JPH0315605A - Steam turbine - Google Patents

Steam turbine

Info

Publication number
JPH0315605A
JPH0315605A JP14834089A JP14834089A JPH0315605A JP H0315605 A JPH0315605 A JP H0315605A JP 14834089 A JP14834089 A JP 14834089A JP 14834089 A JP14834089 A JP 14834089A JP H0315605 A JPH0315605 A JP H0315605A
Authority
JP
Japan
Prior art keywords
blade
rotor
ring
thermal expansion
stationary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14834089A
Other languages
Japanese (ja)
Inventor
Takuji Fujikawa
卓爾 藤川
Hiroshi Yokota
宏 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP14834089A priority Critical patent/JPH0315605A/en
Publication of JPH0315605A publication Critical patent/JPH0315605A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enlarge a clearance in the inoperative state of a steam turbine having a movable blade disposed in a rotor and a stationary blade disposed in a blade ring while reduce the clearance in the operative state thereof so as to enhance efficiency by making the blade ring of a material having a thermal expansion coefficient lower than those of other component parts. CONSTITUTION:In a steam turbine with a movable blade 2 embedded in a rotor 1 serving as a rotary unit while a stationary blade 4 embedded in a blade ring 3 serving as a stationary unit, the rotor 1, movable blade 2 and stationary blade 4 are made of a material having a high thermal expansion coefficient such as austenite and refractive alloy, while the blade ring 3 is made of a material having a relatively low thermal expansion coefficient such as chrome steel 12. Therefore, using a difference in thermal expansion due to a change in temperature, a clearance can be enlarged in the inoperative state of the steam turbine while the clearance can be reduced in the operative state thereof.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、蒸気タービン、殊にそのロータ等の回転部と
翼環等の静止部との遊隙調整に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a steam turbine, and particularly to adjusting the play between a rotating part such as a rotor and a stationary part such as a blade ring.

しかしながら、これに限らずガスタービンにも適用でき
るものである。
However, the invention is not limited to this and can also be applied to gas turbines.

従来の技術 蒸気タービンのロータ及び該ロー夕に設ける多数の動翼
からなる回転部と、翼環及び該翼環に設ける多数の静翼
からなる静止部との間に遊隙が形成されている。
BACKGROUND OF THE INVENTION A clearance is formed between a rotor of a steam turbine and a rotating part consisting of a rotor and a large number of moving blades provided on the rotor, and a stationary part consisting of a blade ring and a large number of stationary blades provided on the blade ring. .

当然のことながら蒸気タービンの効率を高く維持するに
は、この遊隙は作動流体たる高温高圧の蒸気の漏洩を防
ぐよう小さい程望ましい。
Naturally, in order to maintain high efficiency of the steam turbine, it is desirable that this clearance be as small as possible to prevent leakage of high-temperature, high-pressure steam, which is the working fluid.

しかしながら、第4図に示すように従来の蒸気タービン
の停止中ではその一つに合体した上部及び下部車室1’
,2’に上下温度差がつき、具体的には上部車室1′の
温度が下部車室2′の温度よりも高くなり、バイメタル
効果により各車室1′2′の中央郎が上方にδだけ変形
する。この現象をその形状から「車室の猫ぞり」と呼ん
でいる。
However, as shown in FIG. 4, when a conventional steam turbine is stopped, the upper and lower casings 1' are combined into one.
There is a temperature difference between the upper and lower compartments 1' and 2', specifically, the temperature of the upper compartment 1' becomes higher than the temperature of the lower compartment 2', and the center of each compartment 1' and 2' moves upward due to the bimetallic effect. Deforms by δ. This phenomenon is called ``cabin cat sledding'' because of its shape.

一方、運転中には車室上下温度差は減少し、車室1’,
2’の猫ぞりもほとんどなくなる。
On the other hand, during driving, the temperature difference between the upper and lower compartments decreases, and the temperature difference between the upper and lower compartments decreases.
2' cat sledding will almost disappear.

このように停止時と運転時において、特に車室1’,2
’の中央部が上下方向に変位するため、回転部と静止郎
の遊隙をこの変位量より小さくすることが出来ないのが
現状である。
In this way, when stopped and when driving, especially in the passenger compartments 1' and 2.
Since the central part of ' is displaced in the vertical direction, it is currently impossible to make the play between the rotating part and the stationary part smaller than this amount of displacement.

また仮に回転部と静止部の遊隙をこの変位量より小さく
しても、車室l′.2′の変位によって停止時または運
転時に回転郎と静止部の接触が生じ、遊隙部に使われて
いるシールフィンが摩耗して遊隙が大きくなってしまう
Furthermore, even if the play between the rotating part and the stationary part is smaller than this amount of displacement, the casing l'. Due to the displacement of 2', the rotor and the stationary part come into contact when stopped or in operation, and the seal fins used in the play area wear out, resulting in an increase in play.

停止時と運転時との車室1’,2’の変位量は約10に
及ぶこともあり、遊隙を小さく出来ないことによる効率
の低下は無視出来ない。
The amount of displacement of the compartments 1', 2' between when the vehicle is stopped and when the vehicle is in operation can reach approximately 10 degrees, and the reduction in efficiency due to the inability to reduce the play cannot be ignored.

このような点を改善するために、公知の技術として第5
図に例示する遊隙制御式のシール構造が考案され、一部
で使用されている。
In order to improve these points, the fifth known technique
The clearance control type seal structure illustrated in the figure has been devised and is used in some cases.

即ち、図中符号01は遊隙、02は動翼、03は翼環、
04は可動式シールリング、05はベローズ及び06は
蒸気圧力印加穴であって、動翼02先端と翼環03との
間の遊隙01を減少させるために、可動式シールリング
04をベローズ05を介して半径方向移動可能に、内周
面の一郎を穿設した翼環03内に挿入したソール機構で
ある。
That is, in the figure, 01 is the clearance, 02 is the rotor blade, 03 is the blade ring,
04 is a movable seal ring, 05 is a bellows, and 06 is a steam pressure application hole.In order to reduce the clearance 01 between the tip of the rotor blade 02 and the blade ring 03, the movable seal ring 04 is replaced with a bellows 05. This is a sole mechanism inserted into a blade ring 03 having a perforated hole on the inner circumferential surface so as to be movable in the radial direction via the sole mechanism.

運転中、蒸気圧力印加穴06を通して、適当な圧力に調
整した蒸気の一部をベローズ05内に導入することによ
り、そのベローズ05を伸縮させて、つまり可動式シー
ルリング04を半径方向外側又は内側へ移動させて、前
記遊隙O1部の隙間を自動的に制御する。
During operation, a portion of steam adjusted to an appropriate pressure is introduced into the bellows 05 through the steam pressure application hole 06, thereby expanding and contracting the bellows 05, that is, moving the movable seal ring 04 radially outward or inward. to automatically control the clearance of the clearance O1 portion.

なお、図中、符号07は静翼、08はシールフィンを夫
々示す。
In the figure, numeral 07 indicates a stationary blade, and 08 indicates a seal fin.

また、第6図に示す如く実開昭62− 117202号
にて開示されたシール環(201)の材料をロータ(4
l)に比べて熱膨張係数αの小さい材料で形成すると共
に、シール環(201)の熱変形を許容するために、前
記従来例とほぼ同様に、シール環(201)を押えバネ
(203), (204), (205)を介して半径
方向移動可能に、内周面の一郎を穿設したグミ一環(5
l)内で保持したシール機構が既に考案されている。
Further, as shown in FIG.
In order to allow thermal deformation of the seal ring (201), a spring (203) is used to hold down the seal ring (201), as in the conventional example. , (204), (205) to be movable in the radial direction.
l) Seal mechanisms retained within have already been devised.

発明が解決しようとする課題 以上述べた従来の蒸気タービンは、しかし、次のような
問題がある。
Problems to be Solved by the Invention The conventional steam turbine described above, however, has the following problems.

即ち、第5図に示す前者の如き遊隙制御式のシール機構
においては、その構造が複雑となり、製作工数、工程並
びにコストが増大する。
That is, in a clearance control type seal mechanism such as the former shown in FIG. 5, the structure is complicated, and the number of manufacturing steps, steps, and costs increase.

しかも、車室内の寸法上の制約もあり、翼環03と可動
式シールリング04との関係において同一のスペースに
配設できる段落敗が限られる不都合がある。
Moreover, there are also dimensional constraints within the vehicle interior, and there is a problem in that the number of stages that can be disposed in the same space between the blade ring 03 and the movable seal ring 04 is limited.

一方、第6図に示す後者の如きシール機構には次のよう
な問題がある。
On the other hand, the latter sealing mechanism shown in FIG. 6 has the following problems.

シール環(201)は内面と外面の両面から押えバネ(
204),(205)及び(203)によって押えられ
ている。
The seal ring (201) has a presser spring (
204), (205) and (203).

このように両面より押えバネにて押えられている場合、
ダミー環(5l)の溝の中でシール環(201)の半径
方向位置とバネ力の関係は図のようになり、即ちある半
径方向の位置Aで押えバネからシール環(201)に働
く力が0になる。
If it is pressed down by the pressing springs from both sides like this,
The relationship between the radial position of the seal ring (201) in the groove of the dummy ring (5l) and the spring force is as shown in the figure, that is, the force acting on the seal ring (201) from the presser spring at a certain radial position A. becomes 0.

またシール環(201)が内側に変位すると各押えバネ
(204), (205)により外向きに押される。
Furthermore, when the seal ring (201) is displaced inward, it is pushed outward by the respective presser springs (204) and (205).

ここで、第7図に示すように、その図の上段側に示して
いる押えバネ(204), (205)の合力は、シー
ル環(201)がダミー環(5l)に近づく方向(第6
図のP。の方向でこれを外側と呼ぶ)の力の絶対値を示
す。
Here, as shown in Fig. 7, the resultant force of the presser springs (204) and (205) shown on the upper side of the figure is in the direction (sixth direction) in which the seal ring (201) approaches the dummy ring (5l).
P in the diagram. indicates the absolute value of the force in the direction of (this is called the outer direction).

また、それにクロスする押えバネ(203)の押え力は
逆にシール環(201)がグミ一環(5l)から離れる
方向(第6図のP。の方向と逆のPiの方向でこれを内
側と呼ぶ)の力の絶対値を示す。
In addition, the pressing force of the pressing spring (203) that crosses it is oppositely applied in the direction in which the seal ring (201) separates from the gummy ring (5l) (in the direction of Pi, which is opposite to the direction of P in Fig. 6). indicates the absolute value of the force (called).

従ってこれら3つのバネの合力は方向を考慮すれば押え
バネ(204),(205)の合力と押えバネ(203
)の押え力の差になり、この差の値が正(+)の場合は
全体としてシール環(201)を外側へ(図のP。の方
向へ)押すことを示し、この差の値が負(−)の場合は
全体としてシール環(201)を内側へ(図のPiの方
向へ)押すことを示す。
Therefore, considering the direction, the resultant force of these three springs is the resultant force of presser springs (204) and (205) and presser spring (203).
), and if the value of this difference is positive (+), it indicates that the seal ring (201) as a whole is pushed outward (in the direction of P in the figure), and the value of this difference is A negative (-) value indicates that the seal ring (201) as a whole is pushed inward (in the direction of Pi in the figure).

この差は第7図の上段側では2つのクロスする線の間の
距離a1つまり押えバネ(204), (205)の合
力が他の押えバネ(203)の押え力より大きい場合、
或いは距Mbに負の符号(−)を付したもの、つまり押
えバネ(204), (205)の合力か押えバネ(2
03)の押え力より小さい場合となる。
This difference is shown in the upper part of FIG. 7 when the distance a1 between the two crossing lines, that is, the resultant force of the presser springs (204) and (205) is larger than the presser force of the other presser springs (203).
Alternatively, the distance Mb with a negative sign (-), that is, the resultant force of the presser springs (204) and (205) or the presser spring (2
03) is smaller than the pressing force.

そして、シール環(201)が半径方向の位置Aの付近
にあるとき、押えバネ全体からシール環(201)に加
わる力は殆ど0になりシール環(201)の定位性がな
くなる。
When the seal ring (201) is near position A in the radial direction, the force applied to the seal ring (201) from the entire presser spring becomes almost 0, and the seal ring (201) loses orientation.

このためシール環(201)が振動を発生するなどして
蒸気タービンの信頼性に悪影響を及ぼす。
Therefore, the seal ring (201) generates vibrations, which adversely affects the reliability of the steam turbine.

好適には温体時にはシール環(201)は熱膨張差によ
ってグミ一環(5l)に対して最も内側に変位せねばな
らない。このときシール環(201)は押えバネ全体か
ら外向きの力を受ける。
Preferably, when the body is hot, the sealing ring (201) should be displaced to the innermost side with respect to the gummy ring (5l) due to the difference in thermal expansion. At this time, the seal ring (201) receives an outward force from the entire presser spring.

ところが、一般にシール環(201)は第8図(a)(
b)に示すように円周方向に数分割されているため、個
々のシール環(201)は互いに円周方向に密着しない
状態となり、隙間Sから蒸気の漏洩が生じて、シール効
果が低減することとなる。
However, in general, the seal ring (201) is as shown in Fig. 8(a) (
As shown in b), since it is divided into several parts in the circumferential direction, the individual seal rings (201) do not come into close contact with each other in the circumferential direction, and steam leaks from the gap S, reducing the sealing effect. It happens.

そこで、仮にこの不都合を防ぐため、第6図において内
側に位置する押えバネ(204). (205)を用い
ないようにすれば、温体時にシール環(201)はグミ
一環(51)に対して最も内側に密着することができる
が、冷体時には外側の押えバネ(203)の強いバネ力
を受けながら中間の位置に変位させねばならず、第8図
(c)に示すように冷体時から温体時の間に何らかの外
乱があれば、シール環(201)の半径方向のくい違い
bが発生し、シール効果が低減する不都合がある。
Therefore, in order to prevent this inconvenience, the presser spring (204) located on the inside in FIG. If (205) is not used, the seal ring (201) can be in close contact with the gummy ring (51) in the innermost part when the body is hot, but when the body is cold, the outer pressing spring (203) is strong. The seal ring (201) must be displaced to an intermediate position while receiving a spring force, and if there is any disturbance between the cold body state and the hot body state as shown in FIG. b occurs, which reduces the sealing effect.

課題を解決するための手段 本発明は、以上のような課題を解決するために、ロー夕
、該ロータに設けた動翼、翼環及び該翼環に設けた静翼
の4つの構成部材を具備する蒸気タービンにおいて、翼
環を前記他の構成部材に比べて熱膨張係数の小さな材料
としたものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides four constituent members: a rotor, a moving blade provided on the rotor, a blade ring, and a stationary blade provided in the blade ring. In the steam turbine equipped with the steam turbine, the blade ring is made of a material having a smaller coefficient of thermal expansion than the other constituent members.

作用 このような手段によれば、回転部であるロータ、動翼と
、静止部のうち静翼とに熱膨張率の大きな材料、例えば
オーステナイトやレフラクトアロイを用い、静止部のう
ち翼環(または仕切板)に熱膨張率の小さな材料、例え
ばl2クロム鋼を用いることにより、温度変化による熱
膨張量の差を利用して停止時の遊隙を大きく、運転中の
遊隙を小さくすることができる。
Effect According to this method, materials with a large coefficient of thermal expansion, such as austenite or refract alloy, are used for the rotor and moving blades, which are the rotating parts, and the stationary blades, which are the stationary parts. By using a material with a small coefficient of thermal expansion, such as l2 chrome steel, for the partition plate (or partition plate), the difference in thermal expansion due to temperature changes can be used to increase the play when stopped and reduce the play during operation. I can do it.

実施例 以下第1〜3図を参照して、本発明の実施例について詳
述する。なお、第1図においては簡便のため最初の段と
最後の段についての動静翼のみを示して、その途中の段
の動静翼は省略している。
EXAMPLES Below, examples of the present invention will be described in detail with reference to FIGS. 1 to 3. In addition, in FIG. 1, for the sake of simplicity, only the rotor and stationary blades of the first stage and the last stage are shown, and the rotor and stationary blades of intermediate stages are omitted.

しかして本発明によれば、回転部であるロータlに動翼
2が植え込まれ、一方、静止部である翼環3に静翼4が
植え込まれる蒸気タービンにおいて、第l実施例として
これらの構成材料のうち、ロータl1動翼2及び静翼4
を熱膨張係数の大きな材料、例えば才一ステナイトやレ
フラクトアロイ等を用い、これに対して翼環3を相対的
に熱膨張係数の小さな材料、例えば12クロム鋼を用い
て製作する。なお、夫々の形状は従来型のもので良い。
According to the present invention, in a steam turbine in which moving blades 2 are installed in a rotor l that is a rotating part, and stationary blades 4 are installed in a blade ring 3 that is a stationary part, these Of the constituent materials, rotor l1 rotor blade 2 and stationary blade 4
The blade ring 3 is manufactured using a material with a large coefficient of thermal expansion, such as saiichi stenite or refracted alloy, whereas the blade ring 3 is manufactured using a material with a relatively small coefficient of thermal expansion, such as 12 chrome steel. Note that each shape may be of a conventional type.

このように各構成材料に熱膨張係数の大きさに差異を与
えることにより、温度変化による熱膨張量の差を利用し
て、蒸気タービンの停止時の遊隙を大きく、それから運
転時の遊隙を小さくすることが可能となる。
In this way, by giving different coefficients of thermal expansion to each constituent material, the difference in the amount of thermal expansion caused by temperature changes can be used to increase the play when the steam turbine is stopped, and then increase the play when the steam turbine is in operation. It becomes possible to make it smaller.

以上の作用・機能について以下数式を用いて説明する。The above actions and functions will be explained below using mathematical formulas.

即ち、ロータ1の材料の熱膨張係数をα1、動翼2のそ
れをα,、翼環3のそれをα,及び静翼4のそれをα4
とし、またロータ1の動翼2植込部のロータ半径をrl
q静翼4植込部の翼環半径をrt、動翼2の高さをhと
する。ただし、静翼4の高さh′はほぼ動翼2の高さh
に等しい(h#h’)。
That is, the thermal expansion coefficient of the material of the rotor 1 is α1, that of the rotor blade 2 is α, that of the blade ring 3 is α, and that of the stationary blade 4 is α4.
Also, the rotor radius of the rotor blade 2 embedded part of the rotor 1 is rl
q Let the radius of the blade ring of the stationary blade 4 implanted portion be rt, and the height of the rotor blade 2 be h. However, the height h' of the stationary blade 4 is approximately the height h of the moving blade 2.
is equal to (h#h').

従って、相互の寸法関係により rx=r+ + h    ・ ・ ・ ・ ・ ・ 
(1)今、ロータl、動翼2、翼環3及び静翼4の常温
から運転中までの温度上昇を夫々ΔT1.ΔT,.ΔT
3及びΔT4とすれば、回転部と静止部の遊隙の変化量
は次のようになる。
Therefore, due to the mutual dimensional relationship, rx=r+ + h ・ ・ ・ ・ ・ ・
(1) Now, the temperature rise of the rotor l, rotor blade 2, blade ring 3, and stationary blade 4 from room temperature to during operation is calculated by ΔT1. ΔT,. ΔT
3 and ΔT4, the amount of change in play between the rotating part and the stationary part is as follows.

a)動翼2の先端と翼環3の間の遊隙:室温での遊隙を
CIとおき、高温での遊隙を,/ とおくと Ct=c.−a.ΔTart−α!ΔT.h+ a ,
ΔTsrt=c, − a ,ΔT+r+  atΔT
th+ a sΔTsr++α3ΔT.h ・ ・ ・ ・ ・ ・ ・(2) b)静翼4の内周側先端とロータlの間の遊隙:室温で
の遊隙をC,とおき、高温での遊隙をc,′ とおくと ct=c,−αtΔTart 十(X ,ΔT,r.−
a.ΔT.h=C,−ff,Δ7,r,+α,ΔTsr
l+ α3ΔT,h−α4ΔT+h ・ ・ ・ ・ ・ ・ ・(3) ここで簡単のため、すべての部材の室温よりの温度上昇
量が同一、即ち ΔT.=ΔTt=ΔTs=ΔT.=ΔT−−−(4)と
すると、各(2).(3)式は C%=C+  (ff r  (l s)ΔTr+  
Cat 一αs)ΔTh・ ・ ・ ・ ・ ・ ・(
5) C*’=Ct  (ff +  (X s)ΔTr+ 
 (αa  as)ΔTh・ ・ ・ ・ ・ ・ ・
(6) これらの式(5),(6)と、α,.α,.α4〉α,
なる関係において、即ち、翼環3の材料の熱膨張係数α
,が他のロータl1動翼2、及び静翼4の熱膨張係敗α
1.α,.α.より相対的に小さくなるような材料を選
定することにより、常温での各隙間C., C,と高温
での各隙間CI’+ Cmの大小関係はc+’ < C
I  C−゜α1−α3〉0,α,一α3〉0)・ ・
 ・ ・ ・ ・ ・(7) Ct’ < Ct  (’.’α1−α,〉O,α4−
α3〉O)・ ・ ・ ・ ・ ・ ・(8) 従って、このことは高温時つまり蒸気タービンの運転中
に隙間が自動的に小さくなり、また常温時つまり停止時
に隙間が大きくなることを意味する。
a) Clearance between the tip of the rotor blade 2 and the blade ring 3: Let the clearance at room temperature be CI, and the clearance at high temperature be /, then Ct=c. -a. ΔTart-α! ΔT. h+a,
ΔTsrt=c, − a, ΔT+r+ atΔT
th+ a sΔTsr++α3ΔT. h ・ ・ ・ ・ ・ ・ ・ (2) b) Clearance between the inner circumference side tip of stationary blade 4 and rotor l: Let the clearance at room temperature be C, and the clearance at high temperature be c,′ Then, ct=c, −αtΔTart 10(X, ΔT, r.−
a. ΔT. h=C, -ff, Δ7, r, +α, ΔTsr
l+ α3ΔT, h−α4ΔT+h ・ ・ ・ ・ ・ ・ ・ (3) For simplicity, assume that the temperature rise of all members from room temperature is the same, that is, ΔT. =ΔTt=ΔTs=ΔT. =ΔT---(4), then each (2). Equation (3) is C%=C+ (ff r (l s)ΔTr+
Cat - αs) ΔTh・ ・ ・ ・ ・ ・ ・(
5) C*'=Ct (ff + (X s)ΔTr+
(αa as)ΔTh・ ・ ・ ・ ・ ・
(6) These equations (5) and (6) and α, . α,. α4〉α,
In the relationship, that is, the coefficient of thermal expansion α of the material of the blade ring 3
, is the thermal expansion loss α of the other rotor l1 rotor blade 2 and stationary blade 4
1. α,. α. By selecting a material that makes each gap relatively smaller, C. , C, and the size relationship of each gap CI'+ Cm at high temperature is c+'< C
I C-゜α1-α3〉0,α,-α3〉0)・・
・ ・ ・ ・ ・(7) Ct'< Ct ('.'α1−α,〉O,α4−
α3〉O) ・ ・ ・ ・ ・ ・ ・ (8) Therefore, this means that the gap automatically becomes smaller at high temperatures, that is, when the steam turbine is operating, and that it becomes larger at normal temperatures, that is, when the steam turbine is stopped. .

今、現実に使用可能な材料の組合せで前記(7).(8
)式の如き遊隙の変化量を試算する。
The above (7) is now a combination of materials that can actually be used. (8
) Calculate the amount of change in play as shown in the equation.

例えば、ロータlの材料としてオーステナイト系のA2
86を用いると、αl = 1.8X to−’ 1/
’C となる。動翼2及び静翼4の材料としてレフラク
トアロイR26を用いると、α,=α,= 1.5x 
1G−’ 1/’Cとなる。
For example, the material of the rotor l is austenitic A2.
86, αl = 1.8X to-' 1/
'C. When refract alloy R26 is used as the material for the rotor blades 2 and stationary blades 4, α, = α, = 1.5x
1G-'1/'C.

翼環3の材料として12クロム鋳鋼を用いると、α3=
 1.2X 10−’ l/”C となる。
When 12 chromium cast steel is used as the material for the blade ring 3, α3=
1.2X 10-'l/"C.

また、室温よりの温度上昇をΔT= 500℃、ロータ
lの動翼2植込郎の半径をrl−400jIJff、翼
環3の静翼4植込部の半径をr,=500xx ,各動
翼2及び静翼4の高さを約h= 100imと仮定する
とC.’ = CI − (1.11!− 1.2)X
 10−’X 500X 400(1.5− 1.2)
x 10−’x 500x 100一C.−1.2−0
.15 = C+ − 1.35xm     ・ ● ・ ・
 ● ●(9)Cx’=Ct  (1.8  1.2)
x10−’x500x400(1.5− 1.2)x 
10−’x 500x 100=CI− 1.2− 0
.15 =Ct−1.35+u    ・ ・ ・ ・ ・ ・
(10)従って、高温で運転中の遊隙Cl’+ Cl′
を約1xm以下の範囲内に納まる適正な値、例えば0.
75zzに設定することができる。即ち、各(9), 
(10)式を変形して Ct=C%+ 1.35=0.75+ 1.35=2.
1xmにすれば良い。つまり、常温時の各遊隙C., 
C,を予め2.IJFIの大きさに採用することにより
高温時に0.75gmの遊隙が得られることとなる。
In addition, the temperature rise from room temperature is ΔT = 500℃, the radius of the rotor blade 2 embedded part of the rotor l is rl-400jIJff, the radius of the stationary blade 4 embedded part of the blade ring 3 is r, = 500xx, each rotor blade Assuming that the height of stator blade 2 and stationary blade 4 is approximately h=100im, C. ' = CI - (1.11! - 1.2)X
10-'X 500X 400 (1.5-1.2)
x 10-'x 500x 1001C. -1.2-0
.. 15 = C+ − 1.35xm ・ ● ・ ・
● ●(9) Cx'=Ct (1.8 1.2)
x10-'x500x400(1.5-1.2)x
10-'x 500x 100=CI- 1.2- 0
.. 15 = Ct-1.35+u ・ ・ ・ ・ ・ ・
(10) Therefore, the free play Cl'+ Cl' during operation at high temperature
to an appropriate value within a range of about 1xm or less, for example 0.
It can be set to 75zz. That is, each (9),
(10) is modified to obtain Ct=C%+1.35=0.75+1.35=2.
You can set it to 1xm. In other words, each play gap C. ,
C, in advance 2. By adopting the size of IJFI, a clearance of 0.75 gm can be obtained at high temperatures.

前述の第1実施例では動翼2と静翼4の材料として熱膨
張係数の大きいレフラクトアロイR26を用いた例を示
したが、次に第2実施例として構成材料のうちロー夕!
、翼環3と動翼2、静翼4相互の寸法関係より、そのう
ち動翼2、静翼4の材料の熱膨張係数が、翼環3の熱膨
張係数と同じ大きさであっても、その翼環3(=動翼2
、静翼4)がロータ1の熱膨張係数よりも小さければ、
本発明はやはり成立する。
In the above-mentioned first embodiment, an example was shown in which refract alloy R26, which has a large coefficient of thermal expansion, was used as the material for the rotor blades 2 and stationary blades 4. Next, in the second embodiment, refract alloy R26, which has a large coefficient of thermal expansion, was used as the material for the rotor blades 2 and stationary blades 4.
, from the mutual dimensional relationship between the blade ring 3, the rotor blades 2, and the stator blades 4, even if the coefficient of thermal expansion of the materials of the rotor blades 2 and stator blades 4 is the same as the coefficient of thermal expansion of the blade ring 3, The blade ring 3 (= rotor blade 2
, if the stator blade 4) is smaller than the thermal expansion coefficient of the rotor 1, then
The invention still stands.

即ち、動翼2、静翼4の材料として、前記翼環3と同じ
l2クロム鋼を用い、ロータlの材料にオーステナイト
系A286を用いると (,+ = Cl′+ 1. 35= 0. ’ys+
 1.35= 2. 1xxα,=α3=α,= 1.
2X 10−’  1/℃a . = 1.8x 10
−’   1/”Cとなる。これらの値を前記(5),
(6)式に代入して C.’=CI− (1.8− 1.2)X 10−’X
 500X 400=C,=1.2u・●・・・・(1
l)C%=Ct  (1.81.2)x10−’x50
0x400=C*−12zm     ・ ● ・ ・
 ・ ●(10)ここで、前記第1実施例と同様に、常
温の隙間C., C,は各(11), (12)式を変
形して、例えば適正な値0.75zmを代入すると ただし、この場合、ロータlと翼環3の熱膨張係数はα
1=α,とする。
That is, if the moving blades 2 and stationary blades 4 are made of the same l2 chromium steel as the blade ring 3, and the rotor l is made of austenitic A286, then (, + = Cl'+ 1. 35 = 0.' ys+
1.35=2. 1xxα,=α3=α,=1.
2X 10-' 1/℃a. = 1.8x 10
−' 1/”C. These values are expressed in (5) above,
Substituting into equation (6), C. '=CI- (1.8- 1.2)X 10-'X
500X 400=C,=1.2u・●・・・・(1
l) C%=Ct (1.81.2)x10-'x50
0x400=C*-12zm ・ ● ・ ・
- (10) Here, as in the first embodiment, the gap C. , C, by transforming equations (11) and (12) and substituting an appropriate value of 0.75zm. However, in this case, the coefficient of thermal expansion of the rotor l and the blade ring 3 is α
Let 1=α.

また、動翼3の高さhと静翼4の高さh′はh=h’と
する。
Further, the height h of the rotor blade 3 and the height h' of the stationary blade 4 are set to h=h'.

今、各構成部材1〜4の常温よりの温度上昇をΔT(:
−Tt=T*=Ts=T4)とすれば、回転部と静止部
の遊隙の変化量は次のようになる。
Now, let us calculate the temperature rise of each component 1 to 4 from room temperature by ΔT (:
-Tt=T*=Ts=T4), the amount of change in the play between the rotating part and the stationary part is as follows.

a)動翼2の先端と翼環3の間の遊隙:(5)式より c.’=c,−o−ΔTrt  (fft  (Is)
ΔTh=ct  (α,−α,)ΔTh ・・・・ (
5)′.’.   C+=C%+1.2==0.75+
1.2=1.95xm.゜.   Ct=Ct’+1.
2=0.75+1.2=1.95xiとなる。
a) Clearance between the tip of the rotor blade 2 and the blade ring 3: From equation (5), c. '=c,-o-ΔTrt (fft (Is)
ΔTh=ct (α, −α,) ΔTh ... (
5)′. '. C+=C%+1.2==0.75+
1.2=1.95xm.゜. Ct=Ct'+1.
2=0.75+1.2=1.95xi.

更に、第3実施例として構成材料のうち、動翼2及び静
翼4に熱膨張係数の大きな材料を用い、ロータl及び翼
環3に熱膨張係数の小さい材料を用いても本発明は成立
する。
Furthermore, as a third embodiment, the present invention can also be achieved by using materials with large coefficients of thermal expansion for the rotor blades 2 and stationary blades 4, and materials with small coefficients of thermal expansion for the rotor l and blade ring 3. do.

b)静翼4の内周側先端とロータ1の間の遊隙:(6)
式より C*’=Ct  O”ΔTrr−Cab−as)ΔTh
=Ct−(α4−α,)ΔTh  ・・・・ (6)′
これらの式(5)’ ,(6)’と、 α,,α4〉α
3(=α1)なる関係において、即ち、翼環3及びロー
タlの材料の熱膨張係数α3,α1が、他の動翼2、静
翼4の材料の熱膨張係数α,.α.より相対的に小さく
なるような材料を選定することにより、常温での各隙間
CI+ Ctと高温での各隙間01′,C,/の大小関
係は c.’<c.  (’.’  α,−α,〉0)・ ・
 ・(7)′C.’<Ct  (’.゜  α4−α3
〉0)・・・(8)′ここで、前述と同様に遊隙の変化
量を試算する。
b) Play between the inner tip of the stationary blade 4 and the rotor 1: (6)
From the formula, C*'=Ct O"ΔTrr-Cab-as)ΔTh
=Ct-(α4-α,)ΔTh... (6)'
These equations (5)', (6)' and α,,α4〉α
3 (=α1), that is, the coefficients of thermal expansion α3, α1 of the materials of the blade ring 3 and the rotor l are the coefficients of thermal expansion α, . α. By selecting a material that is relatively smaller, the size relationship between each gap CI+Ct at room temperature and each gap 01', C, / at high temperature is c. '<c. ('.' α, −α, 〉0)・・
・(7)′C. '<Ct ('.゜ α4−α3
〉0)...(8)' Here, the amount of change in play is estimated in the same way as described above.

ロータlの材料としてl2クロム鍛鋼、翼環3の材料と
してl2クロム鋳鋼を用いると、α,=α,=1.2X
10−51/’C となる。
When l2 chromium forged steel is used as the material for the rotor l and l2 chrome cast steel is used as the material for the blade ring 3, α, = α, = 1.2X
10-51/'C.

動翼2及び静翼4の材料としてレフラクトアロイR26
を用いると、α,=α,= 1.5x to−’ l/
℃となる。
Refract alloy R26 is used as the material for the rotor blades 2 and stationary blades 4.
Using α, = α, = 1.5x to-' l/
℃.

ここで、室温よりの温度上昇をΔT=500℃、各動翼
2及び静翼の高さを約h(#h’)=200xgと仮定
すると、 C,’=C.− (1.5− 1.2)X 10−’X
 500X 200−Ct−0.3xm     ・ 
・ ・ ・ ・ ・(9)′Ct’=C+’  =Ct
−0.3mm”  ”  ”  ”  ” (10)’
高温で運転中の遊隙c+’,ct′を適正な値、例えば
0.75xmにするためには、各(9)’, (10)
’式を変形して Ct = Ct’ + 0.3= 0.75+ 0.3
= 1  05xx’     Ct−C*’ + 0
.3= 0.75+ 0.3= 1.05xxにすれば
良い。
Here, assuming that the temperature rise from room temperature is ΔT=500°C and the height of each rotor blade 2 and stationary blade is approximately h(#h')=200xg, C,'=C. - (1.5- 1.2)X 10-'X
500X 200-Ct-0.3xm ・
・ ・ ・ ・ ・(9)'Ct'=C+'=Ct
-0.3mm” ” ” ” ” (10)'
In order to set the clearance c+', ct' to an appropriate value, for example, 0.75xm during operation at high temperature, each (9)', (10)
'Changing the formula, Ct = Ct' + 0.3 = 0.75 + 0.3
= 1 05xx'Ct-C*' + 0
.. 3=0.75+0.3=1.05xx.

他方、以上述べた第l〜3実施例においては、主に翼環
3構造からなる反動タービンの例を示したが、その変形
例として第2図に示す如き仕切板構造よりなる衝動ター
ビンの場合にも適用が可能である。なお、計算は省略す
る。
On the other hand, in the first to third embodiments described above, an example of a reaction turbine mainly having a three-ring structure was shown, but as a modification thereof, an impulse turbine having a partition plate structure as shown in FIG. It can also be applied to Note that calculations are omitted.

即ち、lはロータ、2は動翼、3′は仕切板環、4は静
翼、4′は仕切板であって、衝動タービンの場合、動翼
2の先端と反動タービンの翼環3に対応する仕切板環3
′の間の遊隙については、第1図における反動タービン
と全く同様に適用できる。
That is, l is the rotor, 2 is the rotor blade, 3' is the partition plate ring, 4 is the stationary blade, and 4' is the partition plate. In the case of an impulse turbine, the tip of the rotor blade 2 and the blade ring 3 of the reaction turbine Corresponding partition plate ring 3
Regarding the play between ', the same applies to the reaction turbine in FIG.

更に、仕切板4′とロータ1の間の遊隙については仕切
板4′の内周面に取付けたシールリング5の内径r,′
を反動タービンの静翼4の内周側先端と同様に考えれば
、第1及び2実施例のように仕切板4′の熱膨張係数が
ロータ1より小さい場合に適用でき、各実施例と同じ作
用・機能が得られる。
Furthermore, the play between the partition plate 4' and the rotor 1 is determined by the inner diameter r,' of the seal ring 5 attached to the inner peripheral surface of the partition plate 4'.
If considered in the same way as the inner tip of the stationary blade 4 of a reaction turbine, it can be applied when the coefficient of thermal expansion of the partition plate 4' is smaller than that of the rotor 1 as in the first and second embodiments, and the same as in each embodiment. Effects and functions can be obtained.

ただし、仕切板4′の熱膨張係数がロータlより小さく
ない場合は適用されない。
However, this does not apply if the coefficient of thermal expansion of the partition plate 4' is not smaller than the rotor l.

また、ガスタービンにおいても、原則的には以上の蒸気
タービンとほぼ同様に適用できることは、云うまでもな
い。
It goes without saying that the present invention can also be applied to gas turbines in principle in substantially the same manner as the above-mentioned steam turbines.

なお、下記第1表において以上述べた第1〜3実施例に
おける各構成部材の熱膨張係散αの相対的な大小関係を
整理して示す。
In addition, in the following Table 1, the relative magnitude relationship of the thermal expansion coefficient α of each component in the first to third embodiments described above is summarized and shown.

第  l  表 また、各構成部材の熱膨張係数の相対的な大小関係の選
定及び施工と併せて、本旨ではないが第3図に示すよう
に、従来の遊隙制御式等のシール構造(第5及び6図)
に対して、殊に第6図で示したシール構造の改良として
、シール環(201)とグミ一環(5l)の材料の熱膨
張係数を変えずに、しかもンール環(201)とグミ一
環(51)は内側に配置する押えバネ(204). (
205)を廃止して、外側の押えバネ(203)の付勢
で常に内側方向Piへ密着させておく。
Table l Also, in addition to the selection and construction of the relative magnitude relationship of the thermal expansion coefficients of each component, although it is not the main topic, as shown in Figure 3, conventional seal structures such as play control type ( 5 and 6)
In particular, as an improvement to the seal structure shown in FIG. 51) is a presser spring (204) placed inside. (
205) is abolished, and the outer presser spring (203) is biased to keep it in close contact in the inner direction Pi at all times.

従って、この対策を施すことにより、前記構成材料のな
す作用・機能と共に、分割可能なシール環(201X第
8図参照)の当接面の隙間S〔シール環(201)とグ
ミ一環(51)の材料の熱膨張係数の差がある場合に生
じる現象〕や、くい違いb〔環(201)がグミ一環(
5l)に対して半径方向に移動することにより生じる現
象〕が発生しなくなる。
Therefore, by taking this measure, in addition to the action and function of the constituent materials, the gap S between the abutting surfaces of the splittable seal ring (201X, see Figure 8) [seal ring (201) and gummy ring (51) This phenomenon occurs when there is a difference in the coefficient of thermal expansion of the materials of
5l) will no longer occur.

発明の効果 以上詳述したように、本発明によれば、翼環部に他の構
成部材よりも常に熱膨張係数の小さい材料を使用するこ
とにより、翼環部或いは他の構成部材の構造・形状を特
に改良することなく、夕一ビン停止時の回転部と静止部
の間の遊隙を大きく保てるため、車室猫ぞりによる遊隙
減少に基づく回転部と静止部の接触、またこれに起因す
るシールフィンの摩耗を確実に防止できる。
Effects of the Invention As detailed above, according to the present invention, by using a material with a coefficient of thermal expansion always smaller than that of other structural members in the blade ring, the structure and structure of the blade ring or other structural members can be improved. Without making any particular improvements to the shape, it is possible to maintain a large play between the rotating part and the stationary part when the bottle is stopped, so it is possible to prevent contact between the rotating part and the stationary part due to the reduction in play caused by cat sledding in the passenger compartment. It is possible to reliably prevent seal fin wear caused by

また、タービン運転時の回転部と静止部の夫々の遊隙を
ほぼ111z以下の適正な値に小さく保てるため、シー
ル環の分割面における隙間の増加やズレ(くい違い)が
抑制されてシール部分の蒸気漏洩が低減でき、よってタ
ービンの効率を高めると共に、その信頼性を向上させる
ことができる。
In addition, since the play between the rotating part and the stationary part during turbine operation can be kept small to an appropriate value of approximately 111z or less, the increase in the gap and misalignment at the split plane of the seal ring are suppressed, and the seal part steam leakage can be reduced, thereby increasing the efficiency and reliability of the turbine.

【図面の簡単な説明】[Brief explanation of the drawing]

第l図は本発明による蒸気タービンの実施例を示す要部
構造断面図、第2図はその他の変形内を示す要部構造断
面図、第3図はシール環まわりの遊隙制御式シール機構
を示す一部断面図、第4図は従来のタービン車室の猫ぞ
り現象を示す模式図、第5図は従来の車室猫ぞり対策用
の遊隙制御式シール機構を示す一郎断面図、第6図はそ
の他のシール機構を示す一郎断面図、第7図は第6図の
シール機構における押えバネの合力の大きさとシール環
の変位との関係を示す図、第8図は本発明及び従来の分
割式シール環を示し、(a)はその概略正面図、(b)
はそのシール環の分割面(当接面)に生じる隙間Sを示
す模式図、(c)はシール環の分割面に生じるくい違い
bを示す模式図である。 ■ ・ロータ、 2 ・動翼、 3 ・翼環、 4 ・静翼。
Fig. 1 is a sectional view of the main part structure showing an embodiment of the steam turbine according to the present invention, Fig. 2 is a sectional view of the main part structure showing other modifications, and Fig. 3 is a clearance control type seal mechanism around the seal ring. Fig. 4 is a schematic diagram showing the conventional cat sledding phenomenon in the turbine casing, and Fig. 5 is an Ichiro cross section showing a conventional clearance control type seal mechanism for preventing cat sledding in the casing. 6 is a sectional view of Ichiro showing another seal mechanism, FIG. 7 is a diagram showing the relationship between the magnitude of the resultant force of the presser spring and the displacement of the seal ring in the seal mechanism of FIG. 6, and FIG. Invention and conventional split seal rings are shown, (a) is a schematic front view thereof, (b)
is a schematic diagram showing a gap S generated on the dividing surface (abutting surface) of the seal ring, and FIG. ■ - Rotor, 2 - Moving blade, 3 - Blade ring, 4 - Stationary blade.

Claims (1)

【特許請求の範囲】[Claims] ロータ、該ロータに設けた動翼、翼環及び該翼環に設け
た静翼の4つの構成部材を具備する蒸気タービンにおい
て、翼環を前記他の構成部材に比べて熱膨張係数の小さ
な材料としたことを特徴とする蒸気タービン。
In a steam turbine comprising four components: a rotor, a moving blade provided on the rotor, a blade ring, and a stationary blade provided in the blade ring, the blade ring is made of a material having a smaller coefficient of thermal expansion than the other components. A steam turbine characterized by:
JP14834089A 1989-06-13 1989-06-13 Steam turbine Pending JPH0315605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14834089A JPH0315605A (en) 1989-06-13 1989-06-13 Steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14834089A JPH0315605A (en) 1989-06-13 1989-06-13 Steam turbine

Publications (1)

Publication Number Publication Date
JPH0315605A true JPH0315605A (en) 1991-01-24

Family

ID=15450582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14834089A Pending JPH0315605A (en) 1989-06-13 1989-06-13 Steam turbine

Country Status (1)

Country Link
JP (1) JPH0315605A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060657A (en) * 2002-07-29 2004-02-26 General Electric Co <Ge> End surface gap seal for interstage packing seal of steam turbine diaphragm and its assembling method
JP2004332736A (en) * 2003-05-07 2004-11-25 General Electric Co <Ge> Method and device to facilitate sealing within turbine
US7086233B2 (en) 2003-11-26 2006-08-08 Siemens Power Generation, Inc. Blade tip clearance control
US7708518B2 (en) 2005-06-23 2010-05-04 Siemens Energy, Inc. Turbine blade tip clearance control

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060657A (en) * 2002-07-29 2004-02-26 General Electric Co <Ge> End surface gap seal for interstage packing seal of steam turbine diaphragm and its assembling method
JP2004332736A (en) * 2003-05-07 2004-11-25 General Electric Co <Ge> Method and device to facilitate sealing within turbine
US7086233B2 (en) 2003-11-26 2006-08-08 Siemens Power Generation, Inc. Blade tip clearance control
US7708518B2 (en) 2005-06-23 2010-05-04 Siemens Energy, Inc. Turbine blade tip clearance control

Similar Documents

Publication Publication Date Title
JP2680651B2 (en) Seal between rotor blades of turbomachine
US8011892B2 (en) Turbine blade nested seal and damper assembly
US6199871B1 (en) High excursion ring seal
JPH07504485A (en) Retractable segment packing ring for fluid turbines with gravity springs to eliminate packing segment weight loads
KR101321207B1 (en) Seal structure of rotary machine
JP4230040B2 (en) Fluid machine with rotor and stator
JP2002523708A5 (en)
CN100404794C (en) Steam turbine
JP2008169705A (en) Steam turbine
US5505466A (en) Cylinder head gasket with retaining ring and spring seal
CN104471196B (en) Steam turbine installation
CN114458687B (en) Elastic foil dynamic pressure air-float radial bearing, motor and air compressor
JP3486329B2 (en) Sealing device between bolt holes and bolts in gas turbine disks
JP4795582B2 (en) Joint structure and tube seal of coolant passage in gas turbine, and gas turbine
JPH0315605A (en) Steam turbine
WO1998055736A1 (en) Seal structure between gas turbine discs
JP4347977B2 (en) Casing for steam turbine or gas turbine
JP5734052B2 (en) Rotary shaft seal structure
JPS61250304A (en) Axial flow turbine
JPH01203603A (en) Bell type sealing device for steam turbine
US2462600A (en) Turbine
JP2005315122A (en) Steam turbine
US5069600A (en) Pressure wave machine
JPS62248804A (en) Adjusting device for sealing part clearance of turbine
JP3310906B2 (en) Seal structure between gas turbine disks