JPH0315667B2 - - Google Patents

Info

Publication number
JPH0315667B2
JPH0315667B2 JP56081508A JP8150881A JPH0315667B2 JP H0315667 B2 JPH0315667 B2 JP H0315667B2 JP 56081508 A JP56081508 A JP 56081508A JP 8150881 A JP8150881 A JP 8150881A JP H0315667 B2 JPH0315667 B2 JP H0315667B2
Authority
JP
Japan
Prior art keywords
weight
parts
propylene
acid
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56081508A
Other languages
Japanese (ja)
Other versions
JPS57195134A (en
Inventor
Teruhisa Koyama
Tadashi Ikushima
Masashi Yamamoto
Shigeo Tanaka
Yoshiteru Tokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Toyota Motor Corp
Original Assignee
Sumitomo Chemical Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd, Toyota Motor Corp filed Critical Sumitomo Chemical Co Ltd
Priority to JP8150881A priority Critical patent/JPS57195134A/en
Publication of JPS57195134A publication Critical patent/JPS57195134A/en
Publication of JPH0315667B2 publication Critical patent/JPH0315667B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は低温における衝撃強度と室温及び高温
における剛性度の改良された無機充填剤含有樹脂
組成物に関し、詳しくは、ポリプロピレン系樹
脂、ゴム状物質、無機充填剤及び芳香族スルホン
酸、芳香族カルボン酸、炭素数4〜12の脂肪族ジ
カルボン酸、芳香族ホスフイン酸およびそれらの
金属塩およびジベンジリデンソルビトールから選
ばれた1種または2種以上の造核剤からなる無機
充填剤含有樹脂組成物に関する。 従来、ポリプロピレン系樹脂に無機充填剤を配
合して剛性度、耐熱性、寸法安定性などを改良す
ることはよく知られているが、衝撃強度、中でも
低温における衝撃強度は著しく低下する。ポリプ
ロピレン系樹脂の中でも、衝撃強度のすぐれたプ
ロピレン−エチレンブロツク共重合樹脂に無機充
填剤を配合した組成物においても衝撃強度の低下
は著しいものである。 衝撃強度を改良する方法として、ポリプロピレ
ン系樹脂にゴム状物質を添加する方法は従来から
よく知られた方法であるが、この系では剛性度や
耐熱性が低下するという欠点がある。 また、剛性度を低下させることなく、衝撃強度
を改良する方法として前述の三成分、即ち、ポリ
プロピレン系樹脂、プロピレン−エチレン共重合
ゴム等のゴム状物質及びタルク、炭酸カルシウム
等の無機充填剤を配合することも特開昭53−
64256、同53−64257等に提案されている。ところ
が、この場合は、無機充填剤を配合することによ
る剛性度の向上効果がゴム状物質を添加するため
に著しく低下するという問題点があつた。さらに
衝撃強度、特に低温における衝撃強度を大幅に改
良する場合には、ゴム状物質の配合する割合を増
加する必要が生じるため、剛性度や耐熱特性がさ
らに、著しく低下し、ポリプロピレン系樹脂が本
来備えている良好な性能を発現できなくなるとい
う問題点があつた。 本発明者等は、従来技術における上述の問題点
をできるだけ少なくし、低温における衝撃強度が
改良され、しかも室温及び高温における剛性度を
改良する方法について種々研究を行なつた結果、
ポリプロピレン系樹脂、ゴム状物質、無機充填剤
及び造核剤を特定の割合で配合することによつ
て、低温における衝撃強度と室温及び高温におけ
る剛性度が同時に改良され、また耐熱特性も併せ
て改良されることを見出した。 従つて本発明は、ポリプロピレン系樹脂30〜90
重量部、ゴム状物質5〜50重量部、無機充填剤3
〜40重量部及び、芳香族スルホン酸、芳香族カル
ボン酸、炭素数4〜12の脂肪族ジカルボン酸、芳
香族ホスフイン酸およびそれらの金属塩、および
ジベンジリデンソルビトールから選ばれた1種ま
たは2種以上の造核剤(ここで、造核剤の添加量
は、ポリプロピレン系樹脂およびゴム状物質の合
計量100重量部に対して0.01〜5重量部である。)
からなることを特徴とする低温における衝撃強度
と室温及び高温における剛性度の改良された無機
充填剤剤含有樹脂組成物である。 本発明の特徴はポリプロピレン系樹脂と無機充
填剤からなる混合物では得られなかつた高い衝撃
強度を有し、ポリプロピレン系樹脂とゴム状物質
からなる混合物では得られなかつた高い剛性度を
有し、さらにはポリプロピレン系樹脂、ゴム状物
質及び無機充填剤からなる混合物でも得られなか
つた低温における衝撃強度と剛性度のバランス及
び耐熱特性のすぐれた組成物が得られることであ
る。本発明の様に無機充填剤を配合した系に、本
発明の造核剤を添加することにより、低温におけ
る衝撃強度が改良され、しかも室温および高温に
おける剛性度が改良されるという事実は、従来公
知の技術からは到底予想し得ないものである。中
でも、無機充填剤として、それ自身従来造核作用
を有するといわれているタルクを用いた場合でさ
え、本発明に示す造核剤を添加することにより、
さらに改良された性能を有する組成物が得られる
ことは、全く予期しないことであつた。 また、他の特徴は、従来ポリプロピレン系樹脂
を塗装する場合、特殊な前処理を必要とし、ま
た、前処理を施しても塗膜の密着性は充分でなか
つたが本発明の組成物を用いた系では、特殊な前
処理をしなくても、塗膜密着性のすぐれた樹脂組
成物が得られることである。この様に、本発明で
は、従来困難であつたポリプロピレン系樹脂の塗
装性を向上させ、しかも材料物性を改良する樹脂
組成物が得られる。 本発明において使用されるプロピレン系重合体
とは、高い立体規則性を有するプロピレン単独重
合体、プロピレン−エチレンブロツク共重合体、
プロピレン−エチレンランダム共重合体、プロピ
レン−ブテン−1ブロツクまたはランダム共重合
体等のプロピレンと他のオレフインとの共重合体
である。 特にメルトインデツクス0.5〜50のプロピレン
単独重合体またはメルトインデツクス0.5〜30で、
エチレン含有量30重量%以下のプロピレン−エチ
レンブロツク共重合体が好ましい。 本発明において使用されるゴム状物質とは、エ
チレン−プロピレン共重合ゴム、エチレン−プロ
ピレン−非共役ジエン共重合ゴム、エチレン−1
−ブテン共重合ゴム、エチレン−イソブチル共重
合ゴム、ポリイソブチレン、ポリイソプレン、ポ
リブタジエン、スチレン−ブタジエンランダム共
重合ゴム、スチレン−ブタジエンブロツク共重合
ゴム、天然ゴム、アタクチツクポリプロピレンお
よびこれらの混合物である。 特に、エチレン−プロピレン共重合ゴム、エチ
レン−プロピレン−非共役ジエン共重合ゴム、ス
チレン−ブタジエンブロツク共重合ゴムが好まし
い。 本発明において使用される無機充填剤とは、通
常よく用いられる炭酸カルシウム、タルク、クレ
ー、シリカ、炭酸マグネシウム、硫酸バリウム、
酸化チタン、アルミナ、石膏等であり、粒径は
0.05〜10μが好ましい。無機充填剤は無処理の
まゝ使用してもよいがポリプロピレン系樹脂との
界面接着性を向上させ、また、分散性を向上させ
る目的で、通常知られている各種シランカツプリ
ング剤、チタンカツプリング剤、高級脂肪酸、高
級脂肪酸エステル、高級脂肪酸アミド、高級脂肪
酸塩類あるいは他の界面活性剤で表面を処理した
ものを使用することができる。また、これらの処
理剤は混合物に直接添加してもよい。無機充填剤
は、商品の要求される形状や機械的性質により、
その種類、粒径、添加量が選択される。 本発明において使用される前述のプロピレン系
重合体、ゴム状物質、及び無機充填剤の配合割合
は、プロピレン系重合体が30〜90重量部、好まし
くは35〜80重量部で、さらに好ましくは40〜70重
量部であり、ゴム状物質が5〜50重量部、好まし
くは10〜45重量部で、さらに好ましくは25〜45重
量部であり、無機充填剤が3〜40重量部、好まし
くは5〜30重量部である。 プロピレン系重合体が30重量部より少なく、ゴ
ム状物質が50重量部より多く、または、無機充填
剤が3重量部より少ない場合は、剛性及び耐熱特
性の低下が大きいため、プロピレン系重合体本来
のもつ性能が発現できず、プロピレン系重合体が
90重量部より多く、ゴム状物質が5重量部より少
なく、または無機充填剤が40重量部より多い場合
は、低温における衝撃強度の低下が大きくなり、
本発明の目的とする高度な性能を有する組成物が
得られない。 本発明において使用される造核剤とは、通常よ
く用いられている芳香族スルホン酸、芳香族カル
ボン酸、炭素数4〜12の脂肪族ジカルボン酸、芳
香族ホスフイン酸およびそれらの金属塩、および
ジベンジリデンソルビトールから選ばれた1種ま
たは2種以上であり、具体的には下記に示す様な
化合物である。無機化合物の中にも造核作用を有
するものがあるが、本発明の目的とする高度な性
能を付与することは出来ない。また、滑剤として
よく使用される高級脂肪酸やその金属塩も、本発
明の目的とする高度な性能を付与できない。 芳香族スルホン酸およびその金属塩としては、
ベンゼンスルホン酸、ナフタレンスルホン酸など
芳香族環上にスルホン酸基を有する化合物および
これらの元素周期律表第,,族に属する金
属の塩であり、具体的には、α−ナフタレンスル
ホン酸のNa,Mg,Ca,Al塩;8−アミノナフ
タレンスルホン酸のNa塩;ベンゼンスルホン酸
のNa,Mg,Ca,Al塩;2,5−ジクロベンゼ
ンスルホン酸のCa,Mg塩;m−キシレンスルホ
ン酸のCa,Mg塩がある。 芳香族カルボン酸およびその金属塩としては、
安息香酸、アリル置換酢酸、芳香族ジカルボン酸
およびこれらの元素周期律表第,,族に属
する金属の塩であり、具体的には、安息香酸、p
−イソプロピル安息香酸、o−第三級ブチル安息
香酸、p−第三級ブチル安息香酸、モノフエニル
酢酸、ジフエニル酢酸、フエニルジメチル酢酸、
フタル酸、またはこれらの酸のLi,Na,Mg,
Ca,Ba,Al塩がある。 炭素数4〜12の脂肪族ジカルボン酸としては、
コハク酸、グルタール酸、アジピン酸、スベリン
酸、セバシン酸または、これらの酸のLi,Na,
Mg,Ca,Ba,Al塩がある。 芳香族ホスフイン酸およびその金属塩として
は、次の一般式で示されるものがある。 (ここの式において、Ar,Ar′はフエニル、ナ
フチルなどの芳香族環、Mは水素および金属元
素、nはMが水素のときはl、Mが金属のときは
その原子価を表わす。) 芳香族ホスフイン酸の金属塩を構成する金属と
しては、Li,Na,K,Ca,Mg,Alが代表的な
ものとしてあげられる。具体的にはジフエニルホ
スフイン酸、ジフエニルホスフイン酸リチウム、
ジフエニルホスフイン酸ナトリウム、ジフエニル
ホスフイン酸カリウム、ジフエニルホスフイン酸
カルシウム、ジフエニルホスフイン酸マグネシウ
ム、ジフエニルホスフイン酸アルミニウムなど;
4,4′−ジクロロジフエニルホスフイン酸、4,
4′−ジメチルジフエニルホスフイン酸、ジナフチ
ルホスフイン酸およびこれらのLi,Na,K,
Ca,Mg,Al塩などが例示される。 以上の造核剤の中でも、芳香族カルボン酸およ
び金属塩、特にp−第三級ブチル安息香酸および
そのアルミニウム塩が好ましい。 これらの造核剤は単独で使用し、または2種以
上併用することができる。これらの造核剤は、ポ
リプロピレン系樹脂およびゴム状物質の合計量
100重量部に対して、0.01〜5重量部、好ましく
は0.05〜5重量部が普通用いられるが、特に0.1
〜1重量部を用いることが好ましい。 本発明の組成物は、一軸押出機、二軸押出機、
バンバリーミキサー、熱ロールなどの混練機を用
いて製造することができる。各成分の混合は同時
に行なつてもよく、また分括して行なつてもよ
い。分括添加の方法として、例えばポリプロピレ
ン系樹脂と造核剤を混練したのち、他の成分を添
加する方法、ポリプロピレン系樹脂とゴム状物質
の混練物に他の成分を添加する方法、ポリプロピ
レン系樹脂と高濃度の無機充填剤を予めマスター
パツチとし、他の成分を添加する方法等が挙げら
れる。混練に必要な温度は160〜240℃であり、時
間は30秒〜20分で充分である。さらに、これらの
混練において、これらの基本的成分以外に、酸化
防止剤、紫外線吸収剤等の安定剤、滑剤、顔料、
帯電防止剤、銅害防止剤、難燃剤等の添加剤を配
合することができる。 本発明によつて得られる組成物は、射出成形、
押出成形あるいはブロー成形が可能であり、低温
における衝撃強度、剛性度及び耐熱特性が著しく
改良され、しかも塗装性が改良されるため、エン
ジニアリングプラスチツクとして、各種自動車部
品材料、電気製品部品材料等へ適用することがで
きる。 以下に実施例によつて本発明の内容を具体的に
説明するがそれによつて範囲を限定されるもので
はない。 本願発明の組成物の物性評価として剛性度は曲
げ弾性率、衝撃強度はアイゾツト衝撃強度(ノツ
チ付)、耐熱特性は熱変形温度および熱垂下性を
みたがその測定方法は以下の通りである。 曲げ弾性率:ASTM D790に準拠して行ない、
測定温度は20℃と80℃で実施した。 アイゾツト衝撃強度:JIS K7110に準拠して行な
い、測定温度は−30℃で実施した。 耐熱特性: 熱変形温度;ASTM D648に準拠して行なつ
た。繊維応力4.6Kg/cm2とした。 熱垂下性;長さ120mm、幅20mm、厚さ2mmの試
験片を作成し、試片の一方の端を固定した
後、100℃の雰囲気下で2時間放置後取り出
し、固定していない方の垂れ下がり度合を測
定した。 実施例 1 メルトインデツクスが9.0樹脂中のエチレン含
有量が7重量%であるプロピレン−エチレンブロ
ツク共重合体(ブロツクpp)と100℃でのムーニ
ー粘度が60で、エチレン含有量が50重量%、ヨウ
素価が11であるエチレン−プロピレン−エチリデ
ンノルボルネン共重合ゴム(EPDM)と平均粒
子径3μのチルクとを第1表に示す割合で混合し、
さらに、造核剤としてパラー第三級ブチル安息香
酸のアルミニウム塩をブロツク共重合体と共重合
ゴムとの合計量100重量部に対し0.5重量部、酸化
防止剤Irganox1010(チバガイギー社製)を全
体の0.5重量%添加し、バンバリーミキサーにて
190℃で10分間混練した後、押出機にてペレツト
状化した。このペレツトをスクリユーインライン
射出成形機にて物性測定用の試験片を成形した。 物性測定結果を表1に示す。 比較例 1 造核剤としてパラー第三級ブチル安息香酸のア
ルミ塩を添加しない以外は実施例1と同様に実施
した。 結果を第1表に示す。 第1表から明らかな通り、造核剤を添加するこ
とにより、20℃での曲げ弾性率は改良され、しか
も−30℃の衝撃強度も改良されており、材料物性
のバランスがよくなる。また、80℃での曲げ弾性
率及び耐熱特性も改良されている。
The present invention relates to an inorganic filler-containing resin composition with improved impact strength at low temperatures and stiffness at room and high temperatures. An inorganic filler-containing resin composition comprising one or more nucleating agents selected from acids, aliphatic dicarboxylic acids having 4 to 12 carbon atoms, aromatic phosphinic acids and their metal salts, and dibenzylidene sorbitol. . Conventionally, it is well known that inorganic fillers are added to polypropylene resins to improve rigidity, heat resistance, dimensional stability, etc., but impact strength, particularly impact strength at low temperatures, is significantly reduced. Among polypropylene resins, even in compositions in which an inorganic filler is blended with a propylene-ethylene block copolymer resin having excellent impact strength, the impact strength is significantly reduced. As a method of improving impact strength, adding a rubbery substance to polypropylene resin is a well-known method, but this system has the drawback of lowering rigidity and heat resistance. In addition, as a method for improving impact strength without reducing rigidity, the three components mentioned above, namely, polypropylene resin, rubbery substances such as propylene-ethylene copolymer rubber, and inorganic fillers such as talc and calcium carbonate, have been proposed. It is also possible to combine
64256, 53-64257, etc. However, in this case, there was a problem in that the effect of improving rigidity by blending the inorganic filler was significantly reduced due to the addition of the rubbery substance. Furthermore, in order to significantly improve the impact strength, especially the impact strength at low temperatures, it is necessary to increase the proportion of rubbery substances blended, which further significantly reduces the rigidity and heat resistance properties, and the polypropylene resin There was a problem in that it was no longer able to exhibit the good performance that it had. The present inventors have conducted various studies on methods for minimizing the above-mentioned problems in the prior art, improving impact strength at low temperatures, and improving rigidity at room and high temperatures.
By blending polypropylene resin, rubber-like material, inorganic filler, and nucleating agent in specific proportions, impact strength at low temperatures and rigidity at room and high temperatures are simultaneously improved, and heat resistance properties are also improved. I found out that it can be done. Therefore, the present invention uses polypropylene resins of 30 to 90
Parts by weight, 5 to 50 parts by weight of rubbery substance, 3 parts by weight of inorganic filler
~40 parts by weight and one or two selected from aromatic sulfonic acids, aromatic carboxylic acids, aliphatic dicarboxylic acids having 4 to 12 carbon atoms, aromatic phosphinic acids and their metal salts, and dibenzylidene sorbitol The above nucleating agent (here, the amount of the nucleating agent added is 0.01 to 5 parts by weight per 100 parts by weight of the total amount of the polypropylene resin and the rubbery substance).
An inorganic filler-containing resin composition characterized by improved impact strength at low temperatures and stiffness at room and high temperatures. The features of the present invention are that it has a high impact strength that cannot be obtained with a mixture of polypropylene resin and an inorganic filler, a high degree of rigidity that cannot be obtained with a mixture of polypropylene resin and a rubbery substance, and The advantage is that a composition with an excellent balance of impact strength and rigidity at low temperatures and excellent heat resistance properties, which could not be obtained even with a mixture of a polypropylene resin, a rubber-like substance, and an inorganic filler, can be obtained. The fact that by adding the nucleating agent of the present invention to a system containing an inorganic filler as in the present invention, the impact strength at low temperatures is improved and the rigidity at room temperature and high temperature is also improved. This cannot be predicted using known technology. Among them, even when using talc, which itself is said to have a nucleating effect, as an inorganic filler, by adding the nucleating agent shown in the present invention,
It was completely unexpected that a composition with further improved performance would be obtained. Another feature is that conventionally, when painting polypropylene resin, special pretreatment was required, and even with pretreatment, the adhesion of the coating film was not sufficient, but the composition of the present invention can be used. In the system, a resin composition with excellent coating film adhesion can be obtained without special pretreatment. In this manner, the present invention provides a resin composition that improves the paintability of polypropylene resins, which has been difficult to achieve in the past, and also improves the physical properties of the material. The propylene polymer used in the present invention includes a propylene homopolymer with high stereoregularity, a propylene-ethylene block copolymer,
These are copolymers of propylene and other olefins such as propylene-ethylene random copolymers, propylene-butene-1 block or random copolymers. In particular, propylene homopolymer with a melt index of 0.5 to 50 or a melt index of 0.5 to 30,
A propylene-ethylene block copolymer having an ethylene content of 30% by weight or less is preferred. The rubbery substances used in the present invention include ethylene-propylene copolymer rubber, ethylene-propylene-nonconjugated diene copolymer rubber, ethylene-1
-butene copolymer rubber, ethylene-isobutyl copolymer rubber, polyisobutylene, polyisoprene, polybutadiene, styrene-butadiene random copolymer rubber, styrene-butadiene block copolymer rubber, natural rubber, atactic polypropylene and mixtures thereof. Particularly preferred are ethylene-propylene copolymer rubber, ethylene-propylene-nonconjugated diene copolymer rubber, and styrene-butadiene block copolymer rubber. The inorganic fillers used in the present invention include commonly used calcium carbonate, talc, clay, silica, magnesium carbonate, barium sulfate,
Titanium oxide, alumina, gypsum, etc., and the particle size is
0.05-10μ is preferable. The inorganic filler may be used without treatment, but in order to improve interfacial adhesion with polypropylene resin and improve dispersibility, various commonly known silane coupling agents and titanium coupling agents may be used. Those whose surfaces have been treated with a ring agent, higher fatty acids, higher fatty acid esters, higher fatty acid amides, higher fatty acid salts, or other surfactants can be used. Alternatively, these processing agents may be added directly to the mixture. Inorganic fillers vary depending on the shape and mechanical properties required of the product.
The type, particle size, and amount added are selected. The proportion of the propylene polymer, rubbery substance, and inorganic filler used in the present invention is 30 to 90 parts by weight, preferably 35 to 80 parts by weight, and more preferably 40 parts by weight. ~70 parts by weight, the rubbery material is 5 to 50 parts by weight, preferably 10 to 45 parts by weight, more preferably 25 to 45 parts by weight, and the inorganic filler is 3 to 40 parts by weight, preferably 5 parts by weight. ~30 parts by weight. If the propylene polymer is less than 30 parts by weight, the rubbery substance is more than 50 parts by weight, or the inorganic filler is less than 3 parts by weight, the rigidity and heat resistance properties will be greatly reduced, The properties of propylene polymers cannot be expressed, and propylene polymers
If it is more than 90 parts by weight, the rubbery substance is less than 5 parts by weight, or the inorganic filler is more than 40 parts by weight, the impact strength at low temperatures will decrease significantly,
A composition having the high level of performance aimed at by the present invention cannot be obtained. Nucleating agents used in the present invention include commonly used aromatic sulfonic acids, aromatic carboxylic acids, aliphatic dicarboxylic acids having 4 to 12 carbon atoms, aromatic phosphinic acids and their metal salts, and One or more types selected from dibenzylidene sorbitol, specifically the compounds shown below. Although some inorganic compounds have a nucleating effect, they cannot provide the high level of performance aimed at by the present invention. Further, higher fatty acids and metal salts thereof, which are often used as lubricants, cannot provide the high performance aimed at by the present invention. Aromatic sulfonic acids and their metal salts include:
Compounds having a sulfonic acid group on an aromatic ring, such as benzenesulfonic acid and naphthalenesulfonic acid, and salts of these metals belonging to group 1 of the periodic table of elements. Specifically, α-naphthalenesulfonic acid, Na , Mg, Ca, Al salt; Na salt of 8-aminonaphthalenesulfonic acid; Na, Mg, Ca, Al salt of benzenesulfonic acid; Ca, Mg salt of 2,5-diclobenzenesulfonic acid; m-xylene sulfonic acid There are Ca and Mg salts. Aromatic carboxylic acids and their metal salts include:
Benzoic acid, allyl-substituted acetic acid, aromatic dicarboxylic acids, and salts of these metals belonging to Group 1 of the Periodic Table of Elements. Specifically, benzoic acid, p
-isopropylbenzoic acid, o-tertiary butylbenzoic acid, p-tertiary butylbenzoic acid, monophenylacetic acid, diphenylacetic acid, phenyldimethylacetic acid,
Phthalic acid or these acids Li, Na, Mg,
There are Ca, Ba, and Al salts. As aliphatic dicarboxylic acids having 4 to 12 carbon atoms,
Succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid or Li, Na,
There are Mg, Ca, Ba, and Al salts. Examples of aromatic phosphinic acids and metal salts thereof include those represented by the following general formula. (In this formula, Ar and Ar' are aromatic rings such as phenyl and naphthyl, M is hydrogen and a metal element, n is l when M is hydrogen, and its valence when M is a metal.) Representative metals constituting the metal salt of aromatic phosphinic acid include Li, Na, K, Ca, Mg, and Al. Specifically, diphenylphosphinic acid, lithium diphenylphosphinate,
Sodium diphenylphosphinate, potassium diphenylphosphinate, calcium diphenylphosphinate, magnesium diphenylphosphinate, aluminum diphenylphosphinate, etc.;
4,4'-dichlorodiphenylphosphinic acid, 4,
4'-dimethyldiphenylphosphinic acid, dinaphthylphosphinic acid and their Li, Na, K,
Examples include Ca, Mg, and Al salts. Among the above nucleating agents, aromatic carboxylic acids and metal salts, particularly p-tertiary butylbenzoic acid and its aluminum salt are preferred. These nucleating agents can be used alone or in combination of two or more. These nucleating agents are based on the total amount of polypropylene resin and rubbery material.
0.01 to 5 parts by weight, preferably 0.05 to 5 parts by weight per 100 parts by weight are commonly used, especially 0.1 parts by weight.
It is preferable to use ~1 part by weight. The composition of the present invention can be produced using a single screw extruder, a twin screw extruder,
It can be manufactured using a kneading machine such as a Banbury mixer or a hot roll. The components may be mixed simultaneously or in batches. Batch addition methods include, for example, adding other components after kneading polypropylene resin and a nucleating agent, adding other components to a kneaded mixture of polypropylene resin and rubber-like material, and polypropylene resin. Examples include a method in which a high concentration inorganic filler is used as a master patch in advance and other components are added. The temperature required for kneading is 160 to 240°C, and the time required for kneading is 30 seconds to 20 minutes. Furthermore, in addition to these basic ingredients, when kneading these, stabilizers such as antioxidants and ultraviolet absorbers, lubricants, pigments,
Additives such as antistatic agents, copper damage inhibitors, and flame retardants can be added. The composition obtained by the present invention can be injection molded,
It can be extruded or blow molded, and has significantly improved impact strength, rigidity, and heat resistance at low temperatures, as well as improved paintability, so it can be used as an engineering plastic for various automobile parts materials, electrical product parts materials, etc. can do. The content of the present invention will be specifically explained below with reference to Examples, but the scope is not limited thereto. Physical properties of the composition of the present invention were evaluated using bending elastic modulus for stiffness, Izot impact strength (notched) for impact strength, and heat distortion temperature and thermal sag for heat resistance properties.The measurement methods were as follows. Flexural modulus: Performed in accordance with ASTM D790,
Measurement temperatures were 20°C and 80°C. Izod impact strength: Conducted in accordance with JIS K7110, and measured at -30°C. Heat resistance properties: Heat distortion temperature; conducted in accordance with ASTM D648. The fiber stress was 4.6Kg/cm 2 . Thermal sagging: A test piece with a length of 120 mm, a width of 20 mm, and a thickness of 2 mm was prepared, one end of the test piece was fixed, and after being left in an atmosphere of 100°C for 2 hours, it was taken out and the unfixed end was fixed. The degree of sagging was measured. Example 1 A propylene-ethylene block copolymer (block pp) having a melt index of 9.0 and an ethylene content of 7% by weight, a Mooney viscosity of 60 at 100°C and an ethylene content of 50% by weight, Ethylene-propylene-ethylidenenorbornene copolymer rubber (EPDM) with an iodine value of 11 and Chilk with an average particle size of 3μ are mixed in the proportions shown in Table 1,
Furthermore, 0.5 parts by weight of aluminum salt of para-tertiary butylbenzoic acid as a nucleating agent per 100 parts by weight of the block copolymer and copolymer rubber, and Irganox 1010 (manufactured by Ciba Geigy) as an antioxidant were added to the total weight of the block copolymer and copolymer rubber. Add 0.5% by weight and use a Banbury mixer.
After kneading at 190°C for 10 minutes, the mixture was pelletized using an extruder. The pellets were molded into test pieces for measuring physical properties using a screw in-line injection molding machine. Table 1 shows the physical property measurement results. Comparative Example 1 The same procedure as in Example 1 was carried out except that aluminum salt of para-tertiary butylbenzoic acid was not added as a nucleating agent. The results are shown in Table 1. As is clear from Table 1, by adding the nucleating agent, the flexural modulus at 20°C is improved, and the impact strength at -30°C is also improved, resulting in a better balance of material properties. The flexural modulus at 80°C and heat resistance properties are also improved.

【表】 実施例2および比較例2 実施例1において、無機充填剤をタルクから平
均粒径1μの重質炭酸カルシウムに変えた以外は
実施例1の方法と全く同様の方法で樹脂組成物を
得た。 得られた組成物の物性も実施例1と同様の方法
で測定した。 結果を第2表に示す。この場合も、造核剤を添
加することにより材料物性の改良がみられる。
[Table] Example 2 and Comparative Example 2 A resin composition was prepared in exactly the same manner as in Example 1, except that the inorganic filler in Example 1 was changed from talc to heavy calcium carbonate with an average particle size of 1μ. Obtained. The physical properties of the obtained composition were also measured in the same manner as in Example 1. The results are shown in Table 2. In this case as well, the material properties are improved by adding a nucleating agent.

【表】【table】

【表】 実施例3および比較3 メルトインデツクスが2.5、樹脂中のエチレン
含有量が15重量%であるプロピレン−エチレンブ
ロツク共重合体(ブロツクPP)と、100℃でのム
ーニー粘度が45で、エチレン含有量が47重量%、
ヨウ素価が0であるエチレン−プロピレン共重合
ゴム(EPM)と、平均粒径1μのタルクとを第3
表に示す割合で混合した以外は実施例1と同様の
方法で樹脂組成物を得た。得られた組成物の物性
を第3表に示す。 実施例4,5および比較例4,5 メルトインデツクス12.0であるプロピレン単独
重合体(ホモPP)と100℃でのムーニー粘度が60
で、エチレン含有量が50重量%で、ヨウ素価が11
であるエチレン−プロピレン−エチリデンノルボ
ルネン共重合ゴム(EPDM)と、平均粒子径3μ
のタルクまたは平均粒子径1μの重質炭酸カルシ
ウムを第3表に示す割合で混合した以外は、実施
例1と同様の方法で樹脂組成物を得た。得られた
組成物の物性を第3表に示す。 第3表から、造核剤を添加することにより、明
らかに、材料物性が改良されていることがわか
る。
[Table] Example 3 and Comparison 3 A propylene-ethylene block copolymer (block PP) with a melt index of 2.5 and an ethylene content of 15% by weight in the resin, and a Mooney viscosity of 45 at 100°C, Ethylene content 47% by weight,
Ethylene-propylene copolymer rubber (EPM) with an iodine value of 0 and talc with an average particle size of 1μ are mixed into a third
A resin composition was obtained in the same manner as in Example 1, except that the ingredients were mixed in the proportions shown in the table. Table 3 shows the physical properties of the obtained composition. Examples 4 and 5 and Comparative Examples 4 and 5 A propylene homopolymer (homo PP) with a melt index of 12.0 and a Mooney viscosity of 60 at 100°C
The ethylene content is 50% by weight and the iodine value is 11.
Ethylene-propylene-ethylidene norbornene copolymer rubber (EPDM) with an average particle size of 3μ
A resin composition was obtained in the same manner as in Example 1, except that talc or heavy calcium carbonate having an average particle size of 1 μm was mixed in the proportions shown in Table 3. Table 3 shows the physical properties of the obtained composition. From Table 3, it can be seen that the material properties are clearly improved by adding the nucleating agent.

【表】 実施例6および比較例6 実施例2−2において、ゴム状物質をEPDM
からスチレン−ブタジエン−スチレンブロツク共
重合ゴム(スチレン28重量%、分子量75000)に
変えた以外は、実施例2−2と同様の方法で樹脂
組成物を得た。得られた組成物の物性を第4表に
示すが、ゴム状物質を変えても、造核剤を添加す
ることにより、材料物性の改良がみられる。
[Table] Example 6 and Comparative Example 6 In Example 2-2, the rubbery material was replaced with EPDM.
A resin composition was obtained in the same manner as in Example 2-2, except that styrene-butadiene-styrene block copolymer rubber (styrene 28% by weight, molecular weight 75,000) was used. The physical properties of the obtained compositions are shown in Table 4. Even if the rubbery substance is changed, the physical properties of the material are improved by adding a nucleating agent.

【表】【table】

【表】 実施例7,8および比較例7 実施例1−2において、造核剤をパラー第三級
ブチル安息香酸のアルミニウム塩から、実施例7
においてはベンゼンスルホン酸ナトリウムに、実
施例8においては、ジベンジリデンソルビトール
に、比較例7においては造核剤に代えて滑剤であ
るステアリン酸カルシウムを用いた以外は、実施
例1−2と同様の方法で樹脂組成物を得た。 得られた組成物の物性を第5表に示すが、通常
滑剤としてよく知られているステアリン酸カルシ
ウムは本発明で特徴とする材料物性改良効果を示
さない。
[Table] Examples 7, 8 and Comparative Example 7 In Example 1-2, the nucleating agent was changed from aluminum salt of para-tertiary butylbenzoic acid to Example 7.
The same method as in Example 1-2 was used, except that sodium benzenesulfonate was used in Example 8, dibenzylidene sorbitol was used in Example 8, and calcium stearate as a lubricant was used in place of the nucleating agent in Comparative Example 7. A resin composition was obtained. The physical properties of the resulting composition are shown in Table 5. Calcium stearate, which is generally well known as a lubricant, does not exhibit the effect of improving material properties that is featured in the present invention.

【表】 比較例 8,9 比較のために、実施例1〜8において、タルク
を用いなかつた場合(比較例8)およびEPDM
を用いなかつた場合(比較例9)についても、実
施例1と同様の方法で混合し、樹脂組成物を得
た。結果を第6表に示す。 第6表より、タルクを用いない場合には、剛性
および−30℃での衝撃強度が低く、耐熱特性も劣
る。 また、EPDMを用いなかつた場合は、剛性は
改良されるものの−30℃での衝撃強度は著しく低
下する。
[Table] Comparative Examples 8 and 9 For comparison, in Examples 1 to 8, talc was not used (Comparative Example 8) and EPDM
Even in the case where no component was used (Comparative Example 9), a resin composition was obtained by mixing in the same manner as in Example 1. The results are shown in Table 6. From Table 6, when talc is not used, the rigidity and impact strength at -30°C are low, and the heat resistance properties are also poor. Furthermore, when EPDM is not used, although the rigidity is improved, the impact strength at -30°C is significantly reduced.

【表】 実施例 9 本発明で得られた樹脂組成物の塗装性をみるた
めに、実施例1−1〜1−3において得られた組
成物および比較のために、比較例8,9で得られ
た組成物を下記の方法にて塗装性能試験を行なつ
た。 塗装性試験方法:長さ90mm、幅90mm、厚さ2mmの
試験板に、まずエチレン−酢酸ビニル系共重
合体プライマー(日本ビーケミカル社製
「RB−196」)を吹付け塗装し、ついで、ウ
レタン系上塗り塗料(日本ビーケミカル社製
「RB−263」)を膜厚40ミクロンになる様に
吹付け塗装した。10分間放置後、80℃で40分
間焼付けた。塗料の密着性は、3日間放置
後、塗膜に100個のゴバン目をつけ、セロテ
ープにて剥離し、剥離した個数で示した。
[Table] Example 9 In order to examine the coating properties of the resin compositions obtained in the present invention, the compositions obtained in Examples 1-1 to 1-3 and, for comparison, the compositions in Comparative Examples 8 and 9 were used. The resulting composition was subjected to a coating performance test using the method described below. Paintability test method: First, an ethylene-vinyl acetate copolymer primer ("RB-196" manufactured by Nippon B Chemical Co., Ltd.) was spray-painted on a test plate measuring 90 mm in length, 90 mm in width, and 2 mm in thickness, and then, A urethane top coat (RB-263 manufactured by Nippon B Chemical Co., Ltd.) was spray-painted to a film thickness of 40 microns. After being left for 10 minutes, it was baked at 80°C for 40 minutes. The adhesion of the paint was determined by the number of peeled marks after leaving it for 3 days, making 100 dots on the paint film and peeling them off with cellophane tape.

【表】 第7表に示す様に、本発明で得た樹脂組成物に
対する塗料の塗膜密着性は比較例に比べすぐれて
いる。
[Table] As shown in Table 7, the coating film adhesion of the paint to the resin composition obtained according to the present invention is superior to that of the comparative example.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例1−1〜1−3及び比較例1
−1〜1−3における20℃での曲げ弾性率と−30
℃でのアイゾツト衝撃強度との関係を示すもので
ある。本図は、造核剤の添加により剛性度と低温
におけるアイゾツト衝撃強度のバランスは、改良
されることを示している。 A……実施例1−1と比較例1−1の対比を示
す、B……実施例1−2と比較例1−2の対比を
示す、C……実施例1−3と比較例1−3の対比
を示す。
Figure 1 shows Examples 1-1 to 1-3 and Comparative Example 1.
Flexural modulus at 20℃ and -30 in -1 to 1-3
The graph shows the relationship between the Izot impact strength and the Izot impact strength at ℃. This figure shows that the balance between stiffness and Izot impact strength at low temperatures is improved by adding a nucleating agent. A... Shows a comparison between Example 1-1 and Comparative Example 1-1, B... Shows a comparison between Example 1-2 and Comparative Example 1-2, C... Shows a comparison between Example 1-3 and Comparative Example 1 -3 comparisons are shown.

Claims (1)

【特許請求の範囲】 1 ポリプロピレン系樹脂30〜90重量部、ゴム状
物質5〜50重量部、無機充填剤3〜40重量部、及
び、芳香族スルホン酸、芳香族カルボン酸、炭素
数4〜12の脂肪族ジカルボン酸、芳香族ホスフイ
ン酸およびそれらの金属塩およびジベンジリデン
ソルビトールから選ばれた1種または2種以上の
造核剤(ポリプロピレン系樹脂およびゴム状物質
の合計量100重量部に対して0.01〜5重量部)か
らなることを特徴とする無機充填剤含有樹脂組成
物。 2 ポリプロピレン系樹脂がプロピレン単独重合
体及び(または)プロピレン−エチレンブロツク
共重合体である特許請求の範囲第1項記載の樹脂
組成物。 3 ゴム状物質がエチレン−プロピレン共重合ゴ
ム、エチレン−プロピレン−非共役ジエン共重合
ゴム及び(または)スチレン−ブタジエンブロツ
ク共重合ゴムである特許請求の範囲第1項記載の
樹脂組成物。 4 無機充填剤がタルク、及び(または)炭酸カ
ルシウムである特許請求の範囲第1項記載の樹脂
組成物。 5 造核剤がp−第三級ブチル安息香酸またはそ
のアルミニウム塩である特許請求の範囲第1項記
載の樹脂組成物。
[Scope of Claims] 1 30 to 90 parts by weight of polypropylene resin, 5 to 50 parts by weight of rubbery material, 3 to 40 parts by weight of inorganic filler, aromatic sulfonic acid, aromatic carboxylic acid, carbon number 4 to 50 parts by weight One or more nucleating agents selected from 12 aliphatic dicarboxylic acids, aromatic phosphinic acids and their metal salts, and dibenzylidene sorbitol (per 100 parts by weight of the total amount of polypropylene resin and rubbery substance) (0.01 to 5 parts by weight) of an inorganic filler-containing resin composition. 2. The resin composition according to claim 1, wherein the polypropylene resin is a propylene homopolymer and/or a propylene-ethylene block copolymer. 3. The resin composition according to claim 1, wherein the rubbery substance is ethylene-propylene copolymer rubber, ethylene-propylene-nonconjugated diene copolymer rubber, and/or styrene-butadiene block copolymer rubber. 4. The resin composition according to claim 1, wherein the inorganic filler is talc and/or calcium carbonate. 5. The resin composition according to claim 1, wherein the nucleating agent is p-tertiary butylbenzoic acid or an aluminum salt thereof.
JP8150881A 1981-05-27 1981-05-27 Resin composition containing inorganic filler Granted JPS57195134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8150881A JPS57195134A (en) 1981-05-27 1981-05-27 Resin composition containing inorganic filler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8150881A JPS57195134A (en) 1981-05-27 1981-05-27 Resin composition containing inorganic filler

Publications (2)

Publication Number Publication Date
JPS57195134A JPS57195134A (en) 1982-11-30
JPH0315667B2 true JPH0315667B2 (en) 1991-03-01

Family

ID=13748292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8150881A Granted JPS57195134A (en) 1981-05-27 1981-05-27 Resin composition containing inorganic filler

Country Status (1)

Country Link
JP (1) JPS57195134A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081241A (en) * 1983-10-12 1985-05-09 Idemitsu Petrochem Co Ltd Propylene-ethylene block copolymer composition
JPH0674364B2 (en) * 1985-05-22 1994-09-21 三井東圧化学株式会社 Propylene block copolymer composition
JPH0762101B2 (en) * 1987-12-22 1995-07-05 トヨタ自動車株式会社 Polypropylene resin composition
GB8905796D0 (en) * 1988-03-29 1989-04-26 Ici Plc Composition and use
JPH02182739A (en) * 1989-01-10 1990-07-17 Mitsubishi Motors Corp Resin outer plate for automobile
JP2902496B2 (en) * 1991-03-28 1999-06-07 宇部興産株式会社 Resin composition for automobile bumper
CA2077033A1 (en) * 1991-08-30 1993-03-01 Ikunori Sakai Polypropylene resin composition
JP2006083327A (en) * 2004-09-17 2006-03-30 Sumitomo Chemical Co Ltd Olefinic resin composition
JP5129139B2 (en) * 2005-09-12 2013-01-23 ミリケン・アンド・カンパニー Silica-containing nucleating agent compositions and methods for the use of such compositions in polyolefins
WO2011050042A1 (en) * 2009-10-21 2011-04-28 Milliken & Company Thermoplastic polymer composition

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478744A (en) * 1977-12-05 1979-06-23 Sumitomo Chem Co Ltd Polypropylene resin composition
JPS5571736A (en) * 1978-11-25 1980-05-30 Idemitsu Petrochem Co Ltd Polypropylene composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478744A (en) * 1977-12-05 1979-06-23 Sumitomo Chem Co Ltd Polypropylene resin composition
JPS5571736A (en) * 1978-11-25 1980-05-30 Idemitsu Petrochem Co Ltd Polypropylene composition

Also Published As

Publication number Publication date
JPS57195134A (en) 1982-11-30

Similar Documents

Publication Publication Date Title
EP0028085A1 (en) Polyolefin composition
JPH0480060B2 (en)
EP0069479A1 (en) Thermoplastic resin composition
EP0153415B1 (en) Process for producing polypropylene resin composition
JPH0315667B2 (en)
JPH05295184A (en) Resin composition excellent in appearance
JPS60152543A (en) Polypropylene composition
JPH0114940B2 (en)
JP3189477B2 (en) Polypropylene resin molded product
JP2509750B2 (en) Polypropylene resin composition
EP0426315A2 (en) Polypropylene resin composition
KR19990038126A (en) Polypropylene resin composition excellent in heat resistance and strength
JPS5871940A (en) Inorganic filler-containing resin composition having improved low-temperature impact strength
JPS6143650A (en) Polypropylene composition for automobile bumper
JP3241281B2 (en) Polypropylene resin composition
JPS6411217B2 (en)
JP3124563B2 (en) Flame retardant polypropylene resin composition and sheet
JP2959301B2 (en) Thermoplastic resin composition
JP2558130B2 (en) Polyolefin resin composition
JP2834639B2 (en) Polyarylene sulfide resin composition
JP3118885B2 (en) Polyphenylene sulfide resin composition
JPH0395265A (en) Resin composition
JP2525319B2 (en) Crystalline polyolefin composition
JP3331009B2 (en) Polypropylene resin composition
JPS646659B2 (en)