JPH03157107A - Silica-based liquid flocculant and its production - Google Patents

Silica-based liquid flocculant and its production

Info

Publication number
JPH03157107A
JPH03157107A JP29637189A JP29637189A JPH03157107A JP H03157107 A JPH03157107 A JP H03157107A JP 29637189 A JP29637189 A JP 29637189A JP 29637189 A JP29637189 A JP 29637189A JP H03157107 A JPH03157107 A JP H03157107A
Authority
JP
Japan
Prior art keywords
silica
acid
soluble
dissolved
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29637189A
Other languages
Japanese (ja)
Other versions
JP2913189B2 (en
Inventor
Tsutomu Nishimura
西村 勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29637189A priority Critical patent/JP2913189B2/en
Publication of JPH03157107A publication Critical patent/JPH03157107A/en
Application granted granted Critical
Publication of JP2913189B2 publication Critical patent/JP2913189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

PURPOSE:To obtain the silica-based liq. flocculant excellent in flocculating effect by using a silica-alumina-calcium soln. obtained by dissolving a material contg. acid-soluble silica, acid-soluble alumina and acid-soluble calcium in acid as the essential component of the flocculant. CONSTITUTION:The material such as slag contg. the acid-soluble silica, alumina and calcium is dissolved in reducing acid or neutral acid to obtain a silica- alumina-calcium soln. which is used as the essential component of the flocculant. The flocculant is polymerized and gelled in weakly alkaline water due to the presence of salt. When the flocculant is gelled, the metal cation, ion of an alkaline-earth metal such as Ca, part of anion, surfactant, etc., dissolved in the water are combined with silica, integrally polymerized and gelled. The fine particles of protein, fat, etc., suspensoid, suspended matter, etc., are adsorbed by the silica, integrally polymerized, gelled and separated from the water. The silica-based liq. flocculant can be preserved for a long period by holding its pH at about 2.5-3.5 or decreasing the CaO concn. in the liq.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、水中に含有される水中混在物、即ち各種の熔
解物質や微粒子、懸濁物質等の抽出、凝集、除去に使用
される新規なシリカ系凝集液及び安定性に優れた該凝集
液を製造する新規な方法に係り、特に水中に溶解したモ
ノマーシリカの重合・ゲル化現象とA 6 +3やCa
42等による該現象の促進、及びAf”3やCa +2
による化学反応や吸着用架との相乗作用により、優れた
抽出・凝集効果を発揮するシリカ系凝集液及びその製法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is a novel method for extracting, coagulating, and removing contaminants contained in water, such as various dissolved substances, fine particles, and suspended substances. The present invention relates to a novel method for producing a silica-based flocculant and an excellently stable flocculant, in particular the polymerization/gelation phenomenon of monomer silica dissolved in water, A 6 +3 and Ca
42, etc., and Af”3 and Ca +2
This invention relates to a silica-based flocculating liquid that exhibits excellent extraction and flocculating effects through chemical reactions and synergistic effects with adsorption racks, and a method for producing the same.

[従来の技術] 従来、汚水や各種廃水中の溶解物質(イオン類)や有機
、無機の微粒子、浮遊物質等の抽出や凝集、除去には、
主としてAJ凝集剤やFe凝集剤及び高分子凝集剤が用
いられている。
[Conventional technology] Conventionally, extraction, coagulation, and removal of dissolved substances (ions), organic and inorganic particles, suspended substances, etc. from sewage and various wastewaters have been carried out using
Mainly AJ flocculants, Fe flocculants, and polymer flocculants are used.

この内A7!凝集剤(パンク、蕃土)は、A/の水酸化
物生成にかかわる凝集効果のみを利用したもので、対象
水のpHが中性付近にある場合に限って有効であり、酸
性水や強アルカリ水に対して効果を発現できない。従っ
て、その添加前後にpH調節(含OH−供給)操作が必
要になるし、また有機高分子凝集剤添加による凝集の促
進が必要である。
A7 of these! Flocculants (Punk, Bando) utilize only the flocculating effect related to hydroxide production of A/, and are effective only when the pH of the target water is around neutral, and is effective against acidic water and strong No effect on alkaline water. Therefore, pH adjustment (OH-containing supply) operation is required before and after the addition, and it is also necessary to promote flocculation by adding an organic polymer flocculant.

しかも、得られたスラッジの脱水性も悪く、その処理も
大変である。更に、イオン吸着に基づくものであるため
、水中のPO4′2、so4”2、HCO3−等の陰イ
オン類や、界面活性剤、エマルジョン、石灰廃水、セメ
ント廃水等の懸濁物質の抽出や凝集、除去には不向きで
ある。
Moreover, the dehydration properties of the obtained sludge are poor, and its treatment is difficult. Furthermore, since it is based on ion adsorption, it is effective for extraction and coagulation of anions such as PO4'2, so4"2, and HCO3- in water, as well as suspended solids such as surfactants, emulsions, lime wastewater, cement wastewater, etc. , is not suitable for removal.

一方、Fe系凝集剤もAe凝集剤と同様に水酸化物生成
に伴う凝集効果を発現させるのみであり、なお悪いこと
には、処理後水中にFe+2、Fe”を残留させる欠点
を有する。この残留イオンは、凝集剤添加後にOH−を
添加して液をアルカリ性にしても十分には除去できない
On the other hand, like the Ae flocculant, the Fe-based flocculant only exhibits the flocculating effect associated with hydroxide production, and what is worse is that it leaves Fe+2 and Fe'' in the water after treatment. The residual ions cannot be sufficiently removed even if the solution is made alkaline by adding OH- after adding the flocculant.

しかも、両者とも高分子凝集剤の使用が不可欠であるが
、高分子凝集剤は特に高い親水性を持つ故に、その一部
が自然界へ処理水とともに排出される危惧が持たれてい
る。
Moreover, in both cases, it is essential to use a polymer flocculant, but since the polymer flocculant has particularly high hydrophilicity, there is a fear that a part of it will be discharged into the natural world together with the treated water.

AN凝集剤、Fe凝集剤、高分子凝集剤には、上記の如
き不便さがあり、且つ特定の抽出、凝集対象についての
み有効である。従って処理コスト(スラッジ処理を含む
)も高く、微妙な管理が必要であり、更に高分子凝集剤
の環境への影響も無視できない。
AN flocculants, Fe flocculants, and polymer flocculants have the above-mentioned inconveniences, and are effective only for specific extraction and flocculation targets. Therefore, treatment costs (including sludge treatment) are high, delicate management is required, and the impact of polymer flocculants on the environment cannot be ignored.

そこで本発明者は、溶解したモノマーシリカが水溶液中
でイオン反応により重合し続いてゲル化する過程におい
て、溶解イオン類や浮遊物質とシリカが結合し或いはこ
れらを吸着する現象を利用した水中混在物の抽出・凝集
方法を開発した(特願平1−136898号)。そして
、この方法に用いる熔解シリカの一種として高濃度の酸
溶解シリ、カーアルミナ溶液を使用する方法を開発した
Therefore, the present inventors have developed a system for creating a solution for water inclusions that utilizes the phenomenon in which dissolved ions and suspended substances and silica combine with or adsorb them during the process in which dissolved monomer silica polymerizes in an aqueous solution through an ionic reaction and then gels. (Japanese Patent Application No. 1-136898). Then, we developed a method that uses a highly concentrated acid-dissolved silica, car alumina solution as a type of fused silica.

[発明が解決しようとする課N] この高濃度の酸溶解シリカーアルミナ溶液は、汚水特に
微酸性領域において少量(比)で混在物の抽出・凝集を
良好に行なうが、比較的短時間にゲル化するなど安定性
に欠ける難点があった。
[Problem N to be solved by the invention] This highly concentrated acid-dissolved silica alumina solution can effectively extract and coagulate contaminants in a small amount (ratio) of wastewater, especially in a slightly acidic region, but it can The problem was that it lacked stability, such as gelation.

即ち、この酸溶解シリカーアルミナ溶液は、鉱滓粉末を
希硫酸で熔解した上澄み液であり、実質上大過剰のA 
I +3及びCa +2等を含有しており、熔解シリカ
の+(”、OH−供与による重合進行の平行点とみられ
るpH2,0に維持してもシリカの重合−ゲル化が進行
して短時間で凝固する欠点があった。
That is, this acid-dissolved silica alumina solution is a supernatant liquid obtained by dissolving mineral slag powder with dilute sulfuric acid, and contains substantially a large excess of A.
Contains I +3 and Ca +2, etc., and even if the pH is maintained at 2.0, which is considered to be the parallel point of polymerization progress by +(", OH- donation of fused silica), silica polymerization-gelation progresses for a short time. It had the disadvantage of solidifying.

[課題を解決するための手段] そこで本発明者は、酸溶解シリカ−アルミナ溶液につい
て更に研究を続け、安定化する技術の開発に成功した。
[Means for Solving the Problems] Therefore, the present inventor continued research on the acid-dissolved silica-alumina solution and succeeded in developing a stabilizing technique.

即ち、本発明のシリカ系凝集液は、鉱滓等の酸可溶性シ
リカや酸可溶性アルミナ、酸可溶性カルシウムを含有す
る資材を希硫酸や希塩酸等で熔解して得られるシリカ−
アルミナ−カルシウム溶液を主成分とする。また、その
長期保存性を確保するために、溶解液のpl+を2.5
〜3.5程度に調節したり、溶解液中の熔解カルシウム
量を減少させたりするものである。
That is, the silica-based agglomerate of the present invention is a silica-based agglomerate obtained by melting a material containing acid-soluble silica, acid-soluble alumina, or acid-soluble calcium, such as mineral slag, with dilute sulfuric acid, dilute hydrochloric acid, or the like.
Main component is alumina-calcium solution. In addition, in order to ensure its long-term storage stability, the pl+ of the solution was adjusted to 2.5.
The amount of dissolved calcium in the solution is adjusted to about 3.5 or lower.

シリカ(SiO2)は、水中に熔解するとOH−と結合
(SiOH)しているのが常と考えられており、特に熔
解したシリカが1100ppを越えるとS t  (O
H) 4  (モノマーシリカ、モノ珪酸、珪酸小量体
)の生成が促進されると言われている(The Che
mistry of 5ilicon : Ra1pf
 K、IIer)。
It is generally believed that when silica (SiO2) is dissolved in water, it is bonded to OH- (SiOH), and in particular, when the amount of dissolved silica exceeds 1100 pp, S t (O
H) 4 (monomer silica, monosilicic acid, small silicic acid) is said to be promoted (The Che
mistry of 5ilicon: Ra1pf
K, IIer).

このモノマーシリカは、ヒドロシルの形で水中に存在し
、他のイオン類と異なる特殊な挙動やイオン反応をする
ことが知られている。
This monomer silica exists in water in the form of hydrosil, and is known to exhibit special behavior and ionic reactions that differ from other ions.

即ち、モノマーシリカは、酸性水中にあってシラノール
化するとともに重合−ゲル化が進行し、特に二重電荷を
持つ(二極性)ことにより、■、Oの各電荷を持つ物質
を吸着することは既知である。但し、反応速度はpH2
〜7の範囲においてはOH−イオン濃度に比例し、p1
12以下では水素イオン濃度に比例して無水化が進行す
ると言われている。またFIH4〜6近辺の微酸性域で
は粒子成長をとげ、粒子集合とゲル化が同時進行的な形
で急速に進行する。
In other words, monomer silica undergoes silanolization and polymerization/gelation in acidic water, and in particular, because it has double charges (dipolar), it cannot adsorb substances with each charge of ■ and O. Known. However, the reaction rate is pH2
In the range of ~7, it is proportional to the OH- ion concentration, and p1
It is said that when the hydrogen ion concentration is below 12, dehydration progresses in proportion to the hydrogen ion concentration. Further, in the slightly acidic region around FIH 4 to 6, particle growth is achieved, and particle aggregation and gelation rapidly proceed in a simultaneous manner.

また、アルカリ性水中ではp)19以上ではポリマーシ
リカの解重合が起こるとも言われているが、弱アルカリ
水中では、塩の存在により重合→ゲル化が進行すると言
われている。これは、モノマーシリカが極めて不安定で
縮合(イオン反応)し易い性質を持っており、濃度や温
度、P T(にもよるが、順次重合(縮合)して二量体
、三量体とポリマー化が進み、シロキサン結合によりポ
リマーシリカ(ポリシリカ)を形成することによる。縮
合反応の進行に連れてH+が放出され、熔解シリカの重
合−ゲル化を急速に促進させる方向(ρpm 4〜6近
辺)にP Hを動かすため熔解シリカのゲル化はさらに
促進される。
Furthermore, in alkaline water, it is said that depolymerization of polymer silica occurs at p)19 or higher, but in weakly alkaline water, polymerization → gelation is said to proceed due to the presence of salt. This is because the monomer silica has the property of being extremely unstable and prone to condensation (ionic reaction), and depending on the concentration, temperature, and P T ( Polymerization progresses to form polymer silica (polysilica) through siloxane bonds. As the condensation reaction progresses, H+ is released, rapidly promoting polymerization and gelation of the fused silica (around ρpm 4 to 6). ), gelation of fused silica is further promoted.

このゲル化に際し、水中に含有されているZn、Pb、
As等の金属陽イオン、Ca等のアルカリ土類金属イオ
ン、p−3等の一部の陰イオン、カチオン界面活性剤等
の溶解物質がシリカと結合して一体的に重合−ゲル化(
抽出)し、また蛋白質や脂肪等の微粒子や懸濁物質、浮
遊物質等がシリカに吸着されて一体的に重合−ゲル化(
凝集)し、その結果、これらの水中混在物が水と分離さ
れる。
During this gelation, Zn, Pb, and
Metal cations such as As, alkaline earth metal ions such as Ca, some anions such as p-3, and dissolved substances such as cationic surfactants combine with silica to integrally polymerize and form a gel (
In addition, fine particles such as proteins and fats, suspended solids, suspended solids, etc. are adsorbed to the silica and integrally polymerize and gel (
flocculation), so that these aqueous contaminants are separated from the water.

この現象を汚水浄化等に利用するのが、本発明である。The present invention utilizes this phenomenon for purposes such as purifying sewage.

しかも、ゲル化したシリカは安定性が高く、自然状態で
の逆抽出は起こらない特性がある。
Furthermore, gelled silica is highly stable and has the characteristic that back extraction does not occur in its natural state.

更に、モノマーシリカを含む溶液にA I +3、Ca
32、M g +2等の陽イオン類が存在すると重合−
ゲル化反応は急速に進行することが本発明者の前記出願
により明らかにされた。但し、AN2りは単独でも重合
−ゲル化を促進するが、Ca +2やM g ”’はA
 N +3と共存して初めて大きな効果を奏する。
Furthermore, A I +3, Ca
32, polymerization occurs when cations such as M g +2 are present.
The above-mentioned application by the present inventor revealed that the gelation reaction progresses rapidly. However, although AN2 alone promotes polymerization and gelation, Ca +2 and M g "'
It will only have a great effect if it coexists with N+3.

これは、A I +3がシリカの重合体内でシリカと分
子レベルで入れ換わる所謂インターアクションの結果生
じたアルミナ変性によるもので、シリカと結合して複合
沈澱物となり、と同時に大量のH+を生成させる現象に
由来するものと思われる。
This is due to alumina modification resulting from so-called interaction in which A I +3 replaces silica within the silica polymer at the molecular level, and combines with silica to form a composite precipitate, while simultaneously producing a large amount of H+. This seems to be due to the phenomenon.

(−5i OH)m +Al”3= (−3iOH)m−n  ・ (−31o)nAl◆3
 +n H+しかも、Al”3はpH>4では水中のO
H−と結合して水酸化アルミニウムを形成し、その際、
水中の浮遊物質を吸着したり、リン酸イオン、その他陽
イオンを吸着して沈澱する。
(-5iOH)m +Al"3= (-3iOH)m-n ・ (-31o)nAl◆3
+n H+ Moreover, Al”3 is O in water at pH > 4.
Combines with H- to form aluminum hydroxide, where
It adsorbs suspended substances in water, phosphate ions, and other cations and precipitates.

一方、Ca ’やM g ’はHCO3−やSo、1″
2と化学結合して難熔解性沈澱物を生成して凝集沈澱効
果を高めたり、それらを抽出して除去する。
On the other hand, Ca' and Mg' are HCO3-, So, 1''
It chemically combines with 2 to produce hard-to-melt precipitates to enhance the coagulation and precipitation effect, or to extract and remove them.

とともに、アルカリ性水中では、これらの塩特に0.2
N以上の塩共存下ではモノマーシリカは単独に粒成長を
とげ、中和による電荷の消失により、急速にゲル化する
特性がある。
In addition, in alkaline water, these salts, especially 0.2
In the coexistence of a salt of N or more, monomer silica undergoes grain growth independently and has the characteristic of rapidly gelling due to the loss of charge due to neutralization.

尚、モノマーシリカの溶解量は、H十量に反比例し、O
H−量に比例するが、実際上モノマーシリカを得ること
、特に高濃度で得ることは通常困難であった。即ち、シ
リカ(SiO2)は強酸には熔解せず、強アルカリには
一部熔解するがpHが下がれば速やかにゲル化する。
The amount of monomer silica dissolved is inversely proportional to the amount of H, and the amount of silica dissolved is inversely proportional to the amount of H.
Although proportional to the amount of H, it has usually been difficult to obtain monomeric silica in practice, especially at high concentrations. That is, silica (SiO2) does not dissolve in strong acids, but partially dissolves in strong alkalis, but quickly gels as the pH decreases.

そこで、本発明者は種々研究した結果、シリカを多量に
含む鉱滓に着目し、これを希硫酸及び希塩酸で溶解して
みたところ、極めて容易に高濃度の酸溶解シリカ−アル
ミナ−カルシウム溶液が得られた。勿論、酸可溶性シリ
カ、酸可溶性アルミナ及び酸可溶性カルシウムを含有す
る資材としては、鉱滓に限らずセメント、ベントナイト
(カルシウムは含まない1他の資材と混用)等種々なも
のが用いられるが、安価で大量入手が可能で点において
鉱滓が最も好ましい。
As a result of various research, the present inventors focused on slag containing a large amount of silica and tried dissolving it with dilute sulfuric acid and dilute hydrochloric acid, and found that a highly concentrated acid-dissolved silica-alumina-calcium solution was obtained very easily. It was done. Of course, various materials containing acid-soluble silica, acid-soluble alumina, and acid-soluble calcium can be used, including not only slag but also cement, bentonite (mixed with other materials that do not contain calcium), but they are inexpensive and Mine slag is the most preferred because it can be obtained in large quantities.

鉱滓(高炉鉱滓、転炉鉱滓、電気炉鉱滓)は、S i 
O2、A l 203、CaO,MgO等で主副成分を
構成している。そして、それらが例えばCao  5i
Oz、2cao−3iOz等のカルシウムシリケート、
2CaO5i02  Aj!203等のカルシウムシリ
ケートアルミネート等の複合結晶を形成している これらは、S t、AN、Caが0を介して結合してい
るため酸に溶解し易いし、SiO2自身主として準安定
型珪酸と呼ばれるα−クリストバライト型であるため熔
解し易く、鉱滓は希酸によって容易に溶解する。
Mine slag (blast furnace slag, converter slag, electric furnace slag) is
The main and subcomponents are O2, Al 203, CaO, MgO, etc. And if they are for example Cao 5i
Calcium silicates such as Oz, 2cao-3iOz,
2CaO5i02 Aj! These composite crystals such as calcium silicate aluminates such as 203 are easily dissolved in acids because St, AN, and Ca are bonded through 0, and SiO2 itself is mainly metastable silicic acid. Because it is of the so-called α-cristobalite type, it is easily melted, and slag is easily dissolved by dilute acid.

尚、酸としては塩酸(HCl)や有機酸等の還元酸、硫
酸(H2SO4)等の中性酸(希釈すると還元酸の性質
を帯びる)が用いられる。これらは、2規定以下に希釈
したものが用いられる。濃度が2規定程度よりも高くな
ると、熔解中或いは熔解後項時間にコロイド沈澱が生じ
、更に高くなると溶解しな(なる。逆に濃度が低過ぎる
と溶解量が少なくなる。より好ましくは、0.5〜1.
5規定程度、特にl規定程度である。
As the acid, a reducing acid such as hydrochloric acid (HCl) or an organic acid, or a neutral acid such as sulfuric acid (H2SO4) (which takes on the properties of a reduced acid when diluted) is used. These are used diluted to 2N or less. If the concentration is higher than about 2N, colloid precipitation will occur during or after melting, and if it is higher still, it will not dissolve.On the other hand, if the concentration is too low, the amount dissolved will be small.More preferably, 0 .5-1.
It is about 5 regulations, especially about 1 regulation.

この鉱滓は、一部産業的利用が行われているものの、そ
の大部分は産業廃棄物として埋め立て処理されているの
が現状であり、安価に得られるしR源の有効活用の面か
らも好ましい。しかも、第一成分となるシリカ、第二成
分となるアルミナ及び第三成分となるカルシウムやマグ
ネシウムを豊富に含有しており、本発明のシリカ系凝集
液の資材としては理想的なものである。
Although some of this slag is used industrially, the majority of it is currently disposed of in landfills as industrial waste, which is preferable from the perspective of being inexpensive and effective use of R sources. . In addition, it contains abundant silica as the first component, alumina as the second component, and calcium and magnesium as the third component, making it ideal as a material for the silica-based flocculant of the present invention.

しかし、この溶解液は第二成分である酸可溶性アルミナ
や第三成分である酸可溶カルシウムやマグネシウムを大
過剰に含むため、pl+の程度によっては熔解後数分以
内にゲル化するなど、極めて不安定である。そこで、p
H及び酸の種類を変えて、酸溶解液のpH、各成分の濃
度、及び安定性(ゲル化を開始するまでの時間)等につ
いて、以下の各実験を行なった。尚、各実験とも常温で
行なった。
However, since this solution contains a large excess of the second component, acid-soluble alumina, and the third component, acid-soluble calcium and magnesium, it may gel within several minutes after melting, depending on the degree of PL+. It is unstable. Therefore, p
The following experiments were conducted by changing the type of H and acid and examining the pH of the acid solution, the concentration of each component, the stability (time until gelation starts), etc. Note that each experiment was conducted at room temperature.

[実験〕 実験 1 シリカ系凝集液の調整(その1)鉱滓粉(1
50メツシユ以下)の適量を、INの希塩酸及び硫酸に
溶解し、到達pH毎に酸溶解シリカ(Siを測定後S 
i O2に換算)、酸溶解アルミナ、酸溶解カルシウム
(Cab)及び酸溶解マグネシウム(MgO)の濃度を
測定した(試料1〜試料8)。尚、pHは鉱滓粉の溶解
量が増えると上昇するので、あるpHの段階で液を濾別
して熔解を停止した。その結果を、表−1に示す。
[Experiment] Experiment 1 Preparation of silica-based flocculant (Part 1) Slag powder (1
After measuring acid-dissolved silica (Si), dissolve an appropriate amount of IN in dilute hydrochloric acid and sulfuric acid.
i O2), acid-dissolved alumina, acid-dissolved calcium (Cab), and acid-dissolved magnesium (MgO) concentrations were measured (Samples 1 to 8). Note that since the pH increases as the amount of dissolved slag powder increases, the liquid was filtered to stop melting at a certain pH stage. The results are shown in Table-1.

表 尚、表−1中、注1の×は使用不可能、△は短時間内の
使用可、○は使用可能の状態を示す。また、注2はアル
ミナ変性の結果と思われる。
In Table 1, × in Note 1 indicates that the product cannot be used, △ indicates that it can be used for a short time, and ○ indicates that it can be used. In addition, Note 2 seems to be the result of alumina modification.

実験 2 シリカ系凝集液の調整(その2)次いで、実
験1の試料7の水準(IN/HCN熔解)で鉱滓を溶解
し、溶解液のpiが3.2を越えて上昇したら、I N
 / H2S O4を少量ずつ添加しながら熔解を続け
て硫酸カルシウムの沈澱を生成させる。この場合、すで
に熔解しているCaOはCa S O4を形成して沈澱
する。再び、pHが3.1〜3.2になれば、溶解を停
止して溶解液を沈澱とともに抜き出した後、沈澱物(C
aSO4)を濾別し、凝集液とした。本処理を実験9と
し、その結果を表−1に示す。
Experiment 2 Preparation of silica-based flocculant (Part 2) Next, dissolve the slag at the level of sample 7 of Experiment 1 (IN/HCN melting), and when the pi of the dissolved solution rises above 3.2, IN
/ H2S O4 is added little by little while melting is continued to form a precipitate of calcium sulfate. In this case, the already dissolved CaO precipitates to form Ca 2 SO 4 . Once the pH reaches 3.1 to 3.2 again, the dissolution is stopped and the dissolved solution is extracted together with the precipitate, and then the precipitate (C
aSO4) was separated by filtration to obtain a flocculation liquid. This treatment was designated as Experiment 9, and the results are shown in Table 1.

以上の結果、液のpl+は3.1前後のもの(試料3及
び試料7)が安定性に優れていることが判る。
The above results show that liquids with pl+ of around 3.1 (sample 3 and sample 7) have excellent stability.

また、試料9の凝集液も極めて安定であった。尚、実験
1において、熔解カルシウム及び溶解マグネシウムの溶
解量は、硫酸溶解液の方が少なかった。
Furthermore, the agglomerated solution of Sample 9 was also extremely stable. In Experiment 1, the amounts of dissolved calcium and dissolved magnesium were smaller in the sulfuric acid solution.

これは804″2と結合して沈澱したことによると思わ
れる。
This is thought to be due to binding with 804″2 and precipitation.

表 実験 3 溶解シリカのゲル化速度 次に、溶解シリカのゲル化速度を測定するために、I 
N/ H2S O4及びIN/HC/の一定量(100
猷)に、一定ffi(6g)の鉱滓を添加し、撹拌熔解
した。
Table Experiment 3 Gelation rate of dissolved silica Next, to measure the gelation rate of dissolved silica, I
Constant amount of N/H2S O4 and IN/HC/ (100
A certain amount of ffi (6 g) of slag was added to the slag, and the mixture was stirred and melted.

この場合、任意のpH毎に溶解を中止して、不溶解残渣
を除く溶解液(全生成沈殿物)を別のビーカーに抜き出
し、その凝固挙動(シリカのゲル化)について調査した
。その結果を表−2に示す。
In this case, dissolution was stopped at any pH, and the solution (all precipitates) excluding undissolved residues was taken out into a separate beaker, and its coagulation behavior (gelation of silica) was investigated. The results are shown in Table-2.

表−2から明らかなように、硫酸、塩酸共に、pH3,
1近傍での安定性が極めて良好であった。但し、現場で
製造して直ちに消費するような場合には、pHが2.5
〜3.5程度であればほぼ使用に耐える。
As is clear from Table 2, both sulfuric acid and hydrochloric acid have a pH of 3,
The stability near 1 was extremely good. However, if it is manufactured on-site and consumed immediately, the pH should be 2.5.
If it is around 3.5, it is almost usable.

尚、HCI!溶解液の安定性が、H2SO4溶解液に比
較して劣るのは、熔解Ca塩が多いためと思われる。
Furthermore, HCI! The reason why the stability of the solution is inferior to that of the H2SO4 solution is probably due to the large amount of dissolved Ca salt.

[作用] 本発明のシリカ系凝集液は、酸可溶性シリカ、酸可溶性
アルミナ及び酸可溶性カルシウムを含有する資材を還元
酸或いは中性酸により熔解して得られるシリカ−アルミ
ナ−カルシウム溶液を生成分とするものである。そして
、水中に熔解したモノマーシリカの重合・ゲル化現象と
それに伴う抽出・凝集現象と、A 12 *3やCa 
*2等による該現象の促進、及びA1+3やCa ’に
よる化学反応や吸着現象、更には水中に含有している他
の陽イオンや陰イオン等が沈澱物化するのに伴う吸着現
象との相乗作用により、優れた抽出・凝集効果を発揮す
る。
[Function] The silica-based flocculant of the present invention uses a silica-alumina-calcium solution obtained by melting materials containing acid-soluble silica, acid-soluble alumina, and acid-soluble calcium with a reducing acid or a neutral acid as a product component. It is something to do. Then, the polymerization/gelation phenomenon of monomer silica dissolved in water, the accompanying extraction/coagulation phenomenon, and the A 12 *3 and Ca
*Synergetic effect with the promotion of this phenomenon by factors such as 2, chemical reactions and adsorption phenomena caused by A1+3 and Ca', and adsorption phenomena that occur when other cations and anions contained in water become precipitates. This provides excellent extraction and flocculation effects.

しかして、本発明のシリカ系凝集液は、水中に含有され
る水中混在物即ち陽イオン、陰・イオン等の溶解物質、
蛋白質、脂肪、界面活性剤、藻等の浮遊物質や懸濁物質
、各種エマルジョンや石灰廃水、セメント廃水等に含ま
れる懸濁物質等を、高効率で抽出、凝集して除去する。
Therefore, the silica-based flocculant of the present invention can contain dissolved substances contained in water, such as cations, anions, and ions.
It efficiently extracts, coagulates, and removes suspended solids such as proteins, fats, surfactants, and algae, as well as suspended solids contained in various emulsions, lime wastewater, cement wastewater, etc.

このシリカ系凝集液は、p Hを2.5〜3.5特に3
.1前後に保持し、或いは液中のCa04度を低くする
ことにより、長期保存を可能とする。
This silica-based flocculant has a pH of 2.5 to 3.5, especially 3.
.. By keeping the temperature around 1 or lowering the Ca04 degree in the liquid, long-term storage is possible.

を用いた使用例を説明する。An example of use will be explained below.

使用例 1 シリカ系凝集液による藻類含有水の凝集テ
スト 検水11 (pH= 6.6)を、ビーカーに採り、ス
ターラーで攪拌しながら、PAC及びシリカ系凝集液を
添加し、10分間攪拌後静置し、その一部を5001メ
スシリンダーに入れて沈降速度を測定し表−3 [使用例1 次に、前記試料3及び試料7のシリカ系凝集液た。30
分静置後の上澄水について、透視度を測定した。その結
果を、表−3に示す。
Usage example 1 Aggregation test of algae-containing water using silica-based flocculating liquid Take sample water 11 (pH = 6.6) in a beaker, add PAC and silica-based flocculant while stirring with a stirrer, and stir for 10 minutes. Table 3 [Usage Example 1] Next, the silica-based flocculants of Sample 3 and Sample 7 were prepared. 30
Transparency was measured for the supernatant water after it had been allowed to stand for several minutes. The results are shown in Table-3.

使用例1において、透視度はいずれも良好であったが、
シリカ系凝集液はPACに比べて沈降速度が速く、また
沈澱物の圧縮性も良好であった。
In use example 1, the transparency was good in all cases, but
The silica-based flocculant had a faster sedimentation rate than PAC, and the compressibility of the precipitate was also good.

尚、シリカ系凝集液の各成分の濃度(111)Ill 
)は、試料3(注1)で溶解シリカが34.6ppm 
、溶解アルミナが17.0ppm 、溶解カルシウムが
11.OrlPM %熔解マグネシウムが3.6ppm
、試料7 (注2)では溶解シリカが36.0ρpHl
 %熔解アルミナが17.6ppm 、熔解カルシウム
が34.0ppm 、熔解マグネシウムが4.6ppm
で、PACに比べて数分の1である。
In addition, the concentration (111)Ill of each component of the silica-based flocculating liquid
) has 34.6 ppm dissolved silica in sample 3 (Note 1).
, dissolved alumina: 17.0 ppm, dissolved calcium: 11. OrlPM % dissolved magnesium is 3.6 ppm
, Sample 7 (Note 2) has dissolved silica of 36.0ρpHl.
% molten alumina 17.6 ppm, molten calcium 34.0 ppm, molten magnesium 4.6 ppm
This is a fraction of that of PAC.

使用例 2 シリカ系凝集液によるコンクリート排水処
理(その1:pl+無調整) 使用例1と同様にして、コンクリート排水(pH=12
.3:原水)Ifに、PAC及びシリカ系凝集液を加え
、10分間攪拌後に沈降速度及び透視度を測定した。そ
の結果を、表−4に示す。
Usage example 2 Concrete drainage treatment using silica-based flocculant (Part 1: PL + no adjustment) Concrete drainage treatment (pH = 12) in the same manner as usage example 1
.. 3: Raw water) PAC and silica-based flocculant were added to If, and after stirring for 10 minutes, the sedimentation rate and transparency were measured. The results are shown in Table-4.

表 本例では、PAC添加のものはA7!が熔解してコロイ
ド化し、30分経過後も沈降は0であり、また透視度も
原水と殆ど変化がなく、カルシウム濃度も高く、殆ど凝
集効果を示していない。
In this example table, the one with PAC added is A7! It melted and turned into a colloid, and even after 30 minutes, there was no sedimentation, the visibility was almost the same as the raw water, the calcium concentration was high, and there was almost no flocculation effect.

これに対し、試料3及び試料7を添加したものは、共に
シリカ−カルシウム−アルミナ系沈澱物を生成して沈降
し、極めて良好な凝集効果を示した。但し、本例ではシ
リカ系凝集液の各成分の濃度(ppm )は、試料3 
(注1)で熔解シリカが86.5ppm、熔解アルミナ
が42 、sppm 、ン容解カルシウムが27.5p
pm 、溶解マグネシウムが9.oppm、試料7 (
注2)では溶解シリカが90.0ppm、熔解アルミナ
が44.0ppm 、熔解カルシウムが85.0ppm
 、熔解マグネシウムが11.5ppmで、その合計は
PACと同程度である。以下、使用例3〜4も同じ濃度
である。
On the other hand, both samples to which Sample 3 and Sample 7 were added produced and settled silica-calcium-alumina-based precipitates, and exhibited extremely good coagulation effects. However, in this example, the concentration (ppm) of each component of the silica-based flocculant was
(Note 1), fused silica is 86.5 ppm, fused alumina is 42, sppm, and dissolved calcium is 27.5 ppm.
pm, dissolved magnesium is 9. oppm, sample 7 (
In Note 2), dissolved silica is 90.0 ppm, dissolved alumina is 44.0 ppm, and dissolved calcium is 85.0 ppm.
, dissolved magnesium is 11.5 ppm, and the total is about the same as PAC. Below, usage examples 3 and 4 have the same concentration.

表 使用例 3 シリカ系凝集液によるコンクリート排水処
理(その2:ρII調整) コンクリート排水(ppm 12.1)を、PACのコ
ロイド化を防止するために予め2N/H2S。
Table Usage Example 3 Concrete wastewater treatment using silica-based flocculant (Part 2: ρII adjustment) Concrete wastewater (ppm 12.1) was preliminarily treated with 2N/H2S to prevent PAC from becoming a colloid.

4でpH=7.0〜7.2に調節し、使用例2と同様に
処理した。その結果を、表−5に示す。
4 to adjust the pH to 7.0 to 7.2, and treated in the same manner as in Use Example 2. The results are shown in Table-5.

本例の場合、PAC処理でもかなりの凝集効果を示した
。但し、PAC処理後A/を十分に沈澱させるために多
量にアルカリを加えてp H調整した。
In the case of this example, the PAC treatment also showed a considerable aggregation effect. However, in order to sufficiently precipitate A/ after the PAC treatment, a large amount of alkali was added to adjust the pH.

現在では、このようにコンクリート排水の処理にはpH
調整が付き物であり、コストを増大させる要因となって
いる。それにもかかわらず、沈澱物のしまりが悪く、脱
水不良が生じる等、極めて難物である。
At present, pH is used to treat concrete wastewater.
Adjustments are inevitable and are a factor that increases costs. Despite this, it is extremely difficult, as the precipitate is poorly packed, resulting in poor dehydration.

これに対し、本発明品の場合、使用例2 (91(無調
整)に比べて沈降速度が幾分速くなった程度である。換
言すれば、本発明のシリカ系凝集液の場合、わざわざコ
ストを掛けてpH調整しなくても、十分な凝集効果を示
す、と言うことができる。
On the other hand, in the case of the product of the present invention, the sedimentation rate was only slightly higher than that of Use Example 2 (91 (no adjustment)).In other words, in the case of the silica-based flocculant of the present invention, the cost It can be said that sufficient aggregation effect is exhibited even without adjusting the pH by applying .

使用例 4 水中乳脂肪・蛋白の凝集処理牛乳10%の
水溶液を原水として、使用例1と同様に処理した。結果
を、表−6に示す。
Use Example 4 Aggregation treatment of milk fat and protein in water A 10% milk aqueous solution was treated in the same manner as in Use Example 1 as raw water. The results are shown in Table-6.

本例では、PAC添加のものはエマルジヨンに対する凝
集効果に不満があった。ただ、透視度は原水よりはかな
り良くなっているが、白濁が残り凝集効果はあまり良好
でない。
In this example, the one containing PAC was unsatisfactory in its flocculating effect on the emulsion. However, although the visibility is much better than that of raw water, cloudiness remains and the coagulation effect is not very good.

従来この種食品工業の廃水は、PAC処理以外は希釈し
て生物処理するか生物処理と凝集剤を併用するのが一般
的である。しかし、生物処理は装置装置が大型化するし
管理が大変であるうえ、この種廃水に対してはあまり効
果が無く、何れにしても決定的な処理方法に欠けていた
Conventionally, wastewater from this type of food industry, other than PAC treatment, has generally been diluted and subjected to biological treatment, or biological treatment and a coagulant are used in combination. However, biological treatment requires large equipment and is difficult to manage, and is not very effective for this type of wastewater, and in any case, a definitive treatment method has been lacking.

これに対し本発明のシリカ系凝集液は、PACに比べて
凝集効果、特にコロイド以下の粒子に対して有効に働き
、沈降速度も速く、シリカ−カルシウム−アルミナ系沈
澱物を生成して沈降し、極めて良好な凝集効果を示した
。このシリカ系凝集液の使用により生物処理も不要にな
る。
On the other hand, the silica-based flocculant of the present invention has a flocculating effect, particularly effective against particles smaller than colloids, than PAC, has a faster sedimentation rate, and produces a silica-calcium-alumina-based precipitate. , showed very good aggregation effect. The use of this silica-based flocculant eliminates the need for biological treatment.

表−6 [発明の効果] 以上詳述したように、本発明の凝集液は、酸可溶性シリ
カ、酸可溶性アルミナ及び酸可溶性カルシウムを含有す
る資材を還元酸或いは中性酸により溶解して得られるシ
リカ−アルミナ−カルシウム溶液を主成分とするシリカ
系凝集液である。
Table 6 [Effects of the Invention] As detailed above, the flocculating liquid of the present invention is obtained by dissolving materials containing acid-soluble silica, acid-soluble alumina, and acid-soluble calcium with a reducing acid or a neutral acid. This is a silica-based flocculating liquid whose main component is a silica-alumina-calcium solution.

そして、モノマーシリカの重合−ゲル化はモノマーシリ
カの安定pH(約3.1)を外して弱酸性側にしたり、
溶解塩(カルシウムイオン、アルミニウムイオン等)と
の交互作用を利用することにより著しく進行し、水中混
在物の抽出や凝集、除去に効果を発現する。
Polymerization and gelation of monomer silica can be carried out by removing the stable pH (about 3.1) of monomer silica and making it weakly acidic.
It progresses significantly by utilizing interactions with dissolved salts (calcium ions, aluminum ions, etc.), and is effective in extracting, coagulating, and removing contaminants in water.

一方、本凝集液は大過剰のCa″″2、AIゝ3、Mg
+2を共有しており、対象水のpHが折中性以上アルカ
リ側で、それぞれ効果を発現する。また、汚水中のイオ
ンとの間にも交互作用を発現し、抽出凝集効果を増大す
る。例えば、高濃度の含有水では、その熔解シリカをゲ
ル化、合わせてその重合ゲル化に際し水中混在物を抽出
、凝集、除去する。
On the other hand, this flocculation solution contains a large excess of Ca″″2, AIも3, and Mg.
+2, and each exhibits its effect when the pH of the target water is above neutral or on the alkaline side. In addition, interaction occurs with ions in wastewater, increasing the extraction flocculation effect. For example, when water is present in a high concentration, the dissolved silica is gelled, and contaminants in the water are extracted, coagulated, and removed during polymerization and gelation.

このように、本凝集液は多機能性を保持し、且つp 1
1の影響を受けにくいとか凝集効果に優れるとか凝集物
が脱水し易い等、従来の凝集剤には見られない効果を発
現することができる。
In this way, this flocculating liquid retains multifunctionality and p 1
It can exhibit effects not found in conventional flocculants, such as being less susceptible to the effects of 1, having excellent flocculating effects, and facilitating dehydration of aggregates.

また、本凝集液を長期に保存したり、長期にわたっ一ζ
使用する場合は、本凝集液をpH約3.1となるように
調整したり、Ca塩やMg塩濃度を約0゜2規定以下に
コントロールすることにより、目的は達せられる。
In addition, this flocculation solution can be stored for a long period of time, or
When used, the purpose can be achieved by adjusting the pH of the flocculating solution to about 3.1 and controlling the Ca salt and Mg salt concentrations to about 0°2N or less.

しかも、本発明シリカ系凝集液は安価に得られ、且つ使
用方法も廃水中に数〜数十ppm程度混入して攪拌する
だけでよいことから、処理コストは極めて低廉となる。
Furthermore, the silica-based flocculant of the present invention can be obtained at low cost, and can be used by simply mixing several to several tens of ppm into wastewater and stirring, resulting in extremely low processing costs.

従って、工業的廃水のみならず農業廃水や膨大な量の準
自然水(湖沼、池等)の処理にも利用でき、従来処理コ
ストや設備コスト面から放置されてきた大量水の処理も
可能となることから、環境水の汚染防止に資するところ
大である。
Therefore, it can be used to treat not only industrial wastewater, but also agricultural wastewater and vast amounts of quasi-natural water (lakes, ponds, etc.), and it is also possible to treat large amounts of water that has traditionally been neglected due to treatment and equipment costs. Therefore, it greatly contributes to preventing pollution of environmental water.

Claims (1)

【特許請求の範囲】 1、酸可溶性シリカ、酸可溶性アルミナ及び酸可溶性カ
ルシウムを含有する資材を還元酸或いは中性酸により溶
解して得られるシリカ−アルミナ−カルシウム溶液を主
成分とするシリカ系凝集液。 2、酸可溶性シリカ、酸可溶性アルミナ及び酸可溶性カ
ルシウムを含有する資材を還元酸或いは中性酸で溶解す
るに際し、該資材の溶解量を増減させることにより溶解
液のpHを2.5〜3.5程度に調節して、溶解したモ
ノマーシリカのゲル化を防止して安定化することを特徴
とするシリカ系凝集液の製造方法。 3、酸可溶性シリカ、酸可溶性アルミナ及び酸可溶性カ
ルシウムを含有する資材を還元酸或いは中性酸で溶解す
るに際し、まず還元酸により該資材を熔解した後、その
溶液に適量の硫酸を添加して硫酸カルシウム沈澱を生成
させて溶解液中の溶解カルシウム量を減少させ、モノマ
ーシリカのゲル化を防止することを特徴とするシリカ系
凝集液の製造方法。
[Claims] 1. A silica-based agglomerate whose main component is a silica-alumina-calcium solution obtained by dissolving materials containing acid-soluble silica, acid-soluble alumina, and acid-soluble calcium with a reducing acid or a neutral acid. liquid. 2. When dissolving materials containing acid-soluble silica, acid-soluble alumina, and acid-soluble calcium with reduced acid or neutral acid, the pH of the solution is adjusted to 2.5 to 3.0 by increasing or decreasing the amount of the dissolved materials. A method for producing a silica-based agglomerate, characterized in that the silica-based agglomerate is stabilized by adjusting the concentration to about 5 to prevent gelation of dissolved monomer silica. 3. When dissolving materials containing acid-soluble silica, acid-soluble alumina, and acid-soluble calcium with reduced acid or neutral acid, first melt the materials with reduced acid, and then add an appropriate amount of sulfuric acid to the solution. 1. A method for producing a silica-based flocculant, which comprises producing a calcium sulfate precipitate to reduce the amount of dissolved calcium in the solution, thereby preventing gelation of monomer silica.
JP29637189A 1989-11-15 1989-11-15 Silica-based flocculant and method for producing the same Expired - Lifetime JP2913189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29637189A JP2913189B2 (en) 1989-11-15 1989-11-15 Silica-based flocculant and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29637189A JP2913189B2 (en) 1989-11-15 1989-11-15 Silica-based flocculant and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03157107A true JPH03157107A (en) 1991-07-05
JP2913189B2 JP2913189B2 (en) 1999-06-28

Family

ID=17832687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29637189A Expired - Lifetime JP2913189B2 (en) 1989-11-15 1989-11-15 Silica-based flocculant and method for producing the same

Country Status (1)

Country Link
JP (1) JP2913189B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233904A (en) * 1993-02-10 1994-08-23 Mitsui Zosen Eng Kk Dissolution of raw material of silica type flocculating solution, method for producing silica type flocculating solution and apparatus therefor
WO2005009586A1 (en) * 2003-07-25 2005-02-03 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant
WO2005082789A1 (en) * 2004-03-02 2005-09-09 Tokuyama Corporation Method for treating papermaking waste water and method for utilizing silica sol in papermaking
JP2012187482A (en) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd Method for treating water circulating through wet coating booth

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233904A (en) * 1993-02-10 1994-08-23 Mitsui Zosen Eng Kk Dissolution of raw material of silica type flocculating solution, method for producing silica type flocculating solution and apparatus therefor
WO2005009586A1 (en) * 2003-07-25 2005-02-03 Keiichiro Asaoka Coagulant, process for producing the same, and method of coagulation with the coagulant
US7666916B2 (en) 2003-07-25 2010-02-23 Keiichiro Asaoka Flocculant, manufacturing method therefor, and flocculation method using the flocculant
WO2005082789A1 (en) * 2004-03-02 2005-09-09 Tokuyama Corporation Method for treating papermaking waste water and method for utilizing silica sol in papermaking
JP2012187482A (en) * 2011-03-09 2012-10-04 Kurita Water Ind Ltd Method for treating water circulating through wet coating booth

Also Published As

Publication number Publication date
JP2913189B2 (en) 1999-06-28

Similar Documents

Publication Publication Date Title
JP4183741B1 (en) Adsorption / coagulation wastewater treatment agent
Young et al. Factors affecting ballasted flocculation reactions
CN109628751A (en) A method of silicon in removing zinc oxide fumes leaching process
JPH03157107A (en) Silica-based liquid flocculant and its production
US8013204B2 (en) Use of partly prehydrated lime for separating a solid matter/liquid mixture, method for treating sludge and purified sludge obtained by said method
JP4158127B2 (en) Special solid fine powder flocculant composition for treatment of hexavalent chromium contaminated water and treatment method using the same
JP4631425B2 (en) Method and apparatus for treating fluorine-containing wastewater containing phosphoric acid
JPH03293003A (en) Method for shortening ageing time of silica flocculant
JP4086297B2 (en) Boron-containing wastewater treatment method and chemicals used therefor
JP2004121948A (en) Fluorine or phosphorus removing method
CA3180313A1 (en) Process for the removal of heavy metals from a phosphoric acid containing composition using a flocculating agent
CN106630293A (en) Emergency treatment method for antimony-exceeded waste water at low temperature
JP2007061749A (en) Method for treating cement-containing waste liquid
JPS6020074B2 (en) How to treat grout wastewater
JP2003251104A (en) Inorganic flocculant for water treatment and usage therefor
JP5057955B2 (en) Sludge concentration method and sludge concentration apparatus
JP2004283723A (en) Treating method for suspension containing solid matter and treating apparatus used therefor
JPH1043770A (en) Treatment of waste water containing suspended particle
JP4010976B2 (en) Iron-based flocculant
CN107686139A (en) A kind of composite medicament for water disposal and its preparation method and application
JP2005028246A (en) Treatment method for heavy metal-containing wastewater
JP4259680B2 (en) Aggregation method
JP2017064653A (en) Aggregate composition for purifying arsenic-containing muddy water, and purification method
JP2005177720A (en) Inorganic flocculant
JP2856624B2 (en) Silica-based coagulation liquid raw material, method for producing the same, and silica-based coagulation liquid