JPH03154862A - Fluorine analyzing apparatus - Google Patents

Fluorine analyzing apparatus

Info

Publication number
JPH03154862A
JPH03154862A JP29519389A JP29519389A JPH03154862A JP H03154862 A JPH03154862 A JP H03154862A JP 29519389 A JP29519389 A JP 29519389A JP 29519389 A JP29519389 A JP 29519389A JP H03154862 A JPH03154862 A JP H03154862A
Authority
JP
Japan
Prior art keywords
fluorine
sample
pyrolysis tube
oxygen
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29519389A
Other languages
Japanese (ja)
Other versions
JPH0721487B2 (en
Inventor
Fumio Tsunoda
文男 角田
Kazuyoshi Itai
板井 一好
Eitoku Kubota
窪田 栄徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIWA DENSHI KOGYO KK
Original Assignee
DAIWA DENSHI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIWA DENSHI KOGYO KK filed Critical DAIWA DENSHI KOGYO KK
Priority to JP29519389A priority Critical patent/JPH0721487B2/en
Publication of JPH03154862A publication Critical patent/JPH03154862A/en
Publication of JPH0721487B2 publication Critical patent/JPH0721487B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To allow a rapid and highly accurate analysis by forming the respective three parts of a pyrolysis tube for forming hydrogen fluoride by hydrolysis of required materials and condensing and recovering the hydrogen fluoride. CONSTITUTION:Oxygen contg. steam is supplied by an oxygen steam line 2 to the pyrolysis tube formed of an inlet part 14, a body part 11 and a terminal part 13. The inlet part 14 and the terminal part 13 are formed of a quartz glass material and the body part 11 is formed of an aluminum material, etc., which are non-quartz glass materials. A sample boat 19 is moved to the corresponding positions of a preheater 16, a sub heater 17 and a main heater 18 via a magnet 20 and is successively heated. The sample contg. fluorine in the boat 19 is hydrolyzed and the hydrogen fluoride is formed. Since the body part 11 is formed of the non-quartz glass materials which do not act with the alkaline metal in the sample, the hydrogen fluoride is rapidly and exactly formed and is condensed by a capillary 23. The rapid and highly accurate fluorine analysis is executed by weighing with a balance 25.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、試料中のフッ素を分析するための装置、特に
、パイロハイトロリシス法によるフッ素単離及びそれに
より単離されたフッ素を連続的に分析するための装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an apparatus for analyzing fluorine in a sample, and in particular to an apparatus for isolating fluorine by pyrohydrolysis and continuously analyzing fluorine isolated thereby. This invention relates to a device for analysis.

従来の技術 フッ素は空気、水、土壌等地球上のほとんどの物質に含
まれ、人間は呼吸、飲食等を通じて一生涯にわたりある
程度の量のフッ素を摂取することになる。フッ素摂取量
については、その欠乏よりもどちからといえば過剰摂取
による弊害が問題視されている。すなわち、高フツ素地
帯の人々や環境気中のフッ素濃度が高い職場で働く労働
者などには、フッ素の過剰摂取にもとづく斑状歯や前硬
化病などの発病が古くから知られている。
BACKGROUND OF THE INVENTION Fluorine is contained in most substances on earth, such as air, water, and soil, and humans ingest a certain amount of fluoride throughout their lives through breathing, eating and drinking, etc. Regarding fluoride intake, the harmful effects of excessive intake are viewed as more of a problem than its deficiency. In other words, it has been known for a long time that people living in high-fluoride areas and workers working in workplaces with high concentrations of fluoride in the environment develop mottled teeth and presclerosis due to excessive fluoride intake.

このようなフッ素による慢性中毒病の診断や高濃度フッ
素環境における健康管理、さらには上水道におけるフッ
素添加の是非判断等において、まずフッ素の生体負荷量
の正確な把握が必要であり、また、固体を取り巻く環境
諸相、すなわち、空気、飲料水、及び食品などのフッ素
含有量の正確な測定が要求される。また、血液、尿、硬
組織、及び唾液などの生体試料中のフッ“素置の測定も
簡便、かつ正確に実施できな1すればならない。
In diagnosing chronic poisoning diseases caused by fluoride, managing health in high-concentration fluoride environments, and deciding whether or not to add fluoride to water supplies, it is first necessary to accurately understand the biological load of fluoride. Accurate measurement of fluorine content in surrounding environmental aspects, such as air, drinking water, and food products, is required. Furthermore, it must be possible to easily and accurately measure the presence of fluorine in biological samples such as blood, urine, hard tissue, and saliva.

発明が解決しようとする課題 フッ素量を測定するために現在実施されているフッ素単
離方法としては、■乾式灰化−水蒸気蒸留法、■乾式灰
化−微量拡散法、■酸素ポンプ法、及び■パイロハイト
ロリシス法、などがある。このうち、■のパイロハイト
ロリシス法は、理論的にその有効性が確認されているに
もかかわらず、生体試料の測定及びフッ素含有量が極微
な試料の測定には構造的に無理があり、非能率的であっ
た。すなわち、生体試料中には多量のアルカリ金属が含
まれ、これが試料位置等監視のため通常採用される石英
ガラス製の熱分解管の内壁と反応して管寿命を著しく、
低下させる。また、極低フッ素濃度試料の場合、管内に
供給する酸素ガス中の不純物フッ素の存在により測定値
が変化する。
Problems to be Solved by the Invention Current fluorine isolation methods for measuring the amount of fluorine include: ■Dry ashing-steam distillation method, ■Dry ashing-microdiffusion method, ■Oxygen pump method, and ■Pyrohydrolysis method, etc. Among these, the pyrohydrolysis method described in (■), although its effectiveness has been theoretically confirmed, is structurally unreasonable for measuring biological samples and samples with minute fluorine content. , it was inefficient. In other words, biological samples contain large amounts of alkali metals, which react with the inner walls of pyrolysis tubes made of quartz glass that are normally used to monitor sample positions, significantly shortening the tube's lifespan.
lower. Furthermore, in the case of extremely low fluorine concentration samples, the measured value changes due to the presence of impurity fluorine in the oxygen gas supplied into the tube.

本発明の一つの目的は、パイロハイトロリシス法におい
て、生体試料及び微量フッ素含有試料から効果的、かつ
再現性よく、フッ素を単離するための装置を提供するこ
とである。
One object of the present invention is to provide an apparatus for effectively and reproducibly isolating fluorine from biological samples and samples containing trace amounts of fluorine in the pyrohydrolysis method.

本発明の装置に軸いて単離されたフッ素の測定は、近年
広く用いられているイオン電極法によるものとするが、
通常の静態的な方法においては、いわゆるメモリー効果
、及び電極構成物質からのフッ素の溶解による影響を受
は易いという問題がある。また、この方法は操作も煩雑
で、迅速性に欠けるため、結局、微量フッ素分析が困難
である。
The fluorine isolated using the device of the present invention is measured by the ion electrode method, which has been widely used in recent years.
Conventional static methods have problems in that they are susceptible to the so-called memory effect and the dissolution of fluorine from electrode constituent materials. Furthermore, this method is complicated to operate and lacks speed, which ultimately makes it difficult to analyze trace amounts of fluorine.

したがって、本発明の第二の目的は、イオン電極をフロ
ーインジェクションシステムにおいて用。
Therefore, a second object of the present invention is to use ionic electrodes in flow injection systems.

いることにより、静態的なイオン電極法による上記のよ
うな問題点を解消することである。
The purpose is to solve the above-mentioned problems caused by the static ion electrode method.

課題を解決するための手段 上記の第一の目的を達するため、本発明のパイロハイド
ロリシスーフラ素単離装置は、試料ポ−トを収容するた
めの熱分解管と、前記熱分解管の入口部から離れた部分
を1000〜1100℃に加熱することができるメイン
ヒータと、前記熱分解管に水蒸気を含む酸素気流を供給
するための酸素/水蒸気供給ラインと、前記熱分解管か
ら排出される気体を凝縮してフッ素イオンを含む水溶液
を回収するための凝縮回収ラインとを備えたフッ素高温
気化分離装置において、 前記熱分解管が、サンプルボートの挿入口となる封閉可
能な入口端及びドレン分岐管を含む前記入口部と、前記
入口部から離れた部分を含む本体部、及び前記凝縮回収
ラインにつながる終端部とからなり、前記本体部を非石
英系耐熱材料より形成し、その両端を石英ガラス製の前
記入口部及び前記終端部に嵌合・連結したことを特徴と
するものである。
Means for Solving the Problems In order to achieve the above-mentioned first object, the pyrohydrolysis fluorine isolation device of the present invention includes a pyrolysis tube for accommodating a sample port, and a pyrolysis tube for accommodating a sample port. a main heater capable of heating a portion away from the inlet to 1000 to 1100°C; an oxygen/steam supply line for supplying an oxygen stream containing water vapor to the pyrolysis tube; A fluorine high-temperature vaporization separation device equipped with a condensation recovery line for condensing gas and recovering an aqueous solution containing fluorine ions, wherein the pyrolysis tube has a sealable inlet end that serves as an insertion port for a sample boat, and a drain. It consists of the inlet part including the branch pipe, the main body part including the part remote from the inlet part, and the terminal end part connected to the condensation recovery line, the main body part is made of a non-quartz heat-resistant material, and both ends thereof are made of a non-quartz heat-resistant material. It is characterized in that it is fitted and connected to the entrance part and the terminal end part made of quartz glass.

本発明の別の態様として、上記の構成中の酸素/水蒸気
供給ラインは、酸素供給端と、酸素ガス中の不純物有機
フッ素を熱分解し、かつ酸素ガス中に含まれる微量水分
により加水分解してフッ化部において1000〜110
0℃の熱分解温度に加熱されるため、試料が血清などの
生体溶液試料の場合でも、試料中のアルカリ金属と管材
料との反応は生じない。また、試料はメインヒータに対
応する部分までの管内で緩衝的に数100℃まで加熱さ
れ、急激な蒸散を生じないため、測定値のバラツキが生
じなくなる。また、溶液試料以外の場合においても、こ
れを直接メインヒータ部に導入し、急激に加熱すること
により生ずる分解反応の不安定性を排除することができ
る。
As another aspect of the present invention, the oxygen/steam supply line in the above configuration has an oxygen supply end that thermally decomposes impurity organic fluorine in the oxygen gas and hydrolyzes it by trace moisture contained in the oxygen gas. 1000 to 110 in the fluorinated part
Since the tube is heated to the pyrolysis temperature of 0° C., no reaction occurs between the alkali metal in the sample and the tube material even if the sample is a biological solution sample such as serum. In addition, the sample is heated up to several 100 degrees Celsius in a buffer manner within the tube up to the part corresponding to the main heater, and rapid evaporation does not occur, so there is no variation in measured values. Furthermore, even in cases other than a solution sample, it is possible to directly introduce the sample into the main heater section and eliminate the instability of the decomposition reaction that would occur if it were rapidly heated.

また、酸素/水蒸気供給ラインにおいて、水蒸気発生器
を挿入しているため、この水蒸気発生器内の水温調整を
行って熱分解管における凝縮水の留出液速度を試料中の
フッ素濃度の高低に応じて変化させ、フッ素測定に適合
させることができる。
In addition, since a steam generator is inserted in the oxygen/steam supply line, the water temperature in this steam generator is adjusted to adjust the distillate velocity of condensed water in the pyrolysis tube to the level of fluorine concentration in the sample. It can be varied accordingly and adapted to fluorine measurements.

さ、らに、本発明の70−インジェクション分析法によ
るフッ素測定においては、測定回路が常に閉じており、
かつ試料の前後にはキャリヤー及びバッファー溶液の混
合液が流れているため、フッ水素を生成するための有機
フッ素熱分解管と、前記分解生成されたフッ化水素を吸
着除去するための吸着カラムと、前記フッ化水素吸着後
の酸素ガスを通す水蒸気発生器とを順次配列して構成さ
れたことを特徴とするものである。
Furthermore, in the fluorine measurement using the 70-injection analysis method of the present invention, the measurement circuit is always closed;
In addition, since a mixture of carrier and buffer solution flows before and after the sample, an organic fluorine thermal decomposition tube is used to generate hydrogen fluoride, and an adsorption column is used to adsorb and remove the hydrogen fluoride produced by the decomposition. , and a steam generator for passing the oxygen gas after the hydrogen fluoride adsorption are sequentially arranged.

また、本発明の第二の目的に沿って構成されたフッ素測
定装置は、バッファー液供給流路と、試料液注入口を介
の装置。(5)バッファー液供給流路と、前記二つの供
給流路を合流させて混合流を形成する測定流路と、前記
測定流路中に配置されたフッ素イオン選択性電極からな
り、恒温槽内に収納される測定電極、及び前記測定電極
塩橋で接続された同様なフッ素イオン選択性電極からな
る前記恒温槽内の参照電極とを備え、前記測定電極と参
照電極との電位差から試料中のフッ素イオン濃度を求め
るようにしたことを特徴とするものである。
Further, a fluorine measuring device configured in accordance with the second object of the present invention is a device that includes a buffer solution supply channel and a sample solution inlet. (5) Consisting of a buffer solution supply channel, a measurement channel that joins the two supply channels to form a mixed flow, and a fluorine ion selective electrode placed in the measurement channel, a measurement electrode housed in the chamber, and a reference electrode in the thermostatic chamber consisting of a similar fluorine ion selective electrode connected to the measurement electrode by a salt bridge; This method is characterized in that the fluorine ion concentration is determined.

作     用 本発明のフッ素単離装置においては、熱分解管はアルミ
ナ管等の非石英系耐熱材料からなる本体部イオン電極に
おけるいわゆるメモリー効果による誤差を排除し、さら
に、常時一定量の溶液をフッ素イオン電極に接して流通
させるため、電極膜材であるLaF3の溶解度を安定化
させることができ、これによって高感度及び高精度で、
かつ迅速的なフッ素イオンの測定が可能となる。
Function In the fluorine isolation device of the present invention, the pyrolysis tube eliminates errors caused by the so-called memory effect in the ion electrode of the main body made of a non-quartz heat-resistant material such as an alumina tube, and furthermore, the pyrolysis tube eliminates errors caused by the so-called memory effect. Because it flows in contact with the ion electrode, the solubility of LaF3, which is the electrode membrane material, can be stabilized, resulting in high sensitivity and precision.
Moreover, rapid measurement of fluorine ions becomes possible.

実  施  例 第1図は本発明のパイロハイトロリシス法によるフッ素
単離装置の好ましい実施例を示すものである。(1)は
熱分解管、(2)はその熱分解管(1)に水蒸気を含む
酸素気流を供給するための酸素/水蒸気供給ラインであ
り、02ガス入口(3)を有するCuO充填管(4)と
、CaO充填カラム(5)と、フローメータ(6)、及
び水蒸気発生器としての水フラスコ(7)を配列したも
のである。
Embodiment FIG. 1 shows a preferred embodiment of a fluorine isolation apparatus using the pyrohydrolysis method of the present invention. (1) is a pyrolysis tube, (2) is an oxygen/steam supply line for supplying an oxygen stream containing water vapor to the pyrolysis tube (1), and is a CuO-filled tube with an 02 gas inlet (3). 4), a CaO packed column (5), a flow meter (6), and a water flask (7) as a steam generator.

CuO充填管(4)は石英等耐熱性がありフッ素を含ま
ない材質からなり、その後半部に酸価第二銅(Cub)
充填材(8)を充填し、このCuO充填部に対応する外
周に石英管(4)及びCu0(8)を約850℃に加熱
するためのヒータ(9)を装備したものである。これに
より入口(3)から石英管(4)内に導入された酸素ガ
ス中の不純物である有機フッ素ガスを熱分解させ、これ
を酸素ガス中にやはり含まれた水分で加水分解させるこ
とにより、フッ化水素として排出させ、このフッ化水素
を石灰、すなわちCaO充填カラム(5)において吸収
し、ここからフッ素含有量のきわめて低い酸素ガスを取
り出すものである。この酸素ガスはフローメータ(6)
を通過して水フラスコ(7)内に入り、ここから水蒸気
とともに熱分解管(1)に送られる。水フラスコ(7)
は適宜の加熱装置を含む恒温槽(lO)内に収納されて
いる。
The CuO filling tube (4) is made of a heat-resistant, fluorine-free material such as quartz, and the rear half is filled with cupric acid (Cub).
It is filled with a filler (8) and equipped with a heater (9) for heating the quartz tube (4) and Cu0 (8) to about 850° C. on the outer periphery corresponding to the CuO filled portion. As a result, the organic fluorine gas, which is an impurity in the oxygen gas introduced from the inlet (3) into the quartz tube (4), is thermally decomposed, and this is hydrolyzed by the moisture contained in the oxygen gas. The hydrogen fluoride is discharged as hydrogen fluoride, and this hydrogen fluoride is absorbed in a column (5) packed with lime, that is, CaO, from which oxygen gas with an extremely low fluorine content is taken out. This oxygen gas is measured by a flow meter (6)
It passes through and enters the water flask (7), from where it is sent to the pyrolysis tube (1) along with steam. water flask (7)
is housed in a constant temperature oven (1O) containing an appropriate heating device.

熱分解管(1)は石英ガラス管からなる入口部(11)
とアルミナ管からなる本体部(12) 、第2の石英ガ
ラス管からなる終端部(13)とからなり、これらは順
次気密性を維持して嵌合され、−本の管体を構成してい
る。入口管(11)は酸素/水蒸気供給ラインの終端を
保持した蓋(14)により封閉される入口開口を有する
とともに、その入口端に近接してドレン枝管(15)を
有するものである。入口部(11)の後端部分における
外周には、プレヒータ(16)が配置され、本体部(1
2)の外周には上流側にサブヒータ(17)が、また、
下流側にメインヒータ(18)が配置される。図示の通
り、メインヒータ(18)の加熱範囲はサブヒータ(1
1)の加熱範囲よりも大きくしである。サンプルボート
(19)は試料の熱分解位置において本体管部(12)
の後半部、すなわちメインヒータ(18)の加熱範囲内
に位置する。サンプルボート(19)の後端から突出し
た柄部の先端は、このボート位置において入口部(11
)内に位置し、この先端部番;はサンプルボート(19
)を外部磁界により駆動するためのマグネット(20)
が固着されている。
The pyrolysis tube (1) has an inlet section (11) made of a quartz glass tube.
It consists of a main body part (12) made of an alumina tube, and a terminal part (13) made of a second quartz glass tube, which are successively fitted while maintaining airtightness to form a tube body. There is. The inlet pipe (11) has an inlet opening sealed by a lid (14) holding the end of the oxygen/steam supply line and has a drain branch pipe (15) adjacent to its inlet end. A preheater (16) is disposed on the outer periphery of the rear end portion of the inlet portion (11), and the main body portion (1
On the outer periphery of 2), there is a sub-heater (17) on the upstream side, and
A main heater (18) is arranged on the downstream side. As shown in the figure, the heating range of the main heater (18) is the same as that of the sub-heater (1
It is larger than the heating range of 1). The sample boat (19) has a main tube part (12) at the sample pyrolysis position.
It is located in the latter half of the main heater (18), that is, within the heating range of the main heater (18). The tip of the handle protruding from the rear end of the sample boat (19) is connected to the inlet (11) at this boat position.
), and this tip part number; is located within the sample boat (19
) for driving by an external magnetic field (20)
is fixed.

熱分解管(1)の終端部(13)には、加水分解触媒と
しての白金網(21)を充填し、試料の不完全分解を防
止する。終端部(13)から突出し、L型に屈曲して垂
下した細管(22)はウォータジャケット(23)を貫
通してスチレン製の受は瓶(24)内に開口している。
The terminal end (13) of the pyrolysis tube (1) is filled with a platinum mesh (21) as a hydrolysis catalyst to prevent incomplete decomposition of the sample. A thin tube (22) protruding from the terminal end (13), bent in an L-shape and hanging down, penetrates the water jacket (23), and the styrene receiver opens into the bottle (24).

したがって、白金網(21)を通過した気相は細管(2
2)内で凝縮してフッ化水素(HF)を経てケイフッ化
水素酸となり、受は瓶(24)内に滴下される。受は瓶
(24)は電子天秤(25)上に載置され、滴下回収さ
れるケイフッ化水素酸溶液量が監視できるようになって
いる。
Therefore, the gas phase that has passed through the platinum mesh (21) is transferred to the thin tube (2).
2), it condenses into hydrogen fluoride (HF) and becomes hydrofluorosilicic acid, which is then dripped into the bottle (24). The receiver bottle (24) is placed on an electronic balance (25) so that the amount of hydrofluorosilicic acid solution dropped and collected can be monitored.

なお、(26)は熱分解管(1)のための空冷用プロワ
である。
Note that (26) is an air cooling blower for the pyrolysis tube (1).

熱分解管(1)自体の詳細な構造は第2図に示す通りで
ある。第2図において実施例の熱分解管(1)は全長約
750閣、外径約20■、内径的16Mの管体であるが
、そのうち約1/3以上の長さを石英管からなる入口部
(11)が占め、残りの部分をアルミナ管からなる本体
部(12)及び別の石英管からなる終端部(13)が占
めているが、終端部(13)の実質的な長さは白金網(
21)の厚みを許容する程度である。この場合、蓋(1
4)を開けて熱分解管(1)内に導入されたサンプルボ
ート(19)は、最初仮想線で示す通り、本体部(12
)において入口部(11)に近い部分、すなわちサブヒ
ータ(17)に対応する位置に持たらされる。一方、入
口部(11)の後部はプレヒータ(16)により約20
0℃に加熱されるため、この部分における水蒸気の結露
が防止される。これは、入口部において多量の凝縮水が
生じた場合、それが原因で熱分解後の気相の凝縮回収速
度(留出速度)を変化させるような不都合を防止するも
のである。本体部に導入されたサンプルボート(19)
は、まず、前半部においてサブヒータ(17)により、
例えば2分間隔で150’C1300℃、さらには50
0”Cまで段階的に昇温加熱され、次の熱分解温度への
急激な加熱により試料が蒸散して測定値がパラつくこと
等を防止するものである。このような段階昇温加熱は、
溶液以外の試料においても試料を加熱分解前の効果的な
準備段階におくものである。なお、サブヒータ(17)
による加熱は連続昇温又は一定温度によるものであって
もよい。最後に、第1図及び第2図の実線位置まで挿入
されたサンプルボート(19)内ノ試料はメインヒータ
(18)により1000〜1100’Cの温度に加熱さ
れ、熱分解を生ずる。試料の熱分解により発生したフッ
素ガスは、直ちに水蒸気で加水分解され、フッ化水素(
HP)となる(2Fつ+2H20→4HF+O□)。す
なわち、HFは水蒸気とともに細管(23)を通って冷
却され、HF水溶液となって採取類(24)に採取され
る。なお、HF水溶液は経路中に石英ガラスを使用した
場合はその成分であるSiO2と反応してSiF4とな
るが、水溶液中のH2SiF6として回収されることに
代わりはない。
The detailed structure of the pyrolysis tube (1) itself is as shown in FIG. In Fig. 2, the pyrolysis tube (1) of the example has a total length of about 750 cm, an outer diameter of about 20 cm, and an inner diameter of 16 m, with an inlet made of a quartz tube over about 1/3 of the length. (11), and the remaining part is occupied by the main body part (12) made of an alumina tube and the end part (13) made of another quartz tube, but the actual length of the end part (13) is Platinum wire mesh (
21). In this case, the lid (1
4) and introduced into the pyrolysis tube (1), the sample boat (19) is first inserted into the main body (12) as shown by the imaginary line.
) is located near the inlet (11), that is, at a position corresponding to the sub-heater (17). On the other hand, the rear part of the inlet part (11) is heated by a preheater (16).
Since it is heated to 0°C, condensation of water vapor in this area is prevented. This is to prevent problems such as a change in the condensation recovery rate (distillation rate) of the gas phase after thermal decomposition due to the generation of a large amount of condensed water at the inlet. Sample boat (19) introduced into the main body
First, in the first half, the sub-heater (17)
For example, 150'C1300℃ at 2 minute intervals, or even 50℃
This is to prevent the sample from evaporating and fluctuating the measured value due to rapid heating to the next pyrolysis temperature by heating the sample in stages to 0''C. ,
Even for samples other than solutions, this method puts the sample in an effective preparation stage before thermal decomposition. In addition, sub heater (17)
The heating may be by continuous temperature increase or constant temperature. Finally, the sample in the sample boat (19) inserted up to the solid line position in FIGS. 1 and 2 is heated to a temperature of 1000 to 1100'C by the main heater (18), causing thermal decomposition. The fluorine gas generated by the thermal decomposition of the sample is immediately hydrolyzed with water vapor and converted into hydrogen fluoride (
HP) (2F+2H20→4HF+O□). That is, HF is cooled together with water vapor through a thin tube (23), becomes an HF aqueous solution, and is collected into a collection unit (24). Note that when quartz glass is used in the path, the HF aqueous solution reacts with its component SiO2 to form SiF4, but there is no alternative to recovering it as H2SiF6 in the aqueous solution.

本体部(12)はアルミナ製であるため、生体試料等に
おいて多量のアルカリ金属(Na、K)が含まれていて
も、熱分解中においてこれらのアルカリ金属が管材料と
反応するおそれはない。すなわち、従来の如きアルカリ
金属と管材料(石英)との反応による寿命の短縮を解消
し、熱分解管の寿命を長くすることができた。
Since the main body (12) is made of alumina, even if a large amount of alkali metals (Na, K) are contained in a biological sample or the like, there is no fear that these alkali metals will react with the tube material during thermal decomposition. That is, the conventional shortening of the life due to the reaction between the alkali metal and the tube material (quartz) was eliminated, and the life of the pyrolysis tube could be extended.

実施例においては、フッ素含有量10μg以下の適量の
試料をサンプルボート(19)に精秤して、熱分解管(
1)内に挿入し、これをまず本体部(12)のサブヒー
タ(17)の部分まで押し込んだ。ここで、固体試料の
場合は約0.5分、血清等の液体試料の場合は約1分間
300℃に加熱し、その後、サンプルボート(19)を
メインヒータ(18)の部分まで押し込み、ここで、1
000℃の温度により完全に熱分解処理した。試料中の
フッ素は凝縮水とともにフッ化水素水溶液として回収さ
れ、電子天秤(25)により秤量しながら適量採取され
た。なお、酸素流量は2.017分、水フラスコの温度
は90℃であった。
In the example, an appropriate amount of sample with a fluorine content of 10 μg or less was accurately weighed into a sample boat (19), and the sample was placed in a pyrolysis tube (
1), and first pushed it into the sub-heater (17) of the main body (12). Here, heat to 300°C for about 0.5 minutes for solid samples and about 1 minute for liquid samples such as serum, and then push the sample boat (19) to the main heater (18). So, 1
Complete thermal decomposition treatment was carried out at a temperature of 000°C. Fluorine in the sample was recovered together with condensed water as a hydrogen fluoride aqueous solution, and an appropriate amount was collected while being weighed using an electronic balance (25). Note that the oxygen flow rate was 2.017 minutes, and the temperature of the water flask was 90°C.

第3図は上記の如くして単離及び抽出された水溶液のフ
ッ素イオン濃度を測定するためのフローインジェクショ
ン−イオン電極システムの好ましい流路構成を示す図で
ある。第3図において、このフッ素イオン電極構体(3
0)の前流路はバッフ1−ライン(31)及びキャリヤ
ーライン(32)とその合流点から電極構体(30)の
測定電極に達するミキシングコイル(33)からなり、
バッファーライン(31)及びキャリヤーライン(32
)の上流側にはプランジャポンプ(34)が配置され、
そのポンプ動作によりバッファー溶液及びキャリヤー溶
液がミキシングコイル(33)内に1:1の割合で混合
されるようになっている。プランジャポンプ(34)の
下流側におけるキャリヤーライン(32)には陰イオン
交換樹脂カラム(35) 、及びサンプリングユニット
(36)が直列に挿入され、サンプリングユニット(3
6)より水溶液試料を注入したときは、この試料がキャ
リヤー液に支持されてミキシングコイル(33)に送ら
れる。電極構体(30)は電極膜としてフッ化ランタン
(LaF3)を用いたフッ素イオン電極からなるる測定
電極Esと、この測定電極ESに塩橋で接続された同様
なフッ素イオン電極からなる参照電極Erからなり、適
量のフッ素濃度を有する液中に浸漬された参照電極電位
に対する試料液のフッ素濃度に応じた測定電極の電位を
取り出し、これをイオン計(37)で測定した後、レコ
ーダ(38)において記録し、かつ積分器(39)で積
分計算するようなっている。この場合、測定電極Esは
急激な温度変化による誤差を防止するため、約1.51
の水槽内に収容される。
FIG. 3 is a diagram showing a preferred flow path configuration of a flow injection-ion electrode system for measuring the fluorine ion concentration of the aqueous solution isolated and extracted as described above. In FIG. 3, this fluorine ion electrode structure (3
The front flow path of 0) consists of a buffer 1 line (31), a carrier line (32), and a mixing coil (33) that reaches the measurement electrode of the electrode assembly (30) from their confluence,
Buffer line (31) and carrier line (32)
) A plunger pump (34) is arranged on the upstream side of
By the pump operation, the buffer solution and carrier solution are mixed in the mixing coil (33) at a ratio of 1:1. An anion exchange resin column (35) and a sampling unit (36) are inserted in series in the carrier line (32) downstream of the plunger pump (34).
When an aqueous solution sample is injected from step 6), this sample is supported by the carrier liquid and sent to the mixing coil (33). The electrode assembly (30) includes a measurement electrode Es consisting of a fluorine ion electrode using lanthanum fluoride (LaF3) as an electrode film, and a reference electrode Er consisting of a similar fluorine ion electrode connected to the measurement electrode ES with a salt bridge. The potential of the measuring electrode corresponding to the fluorine concentration of the sample solution is taken out from the potential of a reference electrode immersed in a solution having an appropriate amount of fluorine concentration, and after this is measured with an ion meter (37), a recorder (38) The signal is recorded at the integrator (39) and integrated by an integrator (39). In this case, the measurement electrode Es is approximately 1.51
It is housed in an aquarium.

上記の構成において、バッファーライン(31)には適
当量のフッ素を添加した緩衝液を流通させることにより
、イオン電極のメモリー効果による影響を低減させ、キ
ャリヤー液には全くフッ素を含まない蒸留水を用いてい
る。キャリヤーライン(32)における陰イオン交換樹
脂カラム(35)はプランジャポンプ(34)のシール
材料として用いられるフッ素樹脂から溶出したフッ素を
吸着除去し、その測定値の影響を排除するものである。
In the above configuration, by flowing a buffer solution containing an appropriate amount of fluorine through the buffer line (31), the influence of the memory effect of the ion electrode is reduced, and distilled water, which does not contain any fluorine, is used as the carrier solution. I am using it. The anion exchange resin column (35) in the carrier line (32) adsorbs and removes fluorine eluted from the fluororesin used as a sealing material for the plunger pump (34), thereby eliminating its influence on the measured value.

かくしてミキシングコイル(33)内に導入された試料
液はバッファー溶液と1:1に混合され、かつその前後
にはいずれも適当量のフッ素を含むバッファー溶液とキ
ャリヤー溶液の1:1の混合相が接しているため、前述
のメモリー効果の防止とともに試料溶液の拡散をも小さ
くし、それだけ高感度化が図れるという期待も存在する
In this way, the sample solution introduced into the mixing coil (33) is mixed 1:1 with the buffer solution, and a 1:1 mixed phase of a buffer solution and a carrier solution containing an appropriate amount of fluorine is added before and after the sample solution. Since they are in contact with each other, there is an expectation that this will prevent the aforementioned memory effect and also reduce the diffusion of the sample solution, thereby increasing sensitivity.

また、電極構体(30)において、参照電極Erにおい
てもフッ素イオン電極を用いたことは、一般に E=E  −2,303・RT/F−1ogaFで表わ
される基準電位E0の値が、フッ素イオン電極とフッ素
イオン電極以外の常套的な参照電極(Ag/AgCj)
において比較的大きい固有の値となり、測定値記録用レ
コーダの測定範囲内に不らないという不都合を排除し′
たものである。したがって、参照電極側の溶液フッ素濃
度を適当に調整することによりレコーダの感度を上げ、
極低濃度のフッ素を測定する場合においても、そのレコ
ーダの許容範囲内にE0電位を設定することが可能とな
る。
In addition, in the electrode structure (30), the fact that a fluorine ion electrode is also used for the reference electrode Er means that the value of the reference potential E0, generally expressed as E=E −2,303・RT/F−1ogaF, is and conventional reference electrodes other than fluorine ion electrodes (Ag/AgCj)
This eliminates the inconvenience of having a relatively large unique value within the measurement range of the recorder for recording measured values.
It is something that Therefore, by appropriately adjusting the solution fluorine concentration on the reference electrode side, the sensitivity of the recorder can be increased.
Even when measuring extremely low concentrations of fluorine, it is possible to set the E0 potential within the allowable range of the recorder.

上記の測定装置において、バッファー液(ヘキサミン緩
衝液)に添加するフッ素濃度とピーク値(電位差)の関
係は第4図に示す通りである。すなわち、バッファー溶
液中のフッ素濃度(パラメータ)を0.01.0.05
.0.1.0.5■F/lと変化させた場合、濃度の上
昇とともにピーク値は低下するが、電極の応答は速くな
り、−試料に要する測定時間が短くなる。
In the above measuring device, the relationship between the fluorine concentration added to the buffer solution (hexamine buffer solution) and the peak value (potential difference) is as shown in FIG. That is, the fluorine concentration (parameter) in the buffer solution is 0.01.0.05.
.. When the concentration is changed to 0.1.0.5 F/l, the peak value decreases as the concentration increases, but the electrode response becomes faster and - the measurement time required for the sample becomes shorter.

次に、流速とピーク値の関係は第5図に示す通りである
。すなわち、流速(パラメータ)の増大とともにピーク
値は減少し、Q、5d/sinのときのピーク値に比し
て1 、8 d /winの゛ピーク値はその約80%
、3 、 Ord /winで約68%に減少している
。一方、流速の増大とともに電極の応答は速くなり、標
準溶液を注入後、ピークの最大値までに要する時間は0
 、6 di /winで約60秒、1.8d/ll1
inで約20秒、そして、3゜0wl1/a+inでは
約10秒であった。
Next, the relationship between flow velocity and peak value is as shown in FIG. In other words, the peak value decreases as the flow rate (parameter) increases, and the peak value at 1,8 d/win is about 80% of the peak value at Q, 5 d/sin.
, 3, Ord /win has decreased to about 68%. On the other hand, as the flow rate increases, the response of the electrode becomes faster, and the time required to reach the maximum value of the peak after injecting the standard solution is 0.
, 6 di/win for about 60 seconds, 1.8d/ll1
In, it took about 20 seconds, and at 3°0wl1/a+in, it took about 10 seconds.

次に、試料のループ容量とピーク値との関係は第6図に
示す通りである。第6図において、ループ容量(パラメ
ータ)が0.05.0.1.0゜2、及び0.3eft
と増大するにつれて、ピーク高さも増大するが、0.3
−を越えると、0.4及び0.5−となっても、はとん
どピーク高さは増大しない。これは当該条件下において
、0.3−以上の試料量で電極がほぼ平衡電位に達する
ものと考えられる。
Next, the relationship between the loop capacity of the sample and the peak value is as shown in FIG. In Figure 6, the loop capacitance (parameter) is 0.05.0.1.0°2 and 0.3eft.
As the value increases, the peak height also increases, but 0.3
If it exceeds -, the peak height will hardly increase even if it becomes 0.4 and 0.5 -. This is considered to be because under the above conditions, the electrode reaches approximately the equilibrium potential with a sample amount of 0.3- or more.

第7図には検量線作成中における2、0〜50゜0μg
F/IIの濃度の標準溶液の記録チャートが示されてい
る。この場合、右端のピークは2.0μgF/lの標準
溶液0.1wiの測定結果であり、このピーク形状の鋭
敏性より見て約0.5μgF/1!程度の極低濃度(絶
対量0.05ngF)においても検出し得ることが予測
される。さらに、第8図は濃度20μgF/IIでの再
現性を確認するための記録チャートであり、これは変動
係数で約2%という良好な結果を示している。
Figure 7 shows 2,0~50゜0μg during calibration curve creation.
A recording chart of a standard solution with a concentration of F/II is shown. In this case, the rightmost peak is the measurement result of 0.1wi of a standard solution of 2.0μgF/l, and judging from the sensitivity of this peak shape, it is approximately 0.5μgF/1! It is predicted that it can be detected even at extremely low concentrations (absolute amount 0.05 ngF). Furthermore, FIG. 8 is a recording chart for confirming the reproducibility at a concentration of 20 μgF/II, which shows a good result with a coefficient of variation of about 2%.

発明の効果 以上の通り本発明のフッ素単離装置によれば、従来は数
時間〜数日間という長時間を要したフッ素の分離をわず
か10分間程度で外部汚染のおそれもなく、高精度に実
施できるようになった。また、このフッ素単離法に付随
して用いられるフローインジェクション−イオン電極法
によれば、きわめて実用的で迅速、かつ正確な濃度測定
が可能となった。
Effects of the Invention As described above, according to the fluorine isolation device of the present invention, fluorine separation, which conventionally required a long time of several hours to several days, can be carried out in only about 10 minutes with high precision and without the risk of external contamination. I can now do it. Furthermore, the flow injection-ion electrode method used in conjunction with this fluorine isolation method has made it possible to measure concentrations in an extremely practical, rapid, and accurate manner.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のフッ素単離装置の好ましい実施例を示
す断面略図、 第2図は第1図の装置の要部である熱分解管の構成を示
す断面図、 第3図は本発明によるフローインジェクション−イオン
電極法を実施するための好ましい流路構成を示す線図、 第4図は上記の測定装置を用いたバッファー液フッ素濃
度とピーク値を示すグラフ、 第5図はフローインジェクションにおける流速とピーク
値との関係を示すグラフ、 第6図は試料のループ容量とピーク値を示すグラフ、 第7図は検量線作成時における標準溶液の記録チャート
、 第8図は比較的低い同一フッ素濃度におけるピーク再現
性を示す記録チャートである。 (1)・・・・・・・・・・・・・・・熱分解管(2)
・・・・・・・・・・・・・・・酸素/水蒸気供給ライ
ン(4)・・・・・・・・・・・・・・・CuO充填管
(5)・・・・・・・・・・・・・・・CaO充填カラ
ム(6)・・・・・・・・・・・・・・・フローメータ
(7)・・・・・・・・・・・・・・・水フラスコ(1
6)・・・・・・・・・・・・・・・プレヒータ(17
)・・・・・・・・・・・・・・・サブヒータ(18)
・・・・・・・・・・・・・・・メインヒータ(30)
・・・・・・・・・・・・・・・電極構体(31)・・
・・・・・・・・・・・・・バッファーライン(32)
・・・・・・・・・・・・・・・キャリヤーライン(3
3)・・・・・・・・・・・・・・・ミキシングコイル
(34)・・・・・・・・・・・・・・・プランジャポ
ンプ(35)・・・・・・・・・・・・・・・陰イオン
交換樹脂カラム(36)・・・・・・・・・・・・・・
・サンフリングユニット(37)・・・・・・・・・・
・・・・・イオン計時 許出願人  有限会社 大和電子工業 第 5 図 第 図 ム
Fig. 1 is a schematic cross-sectional view showing a preferred embodiment of the fluorine isolation device of the present invention, Fig. 2 is a cross-sectional view showing the configuration of a pyrolysis tube which is the main part of the device in Fig. 1, and Fig. 3 is a cross-sectional view showing a preferred embodiment of the fluorine isolation device of the present invention. Figure 4 is a graph showing the buffer solution fluorine concentration and peak value using the above measuring device. Graph showing the relationship between flow rate and peak value. Figure 6 is a graph showing sample loop capacity and peak value. Figure 7 is a record chart of standard solutions used when creating a calibration curve. Figure 8 is a relatively low amount of the same fluorine. It is a recording chart showing peak reproducibility in density. (1)・・・・・・・・・・・・Pyrolysis tube (2)
・・・・・・・・・・・・・・・ Oxygen/steam supply line (4) ・・・・・・・・・・・・ CuO filling pipe (5) ・・・・・・・・・・・・・・・CaO packed column (6)・・・・・・・・・・・・・・・Flow meter (7)・・・・・・・・・・・・・・・water flask (1
6)・・・・・・・・・・・・Preheater (17
)・・・・・・・・・・・・・・・ Sub heater (18)
・・・・・・・・・・・・・・・ Main heater (30)
...... Electrode structure (31)...
・・・・・・・・・・・・Buffer line (32)
・・・・・・・・・・・・・・・Carrier line (3
3)・・・・・・・・・・・・Mixing coil (34)・・・・・・・・・・・・Plunger pump (35)・・・・・・・・・・・・・・・Anion exchange resin column (36)・・・・・・・・・・・・・・・
・Sunfling unit (37)・・・・・・・・・・・・
...Ion Timekeeping Permit Applicant: Daiwa Electronics Industry Co., Ltd. Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)試料ボートを収容するための熱分解管と、前記熱
分解管の入口部から離れた部分を1000〜1100℃
に加熱することができるメインヒータと、前記熱分解管
に水蒸気を含む酸素気流を供給するための酸素/水蒸気
供給ラインと、前記熱分解管から排出される気体を凝縮
してフッ素イオンを含む水溶液を回収するための凝縮回
収ラインとを備えたフッ素高温気化分離装置において、 前記熱分解管が、サンプルボートの挿入口となる封閉可
能な入口端及びドレン分岐管を含む前記入口部と、前記
入口部から離れた部分を含む本体部、及び前記凝縮回収
ラインにつながる終端部とからなり、前記本体部を非石
英系耐熱材料より形成し、その両端を石英ガラス製の前
記入口部及び前記終端部に嵌合・連結したことを特徴と
するフッ素単離装置。
(1) A pyrolysis tube for accommodating a sample boat and a portion of the pyrolysis tube away from the inlet of the pyrolysis tube at 1000 to 1100°C.
an oxygen/steam supply line for supplying an oxygen stream containing water vapor to the pyrolysis tube, and an aqueous solution containing fluorine ions by condensing the gas discharged from the pyrolysis tube. A fluorine high-temperature vaporization separation device equipped with a condensation recovery line for recovering fluorine, wherein the pyrolysis tube has an inlet section including a sealable inlet end that serves as an insertion port for a sample boat, and a drain branch pipe; It consists of a main body part including a part separated from the condensation recovery line, and a terminal part connected to the condensation recovery line, the main body part being made of a non-quartz heat-resistant material, and both ends of which are connected to the inlet part and the terminal part made of quartz glass. A fluorine isolation device characterized by being fitted and connected to.
(2)前記酸素/水蒸気供給ラインが酸素供給端と、酸
素ガス中の不純物有機フッ素を熱分解し、かつ酸素ガス
中に含まれる水分により加水分解してフッ化水素を生成
するための有機フッ素熱分解管と、前記分解生成された
フッ化水素を吸着除去するための吸着カラムと、前記フ
ッ化水素吸着後の酸素ガスを通す水蒸気発生器とを順次
配列して構成されたことを特徴とする請求項1記載の装
置。
(2) The oxygen/steam supply line has an oxygen supply end and an organic fluorine for thermally decomposing the impurity organic fluorine in the oxygen gas and hydrolyzing it with the moisture contained in the oxygen gas to generate hydrogen fluoride. It is characterized by being constructed by sequentially arranging a pyrolysis tube, an adsorption column for adsorbing and removing the decomposed hydrogen fluoride, and a steam generator for passing the oxygen gas after adsorbing the hydrogen fluoride. 2. The apparatus of claim 1.
(3)前記サンプルボートの一端から突出した柄部の先
端に外部磁界により駆動されるマグネットを固着し、前
記サンプルボートが前記マグネットの移動に伴って前記
熱分解管の本体部前半から前記本体部の奥まで移動する
間において、前記マグネットが前記入口部内に維持され
るように、前記熱分解管の各部と、サンプルボートの柄
部との寸法関係を設定し、前記入口部に水蒸気の結露を
防止するためのプレヒータを装備したことを特徴とする
請求項1記載の装置。
(3) A magnet driven by an external magnetic field is fixed to the tip of a handle protruding from one end of the sample boat, and as the magnet moves, the sample boat moves from the front half of the main body of the pyrolysis tube to the main body. The dimensional relationship between each part of the pyrolysis tube and the handle of the sample boat is set so that the magnet is maintained within the inlet section while moving to the depths of the sample boat, and water vapor condensation is prevented at the inlet section. 2. Device according to claim 1, characterized in that it is equipped with a preheater for preventing this.
(4)前記熱分解管の本体部において前記入口部とメイ
ンヒーター配置部分との中間の外周にサブヒータを装備
し、前記サンプルボートがこの部分に位置する間におい
て百数10℃〜数100℃まで昇温加熱されるようにし
、前記本体部の後半を含む主要部分の外周において前記
メインヒータを装備したことを特徴とする請求項1記載
の装置。
(4) A sub-heater is installed on the outer periphery of the main body of the pyrolysis tube, intermediate between the inlet section and the main heater arrangement section, and the temperature ranges from several hundred degrees Celsius to several hundred degrees Celsius while the sample boat is located in this section. 2. The apparatus according to claim 1, wherein the main heater is installed at an outer periphery of a main portion including a rear half of the main body so as to be heated at an elevated temperature.
(5)バッファー液供給流路と、試料液注入口を介在せ
しめたキャリヤー液供給流路と、前記二つの供給流路を
合流させて混合流を形成する測定流路と、前記測定流路
中に配置され、かつ恒温槽内に収納されたフッ素イオン
選択性電極からなる測定電極、及び前記測定電極と塩橋
で接続された同様なフッ素イオン選択性電極からなる前
記恒温槽内の参照電極とを備え、前記測定電極と参照電
極との電位差から試料中のフッ素イオン濃度を求めるよ
うにしたことを特徴とするフッ素測定装置。
(5) a buffer liquid supply channel, a carrier liquid supply channel with a sample liquid inlet interposed therebetween, a measurement channel for merging the two supply channels to form a mixed flow; a measurement electrode consisting of a fluorine ion-selective electrode arranged in the thermostatic chamber and housed in the thermostatic chamber, and a reference electrode in the constant temperature chamber consisting of a similar fluorine ion-selective electrode connected to the measuring electrode by a salt bridge; A fluorine measuring device comprising: a fluorine ion concentration in a sample is determined from a potential difference between the measuring electrode and the reference electrode.
JP29519389A 1989-11-13 1989-11-13 Fluorine analyzer Expired - Lifetime JPH0721487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29519389A JPH0721487B2 (en) 1989-11-13 1989-11-13 Fluorine analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29519389A JPH0721487B2 (en) 1989-11-13 1989-11-13 Fluorine analyzer

Publications (2)

Publication Number Publication Date
JPH03154862A true JPH03154862A (en) 1991-07-02
JPH0721487B2 JPH0721487B2 (en) 1995-03-08

Family

ID=17817406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29519389A Expired - Lifetime JPH0721487B2 (en) 1989-11-13 1989-11-13 Fluorine analyzer

Country Status (1)

Country Link
JP (1) JPH0721487B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294010A (en) * 2008-06-04 2009-12-17 Toshiba Corp Analyzing method of organofluoric compound

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101705857B1 (en) * 2015-05-28 2017-02-10 한국원자력연구원 Vacuum distillation/condensation recovery type thermal behavior analysis device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009294010A (en) * 2008-06-04 2009-12-17 Toshiba Corp Analyzing method of organofluoric compound

Also Published As

Publication number Publication date
JPH0721487B2 (en) 1995-03-08

Similar Documents

Publication Publication Date Title
EP0346436B1 (en) System for monitoring vapor concentration
US4023929A (en) Process for determining traces of mercury in liquids
Gallignani et al. A time-based flow injection–cold vapor–atomic absorption spectrometry system with on-line microwave sample pre-treatment for the determination of inorganic and total mercury in urine
Speer et al. An instrument for measuring the liquid water content of aerosols
Salvato et al. Analysis of mercury traces by means of solid sample atomic absorption spectrometry
JPH03154862A (en) Fluorine analyzing apparatus
Walker et al. UV photochemical oxidation and extraction of marine dissolved organic carbon at UC Irvine: status, surprises, and methodological recommendations
Montgomery et al. The determination of low concentrations of organic carbon in water
US3996005A (en) Detection and measurement of NO2 and O3
Hickam Determination of Carbon, Oxygen, and Sulfur in Copper
Scott et al. Determination of mercury vapour in air using a passive gold wire sampler
Yoshida et al. Elemental mercury in urine from workers exposed to mercury vapor
Robinson et al. Determination of mercury in surface waters using an optimized cold vapor spectrophotometric technique
JP2692276B2 (en) Total organic carbon meter with blank check mechanism
Fell et al. Determination of low concentrations of potentially toxic elements in human liver from newborns and infants
JPS60143767A (en) Total carbon measurement
Twiehaus et al. Development of an element-selective monitoring system for adsorbable organic halogens (AOX) with plasma emission spectrometric detection for quasi-continuous waste-water analysis
JPS61191956A (en) Method and apparatus for measuring sulfur portion in material containing nitrogen and sulfur
Meddle et al. Field method for the determination of aromatic primary amines in air. Part I. Generation of standard atmospheres of amines
JPH0245825B2 (en) KIHATSUSEIJUKITANSONOSOKUTEIHOOYOBISOKUTEISOCHI
JPS58196443A (en) Mercury concentration measuring apparatus
Beck et al. Determination of the oxygen content of ceramic materials by Carrier-Gas-Heat-Extraction (CGHE)–feasibility and restrictions of the method
Inoue et al. Measurement of heavy water concentration with a density meter
Russel The determination of traces of organic material in aqueous solutions
HozuMI Some recent approaches to micro-and ultramicro-elemental organic analysis

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 15