JPH0315456A - Shock wave radiator of out-body type shock wave calculus crushing machine - Google Patents

Shock wave radiator of out-body type shock wave calculus crushing machine

Info

Publication number
JPH0315456A
JPH0315456A JP1150046A JP15004689A JPH0315456A JP H0315456 A JPH0315456 A JP H0315456A JP 1150046 A JP1150046 A JP 1150046A JP 15004689 A JP15004689 A JP 15004689A JP H0315456 A JPH0315456 A JP H0315456A
Authority
JP
Japan
Prior art keywords
shock wave
main reflector
sound source
reflected
reflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1150046A
Other languages
Japanese (ja)
Inventor
Motoharu Honda
本多 基春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP1150046A priority Critical patent/JPH0315456A/en
Publication of JPH0315456A publication Critical patent/JPH0315456A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve efficiency of crushing a calculus with energy effectively used so as to prevent an unnecessary pain from being given to a patient by providing a subreflecting means which is arranged in an opposite side to a reflecting means with respect to a point-shaped sound source to reflect a shock wave toward the reflecting means. CONSTITUTION:A shock wave, generated in a point sound source 1 placed in the focus of a main reflector 7, is reflected by the main reflector 7, propagated in a transmission medium 9 as a focus shock wave 4 and focused to a calculus 10, and it is crushed. Out of the shock waves radiated from the point sound source 1, non-focused shock waves 6, radiated to the front and not reflected by the main reflector 7, are placed in the vicinity of a focus position, and the waves 6 are reflected by a subreflector 8, which covers an opening angle of the main reflector 7, to reach the main reflector 7 and reflected by the main reflector 7 to focus on the calculus 10.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超音波の衝撃波を利用して体外から結石を破砕
する体外式衝撃波結石破枠機の衝撃波放射器に関し、特
に結石破砕の効率を改善した体外式衝撃波結石破砕機の
衝撃波放射器に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a shock wave radiator for an extracorporeal shock wave stone crushing frame machine that uses ultrasonic shock waves to crush stones from outside the body, and particularly to This invention relates to a shock wave radiator for an improved extracorporeal shock wave lithotripter.

(従来の技術) 臓器に発生する結石についてみると、結石は短時日でで
きるものではなく、徐々に物質が膀胱,胆嚢又は血管等
の管腔部の壁に析出し、これが成長して生した結石か壁
から剥がれ落ちて、各部において流れる液体と共に流れ
、尿道,胆管或いは血管等の細い部分につかえ、尿,胆
汁血波等の液体の通過を阻害して激痛を発して始めて発
見される病気である。この結石を除去するためには生体
安全上の問題と多額の費用を要することから、石がまだ
小さいうちに手術をしないで、これを外部から破砕する
ことができれば最善である。この手段として、超音波と
いう弾性波の大エネルギーを利用して結石を破砕するE
SW.L(体外式衝撃波結石破砕装置)と称せられる装
置が用いられている。
(Prior art) Regarding stones that occur in organs, stones are not formed in a short period of time, but substances gradually deposit on the walls of the lumen of the bladder, gallbladder, blood vessels, etc., and this grows and forms stones. It is a disease that is first discovered when the membrane peels off from the wall and flows with the fluid flowing in various parts, gets stuck in narrow parts such as the urethra, bile ducts, or blood vessels, and obstructs the passage of fluids such as urine, bile, and blood, causing severe pain. be. Removing this stone poses biosafety issues and requires a large amount of money, so it would be best if the stone could be crushed externally without surgery while it is still small. As a means of this, E
SW. A device called L (extracorporeal shock wave lithotripter) is used.

(発明が解決しようとする課題) 従来、上記のESWLでは、第4図に示すような衝撃波
放射器によって衝撃波を放射している。
(Problems to be Solved by the Invention) Conventionally, in the above-mentioned ESWL, shock waves are radiated by a shock wave radiator as shown in FIG.

図において、1は超音波を放射する点音源、2は点音源
1を一方の焦点位置に置き、点音源1からの放射衝撃波
を他の焦点位置である集束点3に集1 2 束させる楕円反射器である。4は楕円反射器2により反
射され集束点3に集束される集束衝撃波、5は点音源1
から前方に放射され楕円反射器2に反射されないで集束
点3以外の空間に散乱する直接波で、非集束衝撃波6の
範囲内に存7[シている。
In the figure, 1 is a point sound source that emits ultrasonic waves, and 2 is an ellipse that places the point sound source 1 at one focal position and focuses the radiated shock wave from the point sound source 1 to a focal point 3 that is the other focal position. It is a reflector. 4 is a focused shock wave reflected by an elliptical reflector 2 and focused on a focal point 3; 5 is a point sound source 1;
It is a direct wave that is emitted forward from the elliptical reflector 2 and is scattered in a space other than the focusing point 3, and exists within the range of the non-focused shock wave 6.

このように楕円反射器2て反射されない直接波5は第5
図に示すように圧力が低く、結石破砕に寄与しないため
、衝撃波放射器に人力されたエネルギーの一部は使用さ
れず、エネルギーの無駄になる詐りか、患者に対して不
必要な苦痛を与えていた。
In this way, the direct wave 5 that is not reflected by the elliptical reflector 2 is the fifth wave.
As shown in the figure, since the pressure is low and does not contribute to stone fragmentation, some of the energy manually applied to the shock wave emitter is not used, resulting in either wasted energy or unnecessary pain to the patient. was.

このエネルギーの損失は、第6図に示す回転楕円反射体
の場合、以下に示すようになる。図において、楕円の長
径をa,短径をbとし、X軸に垂直なY軸を含む平面で
截った回転楕円反射体について考える。焦点から開口面
の円周に至る距離をR、焦点中心としRを半径とする球
面のX軸との交点と開口而との距離をhとする。
In the case of the spheroidal reflector shown in FIG. 6, this energy loss is as shown below. In the figure, consider a spheroidal reflector whose major axis is a and whose minor axis is b, and which is cut by a plane including the Y axis perpendicular to the X axis. Let R be the distance from the focal point to the circumference of the aperture surface, and h be the distance between the aperture and the intersection with the X-axis of a spherical surface with the focal point center and R as the radius.

上記のような反射体のエネルギー損失を、焦点を中心と
しRを半径とする球面波の全面積FAと直接波に相当す
る部分の球面波の面積Fl1との比とすると、エネルギ
ー損失Sは次式で求められる。
If the energy loss of the reflector as described above is the ratio of the total area FA of the spherical wave with the focal point as the center and radius R to the area Fl1 of the spherical wave of the part corresponding to the direct wave, the energy loss S is as follows. It is determined by the formula.

・・ (1) ここで、楕円の方程式 から楕円の短径bを開口部半径とする図の反射体では、 R=a,h=a−fT1−17 となるので、(1)式からエネルギー損失Sは次式のよ
うになる。
... (1) Here, from the ellipse equation, for the reflector shown in the figure where the short axis b of the ellipse is the aperture radius, R = a, h = a - fT1-17, so from equation (1), the energy The loss S is expressed as follows.

4 3 式から =0.09 即ち、エネルギー損失は9%となる。4 3 From the formula =0.09 That is, the energy loss is 9%.

本発明は上記の点に鑑みてなされたもので、その目的は
、ESWLの衝撃波放射器から放射される超音波エネル
ギーを有効に用いて、結石破砕効率を高め、患者に不要
な苦痛を与えないE SWLの衝撃波放射器を実現する
ことにある。
The present invention has been made in view of the above points, and its purpose is to effectively use the ultrasonic energy emitted from the shock wave radiator of ESWL to increase stone fragmentation efficiency and avoid causing unnecessary pain to patients. The goal is to realize an E SWL shock wave radiator.

(課題を解決するための手段) 前記の課題を解決する本発明は、超音波衝撃波を発生す
る点状の音源と、該点状音源を焦点位置に置いて前記点
状音源からの衝撃波を反射させる反射手段を有する体外
式衝撃波結石破砕機の衝撃波放身・1器において、前記
点状音源に関して前記反射手段の反射側に配置され前記
反射手段に向かって衝撃波を反射させる副反身・1手段
を具備することを特徴とするものである。
(Means for Solving the Problems) The present invention that solves the above problems includes a point-like sound source that generates an ultrasonic shock wave, and a point-like sound source that is placed at a focal position to reflect the shock wave from the point-like sound source. In the shock wave release device of an external shock wave lithotripter having a reflection means, a sub-reaction body and one means are arranged on the reflection side of the reflection means with respect to the point sound source and reflect the shock wave toward the reflection means. It is characterized by comprising:

5 (作用) 点状音源から反射手段に向かって放射される衝撃波は反
射手段により反11されて結石に対して集束され、前記
反射手段の反対方向に放射される衝撃波は副反射手段に
より前記反射手段に向かって反射され前記反射手段によ
り結石に対して集束される。
5 (Function) Shock waves emitted from a point sound source toward the reflecting means are reflected by the reflecting means and focused on the stone, and shock waves emitted in the opposite direction of the reflecting means are reflected by the sub-reflecting means. It is reflected towards the means and focused onto the stone by said reflecting means.

(実施例) 以下、図面を参照して本発明の実施例を詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例の衝撃波放射器の模式的構造
図である。図において、第4図と同等の部分には同一の
符号を付してある。図中、7は焦点位置にある点音源1
から放射される衝撃波を反射する主反射器で楕円面を構
威している。8は点音源1の近傍に設置され主反射器の
開口角をカバーする面積を有する副反射器で、主反射器
7に反射されない衝撃波を反射して主反射器7の面に照
射する。前記主反射器7て反射された各衝撃波は伝達媒
質9を伝播して結石10に集束される。16 1は患者の体表を示している。
FIG. 1 is a schematic structural diagram of a shock wave radiator according to an embodiment of the present invention. In the figure, parts equivalent to those in FIG. 4 are given the same reference numerals. In the figure, 7 is a point sound source 1 located at the focal position
The main reflector has an ellipsoidal shape that reflects the shock waves emitted from the main reflector. A sub-reflector 8 is installed near the point sound source 1 and has an area covering the aperture angle of the main reflector, and reflects shock waves that are not reflected by the main reflector 7 and irradiates them onto the surface of the main reflector 7. Each shock wave reflected by the main reflector 7 propagates through the transmission medium 9 and is focused on the calculus 10. 16 1 shows the patient's body surface.

次に」二記のように構成された実施例の動作を説明する
。主反射器7の焦点に置かれた点音源1で発生した衝撃
波は主反射器7で反射され、集束衝撃波4として伝達媒
質9を伝播して結石10に集束され、結石10を破砕す
る。点音源1から放射された衝撃波のうち前方に放射さ
れて主反射器7で反射されない非集束衝撃波6は焦点位
置近傍にあり、主反射器7の開口角をカバーする副反射
器8で反射されて主反射器7に到達し、主反射器7によ
り反IA1されて結石10に集束する。
Next, the operation of the embodiment configured as described in section 2 will be explained. The shock wave generated by the point sound source 1 placed at the focal point of the main reflector 7 is reflected by the main reflector 7, propagates through the transmission medium 9 as a focused shock wave 4, and is focused on the calculus 10, thereby crushing the calculus 10. Among the shock waves emitted from the point sound source 1, the unfocused shock waves 6 that are emitted forward and are not reflected by the main reflector 7 are near the focal point and are reflected by the sub-reflector 8 that covers the aperture angle of the main reflector 7. The light reaches the main reflector 7, is reflected by the main reflector 7, and is focused on the calculus 10.

第2図は実施例による衝撃波の時間軸に対する音圧分布
を示す図である。図において、21は主反射器7によっ
て結石10に集束した衝撃波の音圧の図、22は副反射
器8で反射され主反射器2て再び反射されて結石10に
集束した衝撃波の音圧の図で、第5図の従来の場合と異
なり、主反射器2から外れた衝撃波も殆ど時間差なく、
従来の非集束波に比較して大きな音圧で結石10に集束
する状態を示している。更に、点音源1の十分近くに副
反射器8を設置することにより、副反射器8による集束
衝撃波22は主反射器7による集束衝撃波21に近付き
、1つの圧力波形を形或することができる。
FIG. 2 is a diagram showing the sound pressure distribution of the shock wave with respect to the time axis according to the example. In the figure, 21 is the sound pressure of the shock wave focused on the stone 10 by the main reflector 7, and 22 is the sound pressure of the shock wave reflected by the sub-reflector 8, reflected again by the main reflector 2, and focused on the stone 10. In the figure, unlike the conventional case shown in Fig. 5, there is almost no time difference between the shock waves coming off the main reflector 2
This shows a state in which the sound pressure is focused on the stone 10 with a larger sound pressure than a conventional non-focused wave. Furthermore, by installing the sub-reflector 8 sufficiently close to the point sound source 1, the focused shock wave 22 from the sub-reflector 8 approaches the focused shock wave 21 from the main reflector 7, and can form one pressure waveform. .

以上説明したように本実施例によれば、主反射器7によ
って直接反射されない衝撃波も、副反射器8を介して主
反射器7て反射されることにより、結石10に集束され
て結石10の破砕に参加することができて、結石の破砕
効率を増やすことがてき、放射エネルギーの無駄をなく
すことができる。
As explained above, according to this embodiment, the shock wave that is not directly reflected by the main reflector 7 is also reflected by the main reflector 7 via the sub-reflector 8, and is focused on the calculus 10. It can participate in the fragmentation, increasing the stone fragmentation efficiency and eliminating waste of radiant energy.

又、無駄な衝撃波をなくすことができて患者に対する余
計な苦痛を与えることがなくなる。
Furthermore, unnecessary shock waves can be eliminated, thereby eliminating unnecessary pain to the patient.

尚、本発明は上記の実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

第3図は本発明の他の実施例の模式的構造図である。図
において、第1図と同等の部分には同一の符号を付して
ある。図中、]2は超音波衝撃波を屈折させて結石10
に集束させる己1レンズ作用をする音響レンズである。
FIG. 3 is a schematic structural diagram of another embodiment of the present invention. In the figure, parts equivalent to those in FIG. 1 are given the same reference numerals. In the figure,] 2 refracts the ultrasonic shock wave to form a stone 10.
It is an acoustic lens that acts as a self-lens to focus the sound.

この実施例の動作を説明する。焦点位置に置かれた点音
源1から放射された衝撃波は抛物而をなす主反射器7て
反11されて平行波となって音響レンズ12に入射され
、音響レンス12より焦点の位置にある結石10に集束
されて結石10を破砕する。略焦点位置に置かれた副反
射器8の方向に放射された衝撃波は副反射器8で主反射
器7の方向に反射され、主反射器7により平行波とされ
て、音響レンズ12により結石10に集束されて結石1
oの破枠に参加する。
The operation of this embodiment will be explained. The shock wave radiated from the point sound source 1 placed at the focal position is reflected by the main reflector 7 which forms a parallax, becomes a parallel wave, and is incident on the acoustic lens 12. 10 to crush the stone 10. The shock wave radiated in the direction of the sub-reflector 8 placed at the approximate focal point is reflected by the sub-reflector 8 in the direction of the main reflector 7, is converted into a parallel wave by the main reflector 7, and is then turned into a parallel wave by the acoustic lens 12. Stones 1 focused on 10
Participate in o's break.

(発明の効果) 以上詳細に説明したように本発明によれば、ESWLか
ら放射される超音波エネルギーを無駄なく用いて結石破
砕効率を高めることができ、更に、患者に対して不要な
苦痛を与えることがなくなり、実用上の効果は大きい。
(Effects of the Invention) As described above in detail, according to the present invention, the ultrasonic energy radiated from the ESWL can be used without waste to improve the stone crushing efficiency, and furthermore, unnecessary pain can be avoided for the patient. This eliminates the need to feed, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の模式的構成図、第2図は実施
例の音圧分布の図、第3図は本発明の他の実施例の模式
的構造図、第4図は従来のESWLの衝撃波放射器の模
式的構造図、第5図は従来の衝撃波放射器による衝撃波
の音圧分布の図、第6図は副反射器の無い場合の放射エ
ネルギー損失計算のための説明図である。 1・・・点音源      4・・・集束衝撃波6・・
・非集束衝撃波   7・・・主反射器8・・・副反射
器     10 結石12・・・音響レンズ
FIG. 1 is a schematic configuration diagram of an embodiment of the present invention, FIG. 2 is a diagram of sound pressure distribution of the embodiment, FIG. 3 is a schematic structural diagram of another embodiment of the present invention, and FIG. 4 is a conventional diagram. A schematic structural diagram of the ESWL shock wave radiator, Figure 5 is a diagram of the sound pressure distribution of shock waves by a conventional shock wave radiator, and Figure 6 is an explanatory diagram for calculating radiant energy loss when there is no sub-reflector. It is. 1... Point sound source 4... Focused shock wave 6...
・Unfocused shock wave 7...Main reflector 8...Sub-reflector 10 Calculus 12...Acoustic lens

Claims (1)

【特許請求の範囲】[Claims] 超音波衝撃波を発生する点状の音源と、該点状音源を焦
点位置に置いて前記点状音源からの衝撃波を反射させる
反射手段を有する体外式衝撃波結石破砕機の衝撃波放射
器において、前記点状音源に関して前記反射手段の反射
側に配置され前記反射手段に向かって衝撃波を反射させ
る副反射手段を具備することを特徴とする体外式衝撃波
結石破砕機の衝撃波放射器。
In a shock wave radiator of an external shock wave lithotripter, the shock wave radiator of an extracorporeal shock wave lithotripter has a point-like sound source that generates an ultrasonic shock wave, and a reflecting means that places the point-like sound source at a focal position and reflects the shock wave from the point-like sound source. A shock wave radiator for an extracorporeal shock wave lithotripter, comprising a sub-reflection means that is disposed on the reflection side of the reflection means with respect to a shaped sound source and reflects a shock wave toward the reflection means.
JP1150046A 1989-06-13 1989-06-13 Shock wave radiator of out-body type shock wave calculus crushing machine Pending JPH0315456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1150046A JPH0315456A (en) 1989-06-13 1989-06-13 Shock wave radiator of out-body type shock wave calculus crushing machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1150046A JPH0315456A (en) 1989-06-13 1989-06-13 Shock wave radiator of out-body type shock wave calculus crushing machine

Publications (1)

Publication Number Publication Date
JPH0315456A true JPH0315456A (en) 1991-01-23

Family

ID=15488325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1150046A Pending JPH0315456A (en) 1989-06-13 1989-06-13 Shock wave radiator of out-body type shock wave calculus crushing machine

Country Status (1)

Country Link
JP (1) JPH0315456A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199190A (en) * 2010-03-23 2011-10-06 Toshiba Corp Spin wave element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011199190A (en) * 2010-03-23 2011-10-06 Toshiba Corp Spin wave element

Similar Documents

Publication Publication Date Title
US5795311A (en) Apparatus for the treatment of biological tissue and corporal concretions
RU2428120C2 (en) Resonance ultrasound sensor and ultrasound device of diagnostic, therapy and indication
JP2501673B2 (en) Shock wave generator
US8099154B1 (en) Apparatus for generating focused acoustical pressure waves
US20030199857A1 (en) Apparatus and method for manipulating acoustic pulses
US7837006B1 (en) Enhanced spectrum acoustic energy projection system
JPH0856949A (en) Ultrasonic wave probe
EP1651120B1 (en) Shockwave generating system
US20120022375A1 (en) Acoustic device for ultrasonic imaging
US4823773A (en) Extracorporeal shock wave source with a piezoelectric generator
US5810748A (en) Device for locating and crushing concrements
US6287261B1 (en) Focused ultrasound transducers and systems
JPH0315456A (en) Shock wave radiator of out-body type shock wave calculus crushing machine
US4834106A (en) Lithotripter with locating system integrated therewith and method for its use
JPH06222783A (en) Acoustic lens
JPWO2019189672A1 (en) Shock wave generator and shock wave ablation system
KR20040081739A (en) A Focusing Ultrasonic Source
JPH11512323A (en) Apparatus for treatment of body tissue and calculus grinding of tissue
CN108671426B (en) Ultrasonic transducer
CN2384576Y (en) Short axle direction composite focusing convex transducer
CN100542634C (en) Supersonic wave waveguide device
EP4052666B1 (en) Diffuser for a shockwave transducer
US20230157895A1 (en) High frequency noise filtering earplug using metasurface
JPH0618293Y2 (en) Sound propagation medium for acoustic microscope
JP2012005602A (en) Ultrasonic irradiation device