mN/mに保ち、固体
膜状態とする。どの程度の表面圧に設定するかは、用い
るメタクリル酸エステル重合体の種類に依存し,あらか
しめ表面圧−面積( F A )等温曲線を求めておき
、その固体膜に相当するFA曲線の鋭い立ち上がり部分
の表面圧に設定するのが好ましい。次に、得られた固体
膜を垂直浸漬法または水平付着法により基板上に累積す
ることにより高分子超薄膜を製造することができる。
In addition, in the present invention, as another method for producing an ultra-thin film of methacrylic acid ester polymer, after spreading a solution containing a specific amount of methacrylic acid ester polymer on the water surface,
The surface pressure can be maintained at a specific pressure and the solid film state can be obtained by accumulating the solid film by a vertical dipping method or a horizontal deposition method. Specifically, for example, a methacrylate ester polymer is dissolved in a water-immiscible evaporative organic solvent to create a dilute solution of the methacrylate ester polymer, and then the methacrylate ester solution is spread on the surface of clean water. Forms a gas film. As the transpirationable organic solvent, general-purpose organic solvents such as chloroform, ethylene dichloride,
Examples include benzene, toluene, etc., and the methacrylic acid ester polymer is made into a dilute solution of these organic solvents,
Spread quietly on the water surface. When deploying on the water surface,
It is necessary to pay attention to the concentration of the methacrylic acid ester polymer solution and the type of solvent. The concentration of the developing solution is 0
.. It ranges from 1 to IQmg/-, preferably 0.1
~3 mg/mQ. When it is spread on the water surface and the solvent is evaporated, a gas film with a surface pressure of 1 mN/m or less is obtained in which the molecules do not interact with each other. Pressure is applied, for example, from the horizontal direction to the gas film obtained as described above, and the surface pressure is maintained at 3 to 30 mN/m to form a solid film state. How much surface pressure to set depends on the type of methacrylate ester polymer used. Obtain a preliminary surface pressure-area (FA) isotherm curve, and then calculate the sharpness of the FA curve corresponding to the solid film. It is preferable to set the surface pressure to the surface pressure of the rising portion. Next, the obtained solid film can be deposited on a substrate by a vertical dipping method or a horizontal deposition method to produce an ultra-thin polymer film.

本発明において、高分子超薄膜の均質性および平滑性は
、基板表面の状態に影響されるが、肉眼観察で研磨痕跡
が認められない程度のミラー表面であれば十分である。
In the present invention, the homogeneity and smoothness of the ultra-thin polymer film are affected by the condition of the substrate surface, but it is sufficient that the mirror surface has no polishing marks when observed with the naked eye.

各種電気素子を形成する場合に基板として特に有用かつ
累積しやすい物を例示すると、Al、Si、Ge、Ni
、Fe、Co。
Examples of materials that are particularly useful and easy to accumulate as substrates when forming various electric elements include Al, Si, Ge, and Ni.
, Fe, Co.

Cu、P t、Au、希土類金属、金属酸化物および金
属酸化物半導体、例えばSin、、Ni○。
Cu, Pt, Au, rare earth metals, metal oxides and metal oxide semiconductors such as Sin, Ni○.

SnO2,In201、インジウムスズネサガラス(以
下IT○ネサと略す)、酸化スズネサガラス(以下ネサ
と略す)等の、化合物半導体1例えば、ガリウム砒素、
ガリウムリン、インジウムリン等の、カルコゲン類、例
えばセレン化亜鉛、硫化亜鉛等の遷移金属セレン化物、
硫化物、W○、系カルコゲニド、vO2系カルコゲニド
、ポリカーボネート、ポリエチレンテレフタレート、ポ
リエチレン、ポリプロピレン等を挙げることができるが
Compound semiconductors 1 such as SnO2, In201, indium tin nesa glass (hereinafter abbreviated as IT○nesa), tin oxide nesa glass (hereinafter abbreviated as nesa), etc. For example, gallium arsenide,
Chalcogens such as gallium phosphide and indium phosphide; transition metal selenides such as zinc selenide and zinc sulfide;
Examples include sulfide, W○, chalcogenide, vO2 chalcogenide, polycarbonate, polyethylene terephthalate, polyethylene, and polypropylene.

これらのみに限定されるものではない。It is not limited only to these.

〈発明の効果〉 本発明の高分子超薄膜は、メタクリル酸エステル重合体
を必須の構成要件とし、スピンコート法もしくはラング
ミュアー・ブロージェット法により得られるので、化学
的安定性、絶縁性および機械的強度を有しており、各種
の電気素子(MIM。
<Effects of the Invention> The ultra-thin polymer film of the present invention has a methacrylic acid ester polymer as an essential component and is obtained by a spin coating method or a Langmuir-Blowgett method. It has high strength and is suitable for various electrical elements (MIM.

MIS、SIS、TFT)、パターニング(液晶基板(
ラビング処理)、マイクロリソグラフィー)、光学素子
(光導波路、非線形三次素子用バインダー樹脂)等の分
野に応用が可能である。
MIS, SIS, TFT), patterning (liquid crystal substrate (
It can be applied to fields such as rubbing treatment), microlithography), optical elements (optical waveguides, binder resin for nonlinear tertiary elements), etc.

〈実施例〉 以下実施例により本発明をより詳細に説明するが、実施
例により発明の範囲が限定されるものではない。
<Examples> The present invention will be explained in more detail with reference to Examples below, but the scope of the invention is not limited by the Examples.

失」1引り 各種濃度のポリ(メタクリル酸−tert−ブチル)(
以下PtBMAと略す)のクロロホルム溶液1mQを、
2.5X5cmのガラス基板に滴下し、スピンコート(
回転時間は80秒)して超薄膜を作成した。膜厚は蝕針
法(Sloan、Dec−TacllA)により求めた
。膜厚と回転数の関係を第1図に示す。
poly(tert-butyl methacrylate) (
1 mQ of a chloroform solution of PtBMA (hereinafter abbreviated as PtBMA),
Drop onto a 2.5 x 5 cm glass substrate and spin coat (
The rotation time was 80 seconds) to create an ultra-thin film. The film thickness was determined by the eroded needle method (Sloan, Dec-TacllA). Figure 1 shows the relationship between film thickness and rotation speed.

尖庭災に旦 実施例1のPtBMAの代わりにポリ(メタクリル酸シ
クロヘキシル)(実施例2)を、ポリ(メタクリル酸シ
クロヘキシル)(実施例3)を、ポリ(メタクリル酸へ
キサフルオロイソプロピル)(実施例4)を、ポリ(メ
タクリル酸クロロイソプロピル)(実施例5)をそれぞ
れ用いて表1に示す条件でガラス基板上に超薄膜を作成
した。超表  1 38本・・1,1.2−トリクロロ−1,2,2−トリ
フルオロエタンス】11庄 内面積15X50a(、深さ2cmのテフロン製1へラ
フに純水を満たし、室温を20’Cに設定した。
For Senniwa disaster, poly(cyclohexyl methacrylate) (Example 2), poly(cyclohexyl methacrylate) (Example 3), and poly(hexafluoroisopropyl methacrylate) (execution example) were used instead of PtBMA in Example 1. Example 4) and poly(chloroisopropyl methacrylate) (Example 5) were used to form ultrathin films on a glass substrate under the conditions shown in Table 1. Super Table 1 38 bottles...1,1,2-trichloro-1,2,2-trifluoroethane] 11 Shonai area 15 x 50a (, 2cm deep Teflon bowl roughly filled with pure water, heated to room temperature for 20' It was set to C.

濃度0.5mg/mQのポリ(メタクリル酸イソプロピ
ル)(以下PiPMAと略す)のクロロホルム溶液50
μmを静かに水面上にたらし、溶媒を蒸発させた。表面
圧を検知しながら、トラフ上に設置された長さ20cm
のテフロン製バリアーを5m/minの速度で平行移動
させて面積を狭くして、表面圧と分子占有面積の関係(
FA曲線)を求めた。第2図にPiPMAのFA曲線を
示す。この曲線より、LB膜の累積には急激な立ち上が
りを示す5〜20mN/mの表面圧が適当であることが
判明した。表面圧を15mN/mとし、LB膜を形成さ
せ、ガラス基板上に垂直浸漬法により49層累積して高
分子超薄膜を基板上に作成した。表面圧、暦数、膜厚を
表2に示す。
A chloroform solution of poly(isopropyl methacrylate) (hereinafter abbreviated as PiPMA) with a concentration of 0.5 mg/mQ
μm was gently dropped onto the water surface and the solvent was allowed to evaporate. 20cm long installed on the trough while sensing surface pressure
The relationship between surface pressure and molecule occupied area (
FA curve) was determined. FIG. 2 shows the FA curve of PiPMA. From this curve, it was found that a surface pressure of 5 to 20 mN/m, which shows a rapid rise, is appropriate for the accumulation of the LB film. An LB film was formed at a surface pressure of 15 mN/m, and 49 layers were accumulated on a glass substrate by a vertical dipping method to create an ultra-thin polymer film on the substrate. Table 2 shows the surface pressure, calendar number, and film thickness.

去111Lニュ」一 実施例6のPiPMAの代わりに、ポリ(メタクリル酸
tert−ブチル)(実施例7)を、ポリ(メタクリル
酸シクロヘキシル)(実施例8)を、ポリ(メタクリル
酸クロロプレン)(実施例9)を、ポリ(メタクリル酸
へキサフルオロイソプロピル)(実施例10)をそれぞ
れ用いて、表2に示す条件で実施例6と同様に一定表面
圧でLB膜を形成した後、ガラス基板上に垂直浸漬法に
より累積して高分子超薄膜を作成した0表2に表面圧、
暦数、膜厚を夫々示す。
In place of PiPMA in Example 6, poly(tert-butyl methacrylate) (Example 7), poly(cyclohexyl methacrylate) (Example 8), and poly(chloroprene methacrylate) (Example 8) were used instead of PiPMA in Example 6. Example 9) and poly(hexafluoroisopropyl methacrylate) (Example 10) were used to form an LB film at a constant surface pressure in the same manner as in Example 6 under the conditions shown in Table 2. Table 2 shows the surface pressure,
Calendar number and film thickness are shown respectively.

尖庭旌よ上 実施例6と同様にして、PiPMAのLB@を形成した
後、ガラス基板上に、水平付着法により。
After forming a PiPMA LB@ in the same manner as in Example 6, it was deposited on a glass substrate by the horizontal deposition method.

累積して高分子超薄膜を作製した。表面圧、層数、膜厚
を表2に示す。
An ultra-thin polymer film was produced by accumulating the results. Table 2 shows the surface pressure, number of layers, and film thickness.

人−一一里People - 11 miles

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1において行なったスピンコーターの回
転数と、本発明の高分子超薄膜の膜厚との関係を示すグ
ラフ。第2図は実施例6で行なったメタクリル酸イソプ
ロピル重合体の20°Cにおける表面圧−面積曲線を示
すグラフである。 第1図 特許出頭人 同
FIG. 1 is a graph showing the relationship between the rotation speed of the spin coater used in Example 1 and the film thickness of the ultra-thin polymer film of the present invention. FIG. 2 is a graph showing the surface pressure-area curve at 20°C of the isopropyl methacrylate polymer obtained in Example 6. Figure 1 Patent applicant

Claims (1)

【特許請求の範囲】 1)メタクリル酸エステル重合体をスピンコート法もし
くはラングミュアー・ブロージェット(LB)法により
形成してなる膜厚10〜1000Åの高分子超薄膜であ
って、前記メタクリル酸エステル重合体が、下記一般式
( I ) ▲数式、化学式、表等があります▼・・・( I ) (式中、Rは炭素数3〜12の枝分かれアルキル基、炭
素数3〜12のシクロアルキル基、炭素数3〜14の環
構造の置換基を有する炭素数2〜6の置換アルキル基、
前記環構造の置換基を有する炭素数3〜10の置換シク
ロアルキル基又はシロキサン系炭化水素基を表わし、前
記各々の基にはヘテロ原子が含まれていてもよく、また
ハロゲン原子で置換されていてもよい)で示されるメタ
クリル酸エステルの反復単位を含有することを特徴とす
る高分子超薄膜。 2)請求項1記載のメタクリル酸エステル重合体0.1
〜20mg/mlを含む溶液を、回転数1000〜15
000の範囲でスピンコート法により薄膜化することを
特徴とする請求項1記載の高分子超薄膜の製造方法。 3)請求項1記載のメタクリル酸エステル重合体0.1
〜10mg/mlを含む溶液を、水面上に展開した後、
圧力を加え、表面圧を3〜30mN/mに保ち、固体膜
状態とし、該固体膜を垂直浸漬法または水平付着法によ
り累積することを特徴とする請求項1記載の高分子超薄
膜の製造方法。
[Scope of Claims] 1) An ultra-thin polymer film with a thickness of 10 to 1000 Å formed by forming a methacrylic acid ester polymer by a spin coating method or a Langmuir-Blowgett (LB) method, the polymer film having a thickness of 10 to 1000 Å; The polymer has the following general formula (I) ▲ Numerical formula, chemical formula, table, etc. ▼... (I) (In the formula, R is a branched alkyl group having 3 to 12 carbon atoms, or a cycloalkyl group having 3 to 12 carbon atoms. group, a substituted alkyl group having 2 to 6 carbon atoms having a substituent having a ring structure having 3 to 14 carbon atoms,
Represents a substituted cycloalkyl group or siloxane-based hydrocarbon group having 3 to 10 carbon atoms having a substituent in the ring structure, each of the groups may contain a hetero atom, and is not substituted with a halogen atom. An ultra-thin polymer film characterized by containing a repeating unit of methacrylic acid ester represented by 2) 0.1 methacrylic acid ester polymer according to claim 1
A solution containing ~20 mg/ml was heated at a rotation speed of 1000 to 15
2. The method for producing an ultra-thin polymer film according to claim 1, wherein the thin film is formed by spin coating to a range of 0.000000. 3) 0.1 methacrylic acid ester polymer according to claim 1
After spreading a solution containing ~10 mg/ml on the water surface,
The production of the ultra-thin polymer film according to claim 1, wherein pressure is applied to maintain the surface pressure at 3 to 30 mN/m to form a solid film, and the solid film is accumulated by a vertical dipping method or a horizontal deposition method. Method.
JP29512189A 1989-10-03 1989-11-15 Very thin polymer film and its production Pending JPH03157163A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP29512189A JPH03157163A (en) 1989-11-15 1989-11-15 Very thin polymer film and its production
US07/590,908 US5209847A (en) 1989-10-03 1990-10-01 Ultrathin membrane of polymethacrylate or polycrotonate and device provided with ultrathin membrane
CA002026702A CA2026702C (en) 1989-10-03 1990-10-02 Ultrathin membrane of polymethacrylate or polycrotonate and device provided with ultrathin membrane
DE69024736T DE69024736T2 (en) 1989-10-03 1990-10-04 Ultra-thin membrane made of polymethacrylate or polycrotonate and device provided with it
EP90119076A EP0421435B1 (en) 1989-10-03 1990-10-04 Ultrathin membrane of polymethacrylate or polycrotonate and device provided with ultrathin membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29512189A JPH03157163A (en) 1989-11-15 1989-11-15 Very thin polymer film and its production

Publications (1)

Publication Number Publication Date
JPH03157163A true JPH03157163A (en) 1991-07-05

Family

ID=17816562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29512189A Pending JPH03157163A (en) 1989-10-03 1989-11-15 Very thin polymer film and its production

Country Status (1)

Country Link
JP (1) JPH03157163A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285617A (en) * 2007-05-21 2008-11-27 Institute Of Physical & Chemical Research Preparation of polymer thin film and polymer thin film
JP5681488B2 (en) * 2008-06-10 2015-03-11 株式会社カネカ Fluororesin film and molded product including the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008285617A (en) * 2007-05-21 2008-11-27 Institute Of Physical & Chemical Research Preparation of polymer thin film and polymer thin film
JP5681488B2 (en) * 2008-06-10 2015-03-11 株式会社カネカ Fluororesin film and molded product including the same
US9074058B2 (en) 2008-06-10 2015-07-07 Kaneka Corporation Fluororesin film and fluororesin-laminated acrylic resin film
US10253143B2 (en) 2008-06-10 2019-04-09 Kaneka Corporation Fluororesin film and fluororesin-laminated acrylic resin film

Similar Documents

Publication Publication Date Title
Rodríguez et al. Helical sense selective domains and enantiomeric superhelices generated by Langmuir–Schaefer deposition of an axially racemic chiral helical polymer
EP0272937A2 (en) Switching device
JP5233789B2 (en) Pattern formation method
JPS62572A (en) Thin film of fluoroorganic substance
WO2002097524A1 (en) Polyimides for anchoring liquid crystals, display devices including same and method for the preparation of said devices
JPH03157163A (en) Very thin polymer film and its production
JP2816699B2 (en) Method for producing ultra-thin polymer film
JPH03292332A (en) Ultrathin polymer film and its production
DK164357B (en) LAYERED ELEMENT AND PROCEDURE FOR MANUFACTURING THERE, AND THE USE OF THIS ELEMENT
JPH03178369A (en) Ultrathin polymer membrane and manufacture thereof
JP2008115286A (en) Polymer membrane comprising fullerene arranged regularly
JPH03156926A (en) Electric element
US5209847A (en) Ultrathin membrane of polymethacrylate or polycrotonate and device provided with ultrathin membrane
KR20090016918A (en) Metal nanoparticle deposition method using block copolymers micelles
JPH02214731A (en) Polymeric oriented film substrate
JPH02266930A (en) Electric element
JPH03120721A (en) Electric element
JPS621701A (en) Production of organic ultrathin membrane
JP2791583B2 (en) Liquid crystal alignment film
JPH01313520A (en) Preparation of thin film of polymer
JPH03291933A (en) Electric element
Timmermans et al. Influence of heterogeneity on the chiral expression of star-shaped conjugated polymers
JP3781853B2 (en) Charge transfer complex polymer alternating cumulative ultrathin film and method for producing the same
JPH1036528A (en) Aromatic polyester thin film and its production
JPS61164676A (en) Preparation of siloxane ultra-thin film