JPH0315614B2 - - Google Patents

Info

Publication number
JPH0315614B2
JPH0315614B2 JP56166440A JP16644081A JPH0315614B2 JP H0315614 B2 JPH0315614 B2 JP H0315614B2 JP 56166440 A JP56166440 A JP 56166440A JP 16644081 A JP16644081 A JP 16644081A JP H0315614 B2 JPH0315614 B2 JP H0315614B2
Authority
JP
Japan
Prior art keywords
formula
dithionite
phenoxybenzyl
sodium
integer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56166440A
Other languages
Japanese (ja)
Other versions
JPS5869828A (en
Inventor
Noboru Yagi
Mitsumasa Umemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56166440A priority Critical patent/JPS5869828A/en
Publication of JPS5869828A publication Critical patent/JPS5869828A/en
Publication of JPH0315614B2 publication Critical patent/JPH0315614B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は3−フエノキシベンジルアルコール及
びその誘導体の製造方法に関し、詳しくは式
() 〔式()中、XおよびYは同一または相異なる
水素原子、ハロゲン原子、低級アルキル基、また
は低級アルコキシ基を、mは1〜5個の整数を、
nは1〜4個の整数を示す。〕で示される3−フ
エノキシベンズアルデヒド類を水系媒体中、亜二
チオン酸塩と反応させて式()で示すα−ヒド
ロキシ−3−フエノキシベンジルスルフイン酸塩
類を得、 〔式()中、X、Y、m、およびnは前記式
()と同じ意を表わし、Mはアルカリ金属、ア
ルカリ土類金属またはアンモニウムを示す(アル
カリ土類金属の場合は1/2当量である)。〕 引続き、塩基及び相間移動触媒の存在下で亜二
チオン酸塩を添加反応させるかまたは、式()
を生成、分離するとなく、直接、式()と、水
系媒体中、塩基及び相間移動触媒の存在下に亜二
チオン酸塩を反応させる、 式() 〔式()中、X、Y、m、およびnは前記式
()と同じ意を表す〕で示される3−フエノキ
シベンジルアルコール類の製造方法に関する。 従来、3−フエノキシベンジルアルコール類は
農薬などの中間体原料として有用な化合物であ
り、その合成方法は3−フエノキシトルエン類を
原料としてこれを何らかの方法で酸化することが
知られていて、酸化形態としては、ハロゲン化に
より、ベンジルハライドからアルコールへ、ある
いは酸化剤によりまたは遊離酸素によりカルボン
酸もしくはアルデヒドを得、これらを還元してア
ルコールにする方法が考えられる。 前者のハロゲン化はジフエニルエーテル型の活
性な芳香環へのハロゲン置換が避けがたく、その
分離にもかなりの費用を要するので経済的な方法
とは考えられない。 後者のカルボン酸を還元する方法では、高温高
圧下で行う必要があるなど工業的に有利な方法と
は言い難い。 また、アルデヒドを還元する方法としては、た
とえば水素化ホウ素ナトリウム、水素化ホウ素リ
チウム、水素化リチウムアルミニウムなどの金属
水素化物を用いる方法、あるいは電解還元による
方法などが知られているが、これらは実験室的な
合成法としてはすぐれているが工業的に実施する
には費用がかかりまた取扱いも難しいなどの欠点
があつた。 本発明者らは3−フエノキシベンズアルデヒド
またはα−ヒドロキシ−3−フエノキシベンジル
スルフイン酸ナトリウムを水系媒体中、塩基およ
び相間移動触媒の存在下で亜二チオン酸ナトリウ
ムと反応させると3−フエノキシベンジルアルコ
ールが高収率で得られることを見出し鋭意検討し
た結果、本発明を完成させたものである。 本発明方法によつて製造される3−フエノキシ
ベンジルアルコール類は、 一般式() 〔式()中、XおよびYは同一または相異なる
水素原子、ハロゲン原子、低級アルキル基、また
は低級アルコキシ基を、mは1〜5個の整数を、
nは1〜4個の整数を示す。〕で示され、これら
の3−フエノキシベンジルアルコール類としては
次のような化合物があげられる。 3−フエノキシベンジルアルコール、3−(4
−フルオルフエノキシ)ベンジルアルコール、3
−(3−フルオルフエノキシ)ベンジルアルコー
ル、3−(4−ブロムフエノキシ)ベンジルアル
コール、3−フエノキシ−6−フルオルベンジル
アルコール、3−フエノキシ−4−フルオルベン
ジルアルコール、6−クロル−3−フエノキシベ
ンジルアルコール、3−(4−メチルフエノキシ)
ベンジルアルコール、3−(3,4−ジクロルフ
エノキシ)ベンジルアルコール、3−〔3−(トリ
フルオルメチル)フエノキシ〕ベンジルアルコー
ル、3−(2−フルオルフエノキシ)ベンジルア
ルコール、3−(4−メトキシフエノキシ)ベン
ジルアルコールなどであり、これらは対応する3
−フエノキシベンズアルデヒド類から得られる。 また本発明方法においては、原料として3−フ
エノキシベンズアルデヒド類と亜ニチオン酸塩と
の反応中間体として生成するα−ヒドロキシ−3
−フエノキシベンジルスルフイン酸を単離して使
用してもよく、α−ヒドロキシ−3−フエノキシ
ベンジルスルフイン酸は式()で示すことがで
きる。 〔式()中、X、Y、m、およびnは前記式
()と同じ意を表わし、Mはアルカリ金属、ア
ルカリ土類金属またはアンモニウム(アルカリ土
類金属の場合は1/2当量である)、具体的にはナト
リウム、カリウム、リチウム、カルシウム、バリ
ウム、亜鉛、アンモニウムなどを示す。〕 これらのα−ヒドロキシ−3−フエノキシベン
ジルスルフイン酸塩は対応する3−フエノキシベ
ンズアルデヒドに亜二チオン酸塩を反応させるこ
とによつて合成でき容易に単離できるが、反応系
内で取り出さずに引き続き亜二チオン酸塩を添加
して塩基および相間移動触媒の存在下反応させて
目的生成物を得ることも可能である。 本発明方法において使用される塩基としては、
アルカリ金属およびアンモニウムの各水酸化物、
炭酸塩、リン酸塩またはホウ酸塩であり、具体的
には水酸化ナトリウム水酸化カリウム、水酸化リ
チウム、水酸化アンモニウム、炭酸ナトリウム、
炭酸カリウム、炭酸アンモニウム、炭酸水素ナト
リウム、炭酸水素カリウム、第3リン酸ナトリウ
ム、第3リン酸カリウム、第3リン酸アンモニウ
ム、第2リン酸ナトリウム、第2リン酸カリウ
ム、ピロリン酸ナトリウム、メタリン酸ナトリウ
ム、トリポリリン酸ナトリウム、メタホウ酸ナト
リウム、メタホウ酸カリウム、メタホウ酸アンモ
ニウム、四ホウ酸ナトリウム、四ホウ酸カリウ
ム、四ホウ酸アンモニウム、五ホウ酸ナトリウ
ム、五ホウ酸カリウム、五ホウ酸アンモニウムな
どが挙げられ、これらの単独、もしくは2種以上
を組合わせて使用することができる。 塩基の使用量は3−フエノキシベンズアルデヒ
ド類およびα−ヒドロキシ−3−フエノキシベン
ジルスルフイン酸塩類1モルに対して0.5〜50モ
ル比、好ましくは1.0〜10モル比である。使用量
がこれより少ない場合には反応速度が非常に遅く
経済的でなく、またこれより多い場合にはかきま
ぜが困難となる。亜二チオン酸塩を累積添加する
二段階反応の場合も塩基は最初に一度に加えてお
いてよい。 本発明方法において使用される亜二チオン酸塩
としては亜二チオン酸ナトリウム、亜二チオン酸
カリウム、亜二チオン酸リチウム、亜二チオン酸
アンモニウム、亜二チオン酸カルシウム、亜二チ
オン酸バリウム、亜二チオン酸亜鉛などが使用さ
れる。 亜二チオン酸塩の使用量はα−ヒドロキシ−3
−フエノキシベンジルスルフイン酸塩類1モルに
対して0.1〜50モル比、好ましくは1.0〜10モル比
である。使用量がこれより少ない場合には反応速
度が非常に遅く経済的でなく、またこれより多い
場合にはかきまぜが困難となる。 本発明方法において使用される水系媒体として
は水および、またはイソプロパノール、エタノー
ル、メタノールなどの低級アルコール類、ジオキ
サン、テトラヒドロフラン、エチレングリコール
ジメチルエーテルなどのエーテル類、N,N−ジ
メチルホルムアミド、N,N−ジメチルアセトア
ミド、テトラメチル尿素などのカルボン酸アミド
類、スルホラン、ジメチルスルホオキシドなどの
含硫黄有機溶媒の一種もしくは二種以上を組合わ
せて使用することができ、水系媒体の使用量は3
−フエノキシベンズアルデヒド1重量部に対して
1〜100重量部、好ましくは5〜50重量部である。
使用量がこれより少ない場合にはかきまぜが困難
であり、またこれより多い場合には生産性が低く
不経済である。 また、本発明方法においては相間移動触媒を用
いることにより、反応速度、収率が大となる。使
用する相間移動触媒としては例えば、トリエチル
ベンジルアンモニウムクロライド、テトラメチル
アンモニウムクロライド、トリエチルベンジルア
ンモニウムブロマイド、トリメチルベンジルアン
モニウムクロライド、トリブチルベンジルアンモ
ニウムクロライド、トリオクチルメチルアンモニ
ウムクロライド等の4級アンモニウム塩類、18−
クラウン−6、ジベンゾ18−クラウン−6、ジシ
クロヘキサノ−18−クラウン−6等のクラウンエ
ーテル類が挙げられる。 相間移動触媒の使用量は特に限定されるもので
はないが通常、原料の3−フエノキシベンズアル
デヒド類およびα−ヒドロキシ−3−フエノキシ
ベンジルスルフイン酸塩類に対し0.1〜20重量%
である。 本発明方法における通常の実施態様としてはた
とえば以下の方法で行う。 3−フエノキシベンズアルデヒド類またはα−
ヒドロキシ−3−フエノキシベンジルスルフイン
酸塩類、塩基、亜二チオン酸塩、相間移動触媒お
よび水系媒体を反応容器に入れ、50℃ないし沸
点、好ましくは80℃ないし沸点に加熱(但し、沸
点が200℃をこえる場合は80〜200℃の加熱が好ま
しい)、同温度で0.5〜100時間、好ましくは3〜
20時間かきまぜる。室温まで冷却した後、水に排
出し、四塩化炭素、ベンゼン、あるいはエーテル
などの有機溶媒で抽出する。抽出液を硫酸ナトリ
ウムなどの乾燥剤で脱水した後、溶媒を減圧下に
蒸発留去して3−フエノキシベンジルアルコール
類を得る。このものは純度が高く、このままでピ
レスロイド系殺虫・殺ダニ剤などの農薬の原料と
して使用可能であるが、場合によつてはさらに減
圧蒸溜、もしくはカラムクロマトグラフイーによ
つて精製することも可能である。 次に本発明の詳細を実施例によつて説明する。 実施例 1 撹拌棒、温度計および冷却器をつけた反応容器
中に3−フエノキシベンズアルデヒド9.91g、炭
酸水素ナトリウム27.5g、亜二チオン酸ナトリウ
ム(ハイドロサルフアイト)12.5g、トリエチル
ベンジルアンモニウムクロリド1.14gおよび水
200mlをいれ、かきまぜながら95℃まで加熱。95
〜99℃で10時間煮沸還流させた。室温まで冷却し
た後、水に排出し、四塩化炭素150mlで3回抽出
した。抽出液を硫酸ナトリウムで乾燥した後、溶
媒を減圧下に蒸留で除去し3−フエノキシベンジ
ルアルコール10.0gを得た。収量は定量的で、こ
のものはガスクロマトグラフイーによる分析の結
果、純度99.5%であつた。(収率99.4%) なお、反応の途中でサンプリングしてガスクロ
マトグラフイーによつて分析した結果は下の通り
である。
The present invention relates to a method for producing 3-phenoxybenzyl alcohol and its derivatives, and more specifically, the formula () [In formula (), X and Y are the same or different hydrogen atoms, halogen atoms, lower alkyl groups, or lower alkoxy groups, m is an integer of 1 to 5,
n represents an integer of 1 to 4. 3-phenoxybenzaldehydes represented by the formula () are reacted with dithionite in an aqueous medium to obtain α-hydroxy-3-phenoxybenzyl sulfinates represented by the formula (), [In the formula (), X, Y, m, and n represent the same meanings as in the above formula (), and M represents an alkali metal, an alkaline earth metal, or ammonium (1/2 equivalent in the case of an alkaline earth metal) ). ] Subsequently, in the presence of a base and a phase transfer catalyst, dithionite is added to react, or the formula ()
Reacting the dithionite salt in the presence of a base and a phase transfer catalyst in an aqueous medium with the formula () directly, without separation, to produce the formula () [In the formula (), X, Y, m, and n represent the same meanings as in the above formula ()]. Conventionally, 3-phenoxybenzyl alcohols are compounds useful as intermediate raw materials for agricultural chemicals, etc., and it has been known that the method for synthesizing them involves using 3-phenoxytoluenes as a raw material and oxidizing it in some way. Possible oxidation forms include halogenation from benzyl halide to alcohol, or oxidizing agents or free oxygen to obtain carboxylic acids or aldehydes, which are then reduced to alcohols. The former halogenation is not considered to be an economical method because halogen substitution on the active aromatic ring of the diphenyl ether type is unavoidable and its separation requires considerable cost. The latter method of reducing carboxylic acid cannot be said to be an industrially advantageous method because it needs to be carried out at high temperature and high pressure. Also, known methods for reducing aldehydes include methods using metal hydrides such as sodium borohydride, lithium borohydride, and lithium aluminum hydride, and methods using electrolytic reduction. Although this method is excellent as a laboratory synthesis method, it has drawbacks such as being expensive and difficult to carry out industrially. We have shown that when 3-phenoxybenzaldehyde or sodium α-hydroxy-3-phenoxybenzylsulfinate is reacted with sodium dithionite in the presence of a base and a phase transfer catalyst in an aqueous medium, 3 The present invention was completed after discovering that -phenoxybenzyl alcohol can be obtained in high yield and conducting extensive studies. The 3-phenoxybenzyl alcohols produced by the method of the present invention have the general formula () [In formula (), X and Y are the same or different hydrogen atoms, halogen atoms, lower alkyl groups, or lower alkoxy groups, m is an integer of 1 to 5,
n represents an integer of 1 to 4. ], and examples of these 3-phenoxybenzyl alcohols include the following compounds. 3-phenoxybenzyl alcohol, 3-(4
-fluorophenoxy)benzyl alcohol, 3
-(3-fluorophenoxy)benzyl alcohol, 3-(4-bromophenoxy)benzyl alcohol, 3-phenoxy-6-fluorobenzyl alcohol, 3-phenoxy-4-fluorobenzyl alcohol, 6-chloro-3- Phenoxybenzyl alcohol, 3-(4-methylphenoxy)
Benzyl alcohol, 3-(3,4-dichlorophenoxy)benzyl alcohol, 3-[3-(trifluoromethyl)phenoxy]benzyl alcohol, 3-(2-fluorophenoxy)benzyl alcohol, 3-(4 -methoxyphenoxy)benzyl alcohol, etc., and these are the corresponding 3
- Obtained from phenoxybenzaldehydes. In addition, in the method of the present invention, α-hydroxy-3 produced as a reaction intermediate between 3-phenoxybenzaldehyde and dithionite as a raw material
-Phenoxybenzylsulfinic acid may be isolated and used, and α-hydroxy-3-phenoxybenzylsulfinic acid can be represented by the formula (). [In the formula (), X, Y, m, and n represent the same meanings as in the above formula (), and M is an alkali metal, an alkaline earth metal, or ammonium (1/2 equivalent in the case of an alkaline earth metal) ), specifically sodium, potassium, lithium, calcium, barium, zinc, ammonium, etc. ] These α-hydroxy-3-phenoxybenzyl sulfinates can be synthesized and easily isolated by reacting the corresponding 3-phenoxybenzaldehyde with dithionite, but the reaction system It is also possible to obtain the desired product by subsequently adding dithionite without taking it out and reacting in the presence of a base and a phase transfer catalyst. The base used in the method of the present invention is
alkali metal and ammonium hydroxides,
carbonates, phosphates or borates, specifically sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, sodium carbonate,
Potassium carbonate, ammonium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, tribasic sodium phosphate, tribasic potassium phosphate, tribasic ammonium phosphate, dibasic sodium phosphate, dibasic potassium phosphate, sodium pyrophosphate, metaphosphoric acid Sodium, sodium tripolyphosphate, sodium metaborate, potassium metaborate, ammonium metaborate, sodium tetraborate, potassium tetraborate, ammonium tetraborate, sodium pentaborate, potassium pentaborate, ammonium pentaborate, etc. These can be used alone or in combination of two or more. The amount of the base used is 0.5 to 50 molar ratio, preferably 1.0 to 10 molar ratio per mole of 3-phenoxybenzaldehyde and α-hydroxy-3-phenoxybenzyl sulfinate. If the amount used is less than this, the reaction rate is very slow and it is not economical, and if it is more than this, stirring becomes difficult. Even in the case of a two-step reaction in which dithionite is added cumulatively, the base may be added all at once at the beginning. The dithionite used in the method of the present invention includes sodium dithionite, potassium dithionite, lithium dithionite, ammonium dithionite, calcium dithionite, barium dithionite, Zinc dithionite and the like are used. The amount of dithionite used is α-hydroxy-3
-The molar ratio is from 0.1 to 50, preferably from 1.0 to 10, per mole of the phenoxybenzyl sulfinate. If the amount used is less than this, the reaction rate is very slow and it is not economical, and if it is more than this, stirring becomes difficult. The aqueous medium used in the method of the present invention includes water and/or lower alcohols such as isopropanol, ethanol, and methanol, ethers such as dioxane, tetrahydrofuran, and ethylene glycol dimethyl ether, N,N-dimethylformamide, and N,N-dimethyl. One or a combination of two or more of carboxylic acid amides such as acetamide and tetramethylurea, and sulfur-containing organic solvents such as sulfolane and dimethyl sulfoxide can be used, and the amount of the aqueous medium used is 3.
- 1 to 100 parts by weight, preferably 5 to 50 parts by weight, per 1 part by weight of phenoxybenzaldehyde.
If the amount used is less than this, stirring is difficult, and if it is more than this, productivity is low and uneconomical. Further, in the method of the present invention, the reaction rate and yield are increased by using a phase transfer catalyst. Examples of the phase transfer catalyst used include quaternary ammonium salts such as triethylbenzylammonium chloride, tetramethylammonium chloride, triethylbenzylammonium bromide, trimethylbenzylammonium chloride, tributylbenzylammonium chloride, trioctylmethylammonium chloride, 18-
Examples include crown ethers such as crown-6, dibenzo 18-crown-6, and dicyclohexano-18-crown-6. The amount of phase transfer catalyst used is not particularly limited, but is usually 0.1 to 20% by weight based on the raw materials 3-phenoxybenzaldehydes and α-hydroxy-3-phenoxybenzyl sulfinates.
It is. A typical embodiment of the method of the present invention is carried out, for example, by the following method. 3-phenoxybenzaldehydes or α-
Hydroxy-3-phenoxybenzyl sulfinates, base, dithionite, phase transfer catalyst, and aqueous medium are placed in a reaction vessel and heated to 50°C to boiling point, preferably 80°C to boiling point (however, boiling point (If the temperature exceeds 200℃, heating at 80-200℃ is preferable), at the same temperature for 0.5-100 hours, preferably 3-200℃.
Stir for 20 hours. After cooling to room temperature, drain into water and extract with an organic solvent such as carbon tetrachloride, benzene, or ether. After dehydrating the extract with a drying agent such as sodium sulfate, the solvent is evaporated off under reduced pressure to obtain 3-phenoxybenzyl alcohol. This product has high purity and can be used as is as a raw material for agricultural chemicals such as pyrethroid insecticides and acaricides, but in some cases it can be further purified by vacuum distillation or column chromatography. It is. Next, the details of the present invention will be explained by referring to examples. Example 1 9.91 g of 3-phenoxybenzaldehyde, 27.5 g of sodium bicarbonate, 12.5 g of sodium dithionite (hydrosulfite), and triethylbenzylammonium chloride are placed in a reaction vessel equipped with a stirring bar, thermometer, and condenser. 1.14g and water
Pour 200ml and heat to 95℃ while stirring. 95
Boil and reflux at ~99°C for 10 hours. After cooling to room temperature, it was drained into water and extracted three times with 150 ml of carbon tetrachloride. After drying the extract over sodium sulfate, the solvent was removed by distillation under reduced pressure to obtain 10.0 g of 3-phenoxybenzyl alcohol. The yield was quantitative, and as a result of gas chromatography analysis, the purity was 99.5%. (Yield 99.4%) The results of sampling during the reaction and analyzing it by gas chromatography are as follows.

【表】 比較例 1 実施例1においてトリエチルベンジルアンモニ
ウムクロリド1.14gを使用しないで、96〜103℃
で40時間煮沸還流させた。同様に後処理をして粗
生成物9.93gを得た。このものはガスクロマトグ
ラフイーによる分析の結果、3−フエノキシベン
ジルアルコール88.2%および3−フエノキシベン
ズアルデヒド11.7%であつた。 なお、反応の途中で時間毎にサンプリングして
ガスクロマトグラフイーによつて分析した結果は
下の通りである。
[Table] Comparative Example 1 96-103℃ without using 1.14g of triethylbenzylammonium chloride in Example 1
The mixture was boiled and refluxed for 40 hours. After the same post-treatment, 9.93 g of a crude product was obtained. Analysis of this product by gas chromatography revealed that it was 88.2% 3-phenoxybenzyl alcohol and 11.7% 3-phenoxybenzaldehyde. The results of samples taken at intervals during the reaction and analyzed by gas chromatography are as follows.

【表】 参考例 3−フエノキシベンズアルデヒド9.91g、亜二
チオン酸ナトリウム12.5g、イソプロパノール15
mlおよび水100mlをいれ、かきまぜながら80℃ま
で加熱。80〜87℃で8時間煮沸還流させた。つい
で亜二チオン酸ナトリウム12.5gを追加して8時
間煮沸還流させた。室温まで冷却した後、水250
mlに排出した。析出している結晶を濾過、少量の
冷水で洗浄した後、乾燥して無色の鱗片状結晶
11.67gを得た。mp132〜182.5℃。 元素分析値(%) C53.5、H3.82、S10.10、Na7.32、N0.00 C13H11O4SNaとしての計算値(%) C54.54、H3.87、S11.20、Na8.03、N0.00 IRν(cm-1);、3250(OH)、1585、1485、1450、
1250、1190(C−O−C)、1040、940、880、
760、690、630 NMR δ(ppm)(DMSO−d6);、5.3(d、1H、
CH)、6.1(d、1H、OH)、6.8〜7.7(m、12H、
芳香族プロトン)、10.0(s、−CHO) ここで得られた結晶を水酸化ナトリウム水溶液
で処理すると原料の3−フエノキシベンズアルデ
ヒドに戻つた。 このことから、ここで得られた結晶はα−ヒド
ロキシ−3−フエノキシベンジルスルフイン酸ナ
トリウムであり、これに少量の3−フエノキシベ
ンズアルデヒドが付着しているものと推定され
る。塩基の不存在下では、亜二チオン酸塩を多量
に後添加しても、目的生成物3−フエノキシベン
ジルアルコール類へ反応は完結しないことがわ
る。 実施例 2 参考例の方法にて合成した、α−ヒドロキシ−
3−フエノキシベンジルスルフイン酸ナトリウム
14.3g、炭酸水素ナトリウム27.5g、亜二チオン
酸のナトリウム(ハイドロサルフアイト)12.5
g、トリエチルベンジルアンモニウムクロリド
1.1gをイソプロパノール50ml、水100mlの水媒体
中に装入し、加熱、還流下8時間かきまぜた。反
応液は室温まで冷却後、水300mlに排出したのち
四塩化炭素70mlで3回抽出した。抽出液を硫酸ナ
トリウムで乾燥した後、溶媒を減圧下に留去し3
−フエノキシベンジルアルコールを定量的に得
た。このものはガスクロマトグラフイーによる分
析の結果純度99.6%であつた。 実施例 3〜8 3−フエノキシベンズアルデヒドの代わりに、
式()中のX、及びYの置換基が下表に示され
る核置換3−フエノキシベンズアルデヒド類を用
いて、実施例1と全く同様にして対応する3−フ
エノキシベンジルアルコール類を合成した。結果
は第1表のとおりであつた。
[Table] Reference example 3-phenoxybenzaldehyde 9.91g, sodium dithionite 12.5g, isopropanol 15
ml and 100ml of water and heat to 80℃ while stirring. It was boiled and refluxed at 80-87°C for 8 hours. Then, 12.5 g of sodium dithionite was added and the mixture was boiled and refluxed for 8 hours. After cooling to room temperature, water 250
Drained into ml. The precipitated crystals are filtered, washed with a small amount of cold water, and dried to form colorless scaly crystals.
11.67g was obtained. mp132~182.5℃. Elemental analysis value (%) C53.5, H3.82, S10.10, Na7.32, N0.00 Calculated value as C 13 H 11 O 4 SNa (%) C54.54, H3.87, S11.20 , Na8.03, N0.00 IRν (cm -1 );, 3250 (OH), 1585, 1485, 1450,
1250, 1190 (C-O-C), 1040, 940, 880,
760, 690, 630 NMR δ (ppm) (DMSO-d 6 );, 5.3 (d, 1H,
CH), 6.1 (d, 1H, OH), 6.8-7.7 (m, 12H,
aromatic proton), 10.0 (s, -CHO) When the crystals obtained here were treated with an aqueous sodium hydroxide solution, they returned to the raw material 3-phenoxybenzaldehyde. From this, it is presumed that the crystals obtained here are sodium α-hydroxy-3-phenoxybenzyl sulfinate, to which a small amount of 3-phenoxybenzaldehyde is attached. It can be seen that in the absence of a base, even if a large amount of dithionite is subsequently added, the reaction to the desired product 3-phenoxybenzyl alcohols is not completed. Example 2 α-Hydroxy- synthesized by the method of Reference Example
Sodium 3-phenoxybenzylsulfinate
14.3g, sodium bicarbonate 27.5g, sodium dithionite (hydrosulfite) 12.5g
g, triethylbenzylammonium chloride
1.1 g was placed in an aqueous medium of 50 ml of isopropanol and 100 ml of water, and stirred under heating and reflux for 8 hours. After the reaction solution was cooled to room temperature, it was poured into 300 ml of water and extracted three times with 70 ml of carbon tetrachloride. After drying the extract over sodium sulfate, the solvent was distilled off under reduced pressure.
-Phenoxybenzyl alcohol was quantitatively obtained. This product was analyzed by gas chromatography and found to have a purity of 99.6%. Examples 3-8 Instead of 3-phenoxybenzaldehyde,
Using nuclear-substituted 3-phenoxybenzaldehydes in which the substituents of X and Y in formula () are shown in the table below, the corresponding 3-phenoxybenzyl alcohols were prepared in exactly the same manner as in Example 1. Synthesized. The results were as shown in Table 1.

【表】【table】

Claims (1)

【特許請求の範囲】 1 式() 〔式()中、XおよびYは同一または相異なる
水素原子、ハロゲン原子、低級アルキル基、また
は低級アルコキシ基を、mは1〜5個の整数を、
nは1〜4個の整数を示す。〕で示される3−フ
エノキシベンズアルデヒド類を水系媒体中、塩基
及び相間移動触媒の存在下、亜二チオン酸塩と反
応させることを特徴とする、 式() 〔式()中、X、Y、m、およびnは前記式
()と同じ意を表す〕で示される3−フエノキ
シベンジルアルコール類の製造方法。 2 式() 〔式()中、XおよびYは同一または相異なる
水素原子、ハロゲン原子、低級アルキル基、また
は低級アルコキシ基を、mは1〜5個の整数を、
nは1〜4個の整数を示す。〕で示される3−フ
エノキシベンズアルデヒド類を水系媒体中、亜二
チオン酸塩と反応させて式()で示すα−ヒド
ロキシ−3−フエノキシベンジルスルフイン3−
フエノキシベンジルアルコール類塩を得、 〔式()中、X、Y、m、およびnは前記式
()と同じ意を表わし、Mはアルカリ金属、ア
ルカリ土類金属またはアンモニウムを示す(アル
カリ土類金属の場合は1/2当量である)。〕 引続き、塩基及び相間移動触媒の存在下亜二チ
オン酸塩を添加して反応させる、 式() 〔式()中、X、Y、mおよびnは前記式
()と同じ意を表す〕で示される3−フエノキ
シベンジルアルコール類の製造方法。
[Claims] 1 Formula () [In formula (), X and Y are the same or different hydrogen atoms, halogen atoms, lower alkyl groups, or lower alkoxy groups, m is an integer of 1 to 5,
n represents an integer of 1 to 4. ], characterized by reacting 3-phenoxybenzaldehyde represented by the formula () with a dithionite salt in an aqueous medium in the presence of a base and a phase transfer catalyst. [In the formula (), X, Y, m, and n represent the same meanings as in the above formula ()]. A method for producing 3-phenoxybenzyl alcohol. 2 formula () [In formula (), X and Y are the same or different hydrogen atoms, halogen atoms, lower alkyl groups, or lower alkoxy groups, m is an integer of 1 to 5,
n represents an integer of 1 to 4. 3-phenoxybenzaldehydes represented by the formula () are reacted with dithionite in an aqueous medium to produce α-hydroxy-3-phenoxybenzyl sulfine 3- represented by the formula ().
Obtain phenoxybenzyl alcohol salt, [In the formula (), X, Y, m, and n represent the same meanings as in the above formula (), and M represents an alkali metal, an alkaline earth metal, or ammonium (1/2 equivalent in the case of an alkaline earth metal) ). ] Subsequently, dithionite is added and reacted in the presence of a base and a phase transfer catalyst, formula () [In the formula (), X, Y, m and n represent the same meanings as in the above formula ()]. A method for producing 3-phenoxybenzyl alcohol.
JP56166440A 1981-10-20 1981-10-20 Preparation of 3-phenoxybenzyl alcohols Granted JPS5869828A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56166440A JPS5869828A (en) 1981-10-20 1981-10-20 Preparation of 3-phenoxybenzyl alcohols

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56166440A JPS5869828A (en) 1981-10-20 1981-10-20 Preparation of 3-phenoxybenzyl alcohols

Publications (2)

Publication Number Publication Date
JPS5869828A JPS5869828A (en) 1983-04-26
JPH0315614B2 true JPH0315614B2 (en) 1991-03-01

Family

ID=15831438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56166440A Granted JPS5869828A (en) 1981-10-20 1981-10-20 Preparation of 3-phenoxybenzyl alcohols

Country Status (1)

Country Link
JP (1) JPS5869828A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL88135A (en) * 1988-10-24 1994-04-12 Bromine Compounds Ltd Process for the preparation of 3-phenoxybenzylalcohol
JP2530061Y2 (en) * 1992-03-17 1997-03-26 ▲福▼山 史 Free float for fishing

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
J.ORG.CHEM=1980 *
SYNTHESIS=1977 *

Also Published As

Publication number Publication date
JPS5869828A (en) 1983-04-26

Similar Documents

Publication Publication Date Title
US4588835A (en) Process for preparing alkoxyphenols
US4874901A (en) Process for the production of polyfluorinated ethers
JPS6223741B2 (en)
GB2045760A (en) Process for the preparation of 2,5- bis(2,2,2-trifluoroethoxy)-N-(2-piperidylmethyl) benzamide (flecainide)
JPH035458A (en) Improved process for producing 3,5,6-trichloro- pyridin-2-ol
JPS6312855B2 (en)
JPH0315614B2 (en)
JPS606332B2 (en) Method for producing a carboxylic acid or sulfinic acid derivative having a perfluoroalkyl group
EP1308432B1 (en) Process for the preparation of 5- (4-chlorophenyl)-methyl|-2,2-dimethylcyclopentanone
Boswell et al. A Convenient Large-Scale Synthesis of 4-Fluoro-1-naphthaldehyde and Its Aromatic Nucleophilic Substitution Reactions
JPH0149253B2 (en)
EP0101625B1 (en) Process for preparing the 2',4'-difluoro-4-hydroxy-(1,1'-diphenyl)-3-carboxylic acid
CA1220226A (en) Preparation of meta-substituted anilines
US4324922A (en) Reimer-Tiemann aldehyde synthesis process
US5068336A (en) Process for producing 2-(4'-hydroxphenoxy)-3-chloro-5-trifluoromethylpyridine
CA1271495A (en) 1,1-(3-ethylphenyl)phenylethylene and method for preparing it
JPH0511110B2 (en)
JP7202508B2 (en) Method for producing 1-chloro-3-(4-chlorophenoxy)benzene
JP4393839B2 (en) Preparation of 1,3-di-halo substituted benzene derivatives
Percino et al. Unexpected crystallization and X-ray crystal structure of racemic 1-phenyl-2-(4-pyridyl) ethanol intermediate
JPS632422B2 (en)
JPH07247267A (en) Production of phenyl ethers
JP2003104928A (en) Method for producing hydroxyacetophenones
JP2023533603A (en) Method for preparing phenyl ketone
JPH04279547A (en) Production of dialkoxybenzoin compound