JPH03154018A - Achromatic laser scanning optical system - Google Patents

Achromatic laser scanning optical system

Info

Publication number
JPH03154018A
JPH03154018A JP29419289A JP29419289A JPH03154018A JP H03154018 A JPH03154018 A JP H03154018A JP 29419289 A JP29419289 A JP 29419289A JP 29419289 A JP29419289 A JP 29419289A JP H03154018 A JPH03154018 A JP H03154018A
Authority
JP
Japan
Prior art keywords
lens
scanning
optical system
sub
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29419289A
Other languages
Japanese (ja)
Other versions
JP2907292B2 (en
Inventor
Jun Makino
純 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17804509&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03154018(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP29419289A priority Critical patent/JP2907292B2/en
Priority to DE69014908T priority patent/DE69014908T3/en
Priority to EP90100307A priority patent/EP0378149B2/en
Publication of JPH03154018A publication Critical patent/JPH03154018A/en
Priority to US07/921,403 priority patent/US5270851A/en
Application granted granted Critical
Publication of JP2907292B2 publication Critical patent/JP2907292B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To always form a stable spot by constituting a collimator lens and a cylindrical lens of an optical system, of two pieces, respectively, and correcting an image surface position caused by a wavelength fluctuation as the whole optical system. CONSTITUTION:A collimator lens 7 for correcting the movement of the image surface in the main scanning surface is constituted of two pieces of concave and convex lenses 7a, 7b, and on the other hand, a cylindrical lens 8 for correcting the movement of the image surface of the sub-scanning surface is constituted of two pieces of concave and convex cylindrical lenses 8a, 8b having power only in the sub-scanning direction. In such a state, by selecting appropriately radiuses of curvature r1-r8, lens surface intervals d1-d7 and refractive indexes of the lens n1-n7 of these lenses 7a, 7b, 8a and 8b, an image surface positional fluctuation caused by the wavelength fluctuation of a laser beam source becomes small in both the main scanning surface and the sub-scanning surface, and a stable spot can always be formed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はレーザビームプリンタなどに用いられるレーザ
走査光学系に間し、特に、半導体レーザなどを光源とし
て高解像を目的とした色消しレーザ走査光学系に関する
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to laser scanning optical systems used in laser beam printers, etc., and in particular to achromatic lasers that use semiconductor lasers as light sources and aim for high resolution. It relates to a scanning optical system.

〔従来の技術1 第6図は(a)、(b)はレーザ走査光学系の一般的な
構成を示す、同図において、半導体レーザ1を発したレ
ーザ光束はコリメータレンズ2により平行光束とされ、
この平行光束は副走査方向(走査ビームが経時的に形成
する主走査面に垂直な方向であり、ここでは第6図(a
)において、紙面に垂直な方向)にのみパワーを有する
シリンドリカルレンズ3によりポリゴンミラー4の反射
鏡面上に線状に結像された後1反肘、偏向されてトーリ
ックレンズを含む走査レンズ系5によって感光ドラム6
上にスポット状に結像される。
[Prior art 1] FIGS. 6(a) and 6(b) show the general configuration of a laser scanning optical system. In the figure, a laser beam emitted from a semiconductor laser 1 is collimated by a collimator lens 2. ,
This parallel light flux is in the sub-scanning direction (a direction perpendicular to the main scanning plane formed by the scanning beam over time, and here, it is shown in FIG. 6(a).
), a linear image is formed on the reflective surface of a polygon mirror 4 by a cylindrical lens 3 having power only in the direction perpendicular to the plane of the drawing, and then deflected by a scanning lens system 5 including a toric lens. Photosensitive drum 6
A spot image is formed on top.

ところで、半導体レーザlの性質として。By the way, as for the properties of semiconductor laser l.

温度等の環境変化により発振光の波長が変動することが
知られている0例えば、波長780nmの半導体レーザ
では、温度範囲一40C〜60°Cにおいて±20nm
程度の変動がある。この波長変動につれて色収差によリ
レーザ走査光学系の像面位置も変動してしまう、結像ス
ポット径があまり小さくなく、走査レンズ系5のFナン
バーの大きいレーザ走査光学系では、良好なスポットの
得られる範囲(焦点深度)が広いので、レーザ波長の変
動による像面の移動は無視できる程度である。
It is known that the wavelength of oscillated light fluctuates due to environmental changes such as temperature. For example, in a semiconductor laser with a wavelength of 780 nm, it varies by ±20 nm in the temperature range of 40°C to 60°C.
There are variations in degree. As the wavelength changes, the image plane position of the laser scanning optical system also changes due to chromatic aberration.In a laser scanning optical system where the imaging spot diameter is not very small and the F number of the scanning lens system 5 is large, it is difficult to obtain a good spot. Since the range (depth of focus) that can be captured is wide, the movement of the image plane due to fluctuations in the laser wavelength is negligible.

しかし、より微小なスポットを形成するようにしたレー
ザ走査光学系では、走査レンズ5のFナンバーも35以
下と小さ(焦点深度が浅いので、上記の像面変動によっ
て焦点深度の範囲から感光ドラム面5が外れてしまい所
望のスポットが得られなくなる1例えば、波長780n
mの半導体レーザを用いた時に50um以下のスポット
径を目的とした第7図に示す様な走査レンズ15を有す
るレーザ走査光学系では、焦点深度は±1mm程度とな
り、これに対して、半導体レーザlの波長が±20μm
変動すると像面位置は±0.8mm程移動してしまう。
However, in a laser scanning optical system designed to form a finer spot, the F number of the scanning lens 5 is as small as 35 or less. 5 will be off and the desired spot will not be obtained.1 For example, if the wavelength is 780n
In a laser scanning optical system having a scanning lens 15 as shown in FIG. 7, which aims at a spot diameter of 50 um or less when using a semiconductor laser of The wavelength of l is ±20μm
If it fluctuates, the image plane position will move by about ±0.8 mm.

この様子を後に示す表6のデータで示す第7図の走査レ
ンズ15と表7のデータで示す第8図の単一レンズから
成るシリンドリカルレンズ13を組み合わせた場合で調
べてみると(表6、表7の符号については、表1等の符
号の説明(後述)を参照)、第9図(a)(b)に示す
如く、主走査面、副走査面において、±20nmの波長
変動により像面位置が相当変動する。
This situation can be investigated by combining the scanning lens 15 shown in FIG. 7 shown in Table 6 below with the cylindrical lens 13 consisting of a single lens shown in FIG. 8 shown in Table 7 (Table 6, For the codes in Table 7, please refer to the explanation of the codes in Table 1 (described later)). The surface position fluctuates considerably.

従って、波長変動による1響が焦点深度内に収まる様に
する為には、レーザ走査光学系を感光ドラム6に対して
±0.2mmの位置精度で取り付ける必要があり、加工
精度が厳しくなってコスト的に非常に高いものとなる、
そこで、上記波長変動の影響を小さくする為に、レーザ
スポットの集光状態を検出するセンサーからの信号に基
づいてコリメータレンズ系の一部を駆動して像面位置調
整をしたり(オートフォーカス)、コリメータレンズ2
と走査レンズ5の色収差が打ち消し合う様にして走査系
全体の色収差を補正する等の方法が提案されている。
Therefore, in order to ensure that one echo due to wavelength fluctuation is within the depth of focus, it is necessary to attach the laser scanning optical system to the photosensitive drum 6 with a positional accuracy of ±0.2 mm, which makes processing precision more difficult. The cost will be very high,
Therefore, in order to reduce the influence of the wavelength fluctuation mentioned above, the image plane position is adjusted by driving a part of the collimator lens system based on the signal from the sensor that detects the focusing state of the laser spot (autofocus). , collimator lens 2
A method has been proposed in which the chromatic aberration of the entire scanning system is corrected so that the chromatic aberration of the scanning lens 5 and the chromatic aberration of the scanning lens 5 cancel each other out.

[発明が解決しようとする課題] しかし乍ら、上記オートフォーカスの方法は構成が複雑
になって装置全体が高価になってしまう、一方、後者の
例はこうした欠点はないが1次の様な問題がある。
[Problems to be Solved by the Invention] However, the autofocus method described above has a complicated configuration and the entire device becomes expensive, while the latter example does not have these drawbacks but is similar to the first-order method. There's a problem.

走査レンズ5にトーリックレンズ等のアナモフィック光
学系を含んで倒れ補正光学系(偏向器であるポリゴンミ
ラーなどの偏向反射面が倒れても走査光束が被照射体上
の同一走査線上に結像される様にする光学系)となって
いる場合、主走査面と副走査面(レンズの光軸を含み主
走査面に垂直な面)において色収差が異なるので両方の
面での色収差を同時に取り切れないことになる0例えば
、表6の走査レンズ15(第7図)と表7の単一レンズ
から成るシリンドリカルレンズ13(第8図)を組み合
わせ、コリメータレンズとして後述の表3のコリメータ
レンズ(第3図(a))を用いた場合の波長変動による
像面位置の変動の様子を第10図(a)、(b)に示す
、主走査面では(第10図(a))、像面の移動は殆ど
ないが、副走査面では(第1O図(b))、像面の移動
の補正は充分になされていないことが分かる。
The scanning lens 5 includes an anamorphic optical system such as a toric lens, and a tilt correction optical system (even if a deflection reflecting surface such as a polygon mirror that is a deflector is tilted, the scanning light beam is imaged on the same scanning line on the irradiated object) (optical system), the chromatic aberration is different on the main scanning plane and the sub-scanning plane (the plane that includes the optical axis of the lens and is perpendicular to the main scanning plane), so the chromatic aberration on both planes cannot be removed at the same time. For example, by combining the scanning lens 15 (Fig. 7) in Table 6 and the cylindrical lens 13 (Fig. 8) consisting of a single lens in Table 7, and using the collimator lens (3 Figures 10(a) and 10(b) show how the image plane position changes due to wavelength fluctuation when using Figure 10(a). Although there is almost no movement, it can be seen that in the sub-scanning plane (FIG. 1O(b)), the movement of the image plane is not sufficiently corrected.

従って、本発明の目的は、上記問題点に鑑み、波長変動
による主走査面及び副走査面における像面位置の変動を
共に補正することができる構成を持つ色消しレーザ走査
光学系を提供することにある。
Therefore, in view of the above-mentioned problems, it is an object of the present invention to provide an achromatic laser scanning optical system having a configuration capable of correcting variations in image plane position on both the main scanning plane and the sub-scanning plane due to wavelength variations. It is in.

[課題を解決する為の手段] 上記目的を達成する為の本発明においては、レーザ光源
、コリメータレンズ、副走査方向にパワーを有するシリ
ンドリカルレンズ、走査レンズを含む走査光学系全体と
して、レーザ光源からの光の波長変動による主走査面に
おける像面位置の変動及び副走査面における像面位置の
変動が補正されるようになっている。
[Means for Solving the Problems] In the present invention to achieve the above object, the entire scanning optical system including a laser light source, a collimator lens, a cylindrical lens having power in the sub-scanning direction, and a scanning lens is Fluctuations in the image plane position on the main scanning plane and fluctuations in the image plane position on the sub-scanning plane due to variations in the wavelength of the light are corrected.

より具体的には、コリメータレンズとポリゴンミラーな
どの偏向器との間のシリンドリカルレンズを2枚以上の
構成にしている。
More specifically, two or more cylindrical lenses are used between the collimator lens and the deflector such as a polygon mirror.

[作用J 上記構成の本発明によるレーザ走査光学系では、コリメ
ータレンズと走査レンズとに加えてシリンドリカルレン
ズをも含んだ走査光学系全体として、波長変動による像
面位置の変動を補正しようとしているので、主走査面及
び副走査面における像面位置の変動を共に充分に補正す
ることができる。
[Operation J] In the laser scanning optical system according to the present invention having the above configuration, the entire scanning optical system including the cylindrical lens in addition to the collimator lens and the scanning lens attempts to correct the fluctuation in the image plane position due to wavelength fluctuation. , it is possible to sufficiently correct variations in the image plane position on both the main scanning plane and the sub-scanning plane.

主走査面における波長変動による像面の移動を補正する
レーザ走査光学系の構成としては、レーザ光源とシリン
ドリカルレンズの間のコリメーターレンズに工夫を施す
のが好ましく、副走査面における波長変動による像面の
移動を補正するレーザ走査光学系の構成としては、コリ
メーターレンズと偏向器の間のシリンドリカルレンズに
工夫を施すのがよい[実施例] 第1図は基本構成としては第6図と同じ構成を持つ走査
光字系に用いられるコリメータレンズ7とシリンドリカ
ルレンズ8を示し。
As for the configuration of a laser scanning optical system that corrects the movement of the image plane due to wavelength fluctuations on the main scanning plane, it is preferable to devise a collimator lens between the laser light source and the cylindrical lens. As for the configuration of the laser scanning optical system that corrects the movement of the surface, it is good to devise a cylindrical lens between the collimator lens and the deflector [Example] Figure 1 has the same basic configuration as Figure 6. A collimator lens 7 and a cylindrical lens 8 used in a scanning optical system having a configuration are shown.

第1図(a)はコリメータレンズ7を、第1図(b)は
シリンドリカルレンズ8の副走査面における断面を示す
。図示右側がレーザ光源側である。
FIG. 1(a) shows the collimator lens 7, and FIG. 1(b) shows the cross section of the cylindrical lens 8 in the sub-scanning plane. The right side in the figure is the laser light source side.

コリメータレンズ7は凸凹の2枚のレンズ7a、7bで
構成されており、シリンドリカルレンズ8は共に副走査
方向にのみパワーを持つ凸凹の2枚のシリンドリカルレ
ンズ8a、8bで構成されている。
The collimator lens 7 is composed of two concave and convex lenses 7a and 7b, and the cylindrical lens 8 is composed of two concave and convex cylindrical lenses 8a and 8b, both of which have power only in the sub-scanning direction.

第り図(a)、(b)の構成で、表6の走査レンズ15
(第7図)に合わせて設計したコリメータレンズ7とシ
リンドリカルレンズ8の例を表1及び表2に示す。
With the configuration shown in Figures (a) and (b), the scanning lens 15 shown in Table 6
Tables 1 and 2 show examples of the collimator lens 7 and cylindrical lens 8 designed in accordance with (FIG. 7).

尚、各表においてs r+ b d+ + nlは光源
側から数えて第i番目のレンズ面の曲率半径、第i番目
のレンズ面から第i+1番目のレンズ面までの面間隔、
第i番目のレンズ面の後側の媒質の屈折率を夫々示す。
In each table, s r + b d + + nl is the radius of curvature of the i-th lens surface counting from the light source side, the distance between the surfaces from the i-th lens surface to the i-th + 1st lens surface,
The refractive index of the medium on the rear side of the i-th lens surface is shown.

表土 波長780nm r l= 132 、 18062 d+ =2.00  nl =l、51072r z 
= 4 、 97103 dz =0− 1   ns = 1 (空気)r 3
 = 4 、 97468 ds =5.00  n−=1.76591r、=−6
,77860 f(焦点距離)=23.2 F、o(Fナンバー)=4 波長780nm r上、=−16,967Or、、、:■di  =2.
 00   ns  =l 、 51072r上a =
−5,67111r z a=ωaa=o     n
5=1(空気) r上y =−5,67111r  t=■d、=2. 
00   nt  =1. 76591r上@ =−9
,30761r ++ a=(1)(ただしr上は副走
査面における曲率半径r11は主走査面における曲率半
径) 表1、表の設計例を表6の走査レンズ15(第7図)と
共に用いた場合において、レーザ光束の波長が変動した
ときの像面の位置の変動を第2図に示す、第2図(a)
は主走査面における様子、第2図(b)は副走査面にお
ける様子を示す。
Topsoil wavelength 780 nm r l = 132, 18062 d+ = 2.00 nl = l, 51072 r z
= 4, 97103 dz =0-1 ns = 1 (air) r 3
= 4, 97468 ds =5.00 n-=1.76591r, =-6
, 77860 f (focal length) = 23.2 F, o (F number) = 4 wavelength 780 nm r above = -16,967 Or, , : ■ di = 2.
00 ns = l, 51072r top a =
-5,67111r z a=ωaa=on
5=1 (air) r on y = -5,67111r t=■d, =2.
00 nt = 1. 76591r top @ =-9
, 30761r ++ a=(1) (However, on r, the radius of curvature r11 on the sub-scanning surface is the radius of curvature on the main scanning surface.) The design examples in Table 1 and Table 6 were used together with the scanning lens 15 in Table 6 (Figure 7). In this case, Fig. 2(a) shows the variation in the position of the image plane when the wavelength of the laser beam varies.
2(b) shows the state in the main scanning plane, and FIG. 2(b) shows the state in the sub-scanning plane.

この場合、コリメータレンズ7を2枚構成とすると共に
このコリメータレンズ7とポリゴンミラー4の間のシリ
ンドリカルレンズ8も2枚構成としているので、第2図
に示す様に、主走査面及び副走査面共に、波長変動によ
る像面位置変動に対する影響が小さ(なっている。
In this case, the collimator lens 7 is composed of two lenses, and the cylindrical lens 8 between the collimator lens 7 and the polygon mirror 4 is also composed of two lenses. In both cases, the influence of wavelength fluctuations on image plane position fluctuations is small.

第3図は第2実施例を示す。第3図(a)はコリメータ
レンズ9を示し、第3図(b)はシリンドリカルレンズ
10の副走査面における断面を示す。図中、右側がレー
ザ光源側である。
FIG. 3 shows a second embodiment. FIG. 3(a) shows the collimator lens 9, and FIG. 3(b) shows a cross section of the cylindrical lens 10 in the sub-scanning plane. In the figure, the right side is the laser light source side.

コリメータレンズは凸凹凸の3枚のレンズ9a、9b、
9cで構成され、特に凸レンズ9a、9Cの一方には非
球面レンズを用いているので球面収差の補正が良好にで
きるシリンドリカルレンズIOは第1実施例と同じ(凸
凹のレンズ10a、1obll成となっている。このレ
ンズ構成では、コリメータレンズ9の凹凸貼り合わせレ
ンズ9b、9cを光軸方向に移動することで主走査面で
の像面位置の調整ができ、シリンドリカルレンズ10を
光軸方向に移動させることで副走査面での像面位置の調
整ができる。従って、走査光学系の位置加工精度がさほ
ど厳しくなくなる。
The collimator lens consists of three lenses 9a, 9b, which are concave and convex.
The cylindrical lens IO is the same as in the first embodiment (convex and convex lenses 10a, 1obll configuration), which can effectively correct spherical aberration because an aspherical lens is used for one of the convex lenses 9a and 9C. With this lens configuration, the image plane position on the main scanning plane can be adjusted by moving the concave-convex lenses 9b and 9c of the collimator lens 9 in the optical axis direction, and the cylindrical lens 10 can be moved in the optical axis direction. By doing so, the image plane position on the sub-scanning plane can be adjusted.Therefore, the positional processing accuracy of the scanning optical system is not so strict.

第2図(a)、(b)の構成で、表6の走査レンズ15
(第7図)に合わせて設計した例が表3、表4に示され
ている0表31表4のコリメータレンズ9及びシリンド
リカルレンズ10を表6の走査レンズ15と共に用いた
場合で波長変動したときの像面位置の変動が第4図に示
されている。
With the configuration shown in FIGS. 2(a) and (b), the scanning lens 15 shown in Table 6
(Fig. 7) is shown in Table 3 and Table 4. When the collimator lens 9 and cylindrical lens 10 in Table 4 are used together with the scanning lens 15 in Table 6, the wavelength changes. FIG. 4 shows the fluctuation of the image plane position at this time.

この場合も、主走査面(第4図(a))及び副走査面(
第4図(b))共に、波長変動゛による像面位置変動に
対する影響が小さくなっている。
In this case as well, the main scanning plane (Fig. 4(a)) and the sub-scanning plane (
In both cases (FIG. 4(b)), the influence of wavelength fluctuations on image plane position fluctuations is small.

艮ユ 波長780nm r+=ω d、  =2゜ r2=非球面 da =6.oo  n、=t (空気)r、=−12
,84291 d、=2.00  n、=1.7659150   n
t  =l 、 57645r、=17. 52189 da =o     n4 = t (空気)rs  
=17. 52189 d、  =3− 00   ns  =l、  576
45ra  ”−9,37369 f =23. 2mm      Fno=4非球面デ
ータは x= (h” /R)/ [1+ (l−(h/R) 
2)+zt ] +Ah” +Bh” (h:光軸からの距離、X:球面からのズレjI)につ
いて R=−11,8399、A=−7,9792×101、
B=4.05317xlO−’ム 波長780nm rly =−16,9670rz t=ωd−=2. 
00   nt  =1. 51072rLa =−5
−67111rz s=ωd@ =Ons = 1 (
空気) r土e =−5,67111r目*””)d−=2. 
0On=  =1.76591r土、。=−9、307
61r 11+。=ω(ただしr上は副走査面における
曲率半径。
Wavelength: 780 nm r+=ω d, =2° r2=Aspherical surface da =6. oo n,=t (air)r,=-12
,84291 d,=2.00 n,=1.7659150 n
t=l, 57645r,=17. 52189 da = on4 = t (air) rs
=17. 52189 d, =3-00 ns =l, 576
45ra ”-9,37369 f = 23. 2mm Fno=4 Aspheric data is x = (h” /R) / [1+ (l-(h/R)
2) +zt ] +Ah"+Bh" (h: distance from optical axis, X: deviation jI from spherical surface) R = -11,8399, A = -7,9792x101,
B=4.05317xlO-' wavelength 780nm rly=-16,9670rz t=ωd-=2.
00 nt = 1. 51072rLa =-5
-67111rz s=ωd@ =Ons = 1 (
air) r soil e = -5,67111rth*””) d-=2.
0On= =1.76591rSat,. =-9, 307
61r 11+. = ω (where r is the radius of curvature on the sub-scanning surface.

rzlは主走査面における曲率半径) 第5図は第3実施例を示す、第5図(a)はコリメータ
レンズ11を示し、第5図(b)はシリンドリカルレン
ズ12の副走査面における断面を示す、コリメータレン
ズ11は凸凹凸の3枚のレンズlla、llb、11C
で構成され、特に凸レンズ11a、11cの一方には第
2実施例と同様に非球面レンズを用いている。シリンド
リカルレンズ12は凹凸のレンズ構成12a、12bに
なっている。
(rzl is the radius of curvature in the main scanning plane) FIG. 5 shows the third embodiment, FIG. 5(a) shows the collimator lens 11, and FIG. 5(b) shows the cross section of the cylindrical lens 12 in the sub scanning plane. The collimator lens 11 shown in FIG.
In particular, an aspherical lens is used for one of the convex lenses 11a and 11c as in the second embodiment. The cylindrical lens 12 has a concave and convex lens configuration 12a, 12b.

第3実施例でも、コリメータレンズ11の凹凸貼り合わ
せレンズ11b、11cを光軸方向に、またシリンドリ
カルレンズ12を光軸方向に移動することにより、夫々
、主走査面での像面位置と副走査面での像面位置を独立
に調整できる。
In the third embodiment as well, by moving the concave-convex laminated lenses 11b and 11c of the collimator lens 11 in the optical axis direction and the cylindrical lens 12 in the optical axis direction, the image plane position on the main scanning plane and the sub-scanning can be adjusted. The image plane position can be adjusted independently.

第5図(a)、(b)の構成で表6の走査レンズ15(
第7図)に合わせて設計した例を上記表3及び表5に示
す。
With the configuration shown in FIGS. 5(a) and 5(b), the scanning lens 15 (
Examples designed in accordance with FIG. 7) are shown in Tables 3 and 5 above.

この場合も、主走査面及び副走査面共に。In this case, both the main scanning plane and the sub scanning plane.

波長変動による像面位置変動に対する影響が小さ(なっ
ている。
The influence of wavelength fluctuations on image plane position fluctuations is small.

ム 波長780nm rly =8.36557  r  r=ωd、=2.
0On? =1.76591rJLs =6.0981
4  rll 、=C0da=Qna=t(空気) r上* =6.09814  r、1 s=ωdo =
2.00  ns =1.51072r上+o=9.9
2218  r z +a =O’(ただしrlは副走
査面における曲率半径。
wavelength 780 nm rly =8.36557 r r=ωd, =2.
0On? =1.76591rJLs =6.0981
4 rll , = C0da = Qna = t (air) r on * = 6.09814 r, 1 s = ωdo =
2.00 ns = 1.51072r above + o = 9.9
2218 r z +a = O' (where rl is the radius of curvature in the sub-scanning plane.

t”口は主走査面における曲率半径) 以上説明した本発明のレーザ走査光学系では、コリメー
ターレンズとシリンドリカルレンズとを含むレーザ光源
から偏向器に至る光学系は、主走査面及び副走査面にお
いて、該光学系自体の持つ色収差が走査レンズの持つ色
収差に対して逆の特性と成るようにしたり、また、主走
査面内及び副走査面内において、該光学系の持つ色収差
を過修正としたりする構成を取っている。
In the laser scanning optical system of the present invention described above, the optical system from the laser light source to the deflector, including the collimator lens and the cylindrical lens, is connected to the main scanning surface and the sub-scanning surface. In this case, the chromatic aberration of the optical system itself is made to have opposite characteristics to the chromatic aberration of the scanning lens, or the chromatic aberration of the optical system is overcorrected in the main scanning plane and the sub-scanning plane. It has a configuration that allows for

過修正の意味について説明する。ガラスで形成された凸
レンズの場合、色収差がないときは、波長が長い方へ変
化するとその焦点距離も長い方へ変化する0色収差が修
正されているときは、波長が長い方へ変化してもその焦
点距離は変化しない0色収差が過修正されているときは
、波長が長い方へ変化すると、その焦点距離は逆に短い
方へ変化する。
Explain the meaning of overcorrection. In the case of a convex lens made of glass, if there is no chromatic aberration, the focal length will also change as the wavelength changes towards the longer side.0 When the chromatic aberration is corrected, even if the wavelength changes towards the longer side, the focal length will also change towards the longer side. When zero chromatic aberration, whose focal length does not change, is overcorrected, when the wavelength changes toward a longer wavelength, the focal length changes toward a shorter wavelength.

また、シリンドリカルレンズは副走査面内に右いて、シ
リンドリカルレンズ自体の持つ色収差が走査レンズの持
つ色収差に対して逆の特性となるようにしたり、また、
副走査面内において、シリンドリカルレンズの持つ色収
差を過修正としたりする構成をとっているこのように、
コリメーターレンズと走査レンズとに加えてシリンドリ
カルレンズをも含んだ 光学系全体として、波長変動に
よる像面位置の変動を補正するので、主走査面及び副走
査面における像面位置の変動を共に十分に補正すること
ができる。
In addition, the cylindrical lens is placed right in the sub-scanning plane so that the chromatic aberration of the cylindrical lens itself has opposite characteristics to the chromatic aberration of the scanning lens.
In this way, the chromatic aberration of the cylindrical lens is overcorrected in the sub-scanning plane.
The optical system as a whole, which includes a cylindrical lens in addition to the collimator lens and the scanning lens, corrects fluctuations in the image plane position due to wavelength fluctuations, so it can sufficiently compensate for fluctuations in the image plane position on both the main scanning plane and the sub-scanning plane. It can be corrected to

尚、第2、第3実施例では、コリメータレンズ中の貼り
合わせレンズを利用してオートフォーカス装置を組み込
むことも可能である■ 波長780nm R,=−31,90404 D、=4.7    N、=1.51072R,=−1
56,20703 D、=2. 09475   Nz  =1R,=−1
07,65086 D、=16.7   N、=1.76591R,=−5
2,70210 D、  =1. 00   N、  =1R11s=c
X3   R上、=−157,46Ds  =16. 
 I   N、=1. 78569Rz−=−131,
55R土s =−3g。
In addition, in the second and third embodiments, it is also possible to incorporate an autofocus device using a bonded lens in the collimator lens. ■ Wavelength 780 nm R, = -31,90404 D, = 4.7 N, =1.51072R,=-1
56,20703 D,=2. 09475 Nz =1R,=-1
07,65086 D,=16.7 N,=1.76591R,=-5
2,70210 D, =1. 00 N, =1R11s=c
X3 on R = -157,46Ds =16.
I N,=1. 78569Rz-=-131,
55R soils = -3g.

08 (ただしR11は主走査面における曲率半径、R上は副
走査面における曲率半径) f =170.4 m m s半画角Cω/2)=37
.5° Fso”29 艮ユ rls =55.22    rl、、=■ds =7
.00  nl = 1.76591r 6 =■ (ただしrlは副走査面における曲率半径、rllは主
走査面における曲率半径) [発明の効果] 以上説明した様に、本発明によれば、走査光学系を適当
に構成することによりレーザなどの光源の波長変動に依
らず像面位置が一定しているので、微小スポットを目的
としだ高4゜ 解像の場合でも常に安定したスポットが簡単な構成によ
って得られる。
08 (However, R11 is the radius of curvature on the main scanning plane, and R is the radius of curvature on the sub-scanning plane.) f = 170.4 m m s half angle of view Cω/2) = 37
.. 5° Fso”29 艮yu rls =55.22 rl,, =■ds =7
.. 00 nl = 1.76591r 6 = ■ (where rl is the radius of curvature on the sub-scanning surface, rll is the radius of curvature on the main scanning surface) [Effects of the Invention] As explained above, according to the present invention, the scanning optical system can be With an appropriate configuration, the image plane position remains constant regardless of wavelength fluctuations of a light source such as a laser, so even if you are aiming for a minute spot and have a 4° resolution, you can always obtain a stable spot with a simple configuration. It will be done.

更に、波長変動による像面の位置の変動が無視できるの
で、実質的な像面の焦点深度を広くみなせて、その為走
査レンズ系の位置加工精度を緩めることができて加工コ
ストを低減できる。
Furthermore, since variations in the position of the image plane due to wavelength variations can be ignored, the actual depth of focus of the image plane can be regarded as wide, which allows the positional processing accuracy of the scanning lens system to be relaxed and processing costs to be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)は第1実施例のコリメータレンズの図、第
1図(b)は第1実施例のシリンドリカルレンズを示す
図、第2図は第1実施例での波長変動による像面位置変
動を示す図、第3図(a)は第2実施例のコリメータレ
ンズの図、第3図(b)は第2実施例のシリンドリカル
レンズを示す図、第4図は第2実施例での波長変動によ
る像面位置変動を示す図、第5図(a)は第3実施例の
コリメータレンズの図、第5図(b)は第3実施例のシ
リンドリカルレンズを示す図、第6図は従来のレーザ走
査光学系を説明する為の図、第7図は走査レンズの例を
示す図、第8図はシリンドリカルレンズの例を示す図、
第9図及び第10図は従来の例での波長変動による像面
位置変動を示す図である。 l・・・・・半導体レーザ、4・・・・・ポリゴンミラ
ー%6・・・・・感光ドラム、7.9.11・・・・・
コリメータレンズ、810.12・・・・・シリンドリ
カルレンズ、15・・・・・走査レンズ
Fig. 1(a) is a diagram of the collimator lens of the first embodiment, Fig. 1(b) is a diagram of the cylindrical lens of the first embodiment, and Fig. 2 is an image plane due to wavelength fluctuation in the first embodiment. 3(a) is a diagram showing the collimator lens of the second embodiment, FIG. 3(b) is a diagram showing the cylindrical lens of the second embodiment, and FIG. 4 is a diagram showing the cylindrical lens of the second embodiment. FIG. 5(a) is a diagram showing the collimator lens of the third embodiment, FIG. 5(b) is a diagram showing the cylindrical lens of the third embodiment, and FIG. is a diagram for explaining a conventional laser scanning optical system, FIG. 7 is a diagram showing an example of a scanning lens, FIG. 8 is a diagram showing an example of a cylindrical lens,
FIGS. 9 and 10 are diagrams showing image plane position fluctuations due to wavelength fluctuations in a conventional example. l...Semiconductor laser, 4...Polygon mirror%6...Photosensitive drum, 7.9.11...
Collimator lens, 810.12... Cylindrical lens, 15... Scanning lens

Claims (1)

【特許請求の範囲】 1、レーザ光源、コリメータレンズ、副走査方向にパワ
ーを有するシリンドリカルレンズ、走査レンズを含むレ
ーザ走査光学系において、該走査光学系全体として、レ
ーザ光源からの光の波長変動による主走査面における像
面位置の変動及び副走査面における像面位置の変動を補
正することを特徴とする色消しレーザ走査光学系。 2、前記シリンドリカルレンズが少なくとも2枚のレン
ズから構成されている請求項1記載のレーザ走査光学系
。 3、前記コリメータレンズが少なくとも2枚のレンズか
ら構成されている請求項1又は2記載のレーザ走査光学
系。 4、前記コリメータレンズの一部とシリンドリカルレン
ズが光軸方向に移動可能となっている請求項1記載のレ
ーザ走査光学系。
[Scope of Claims] 1. In a laser scanning optical system including a laser light source, a collimator lens, a cylindrical lens having power in the sub-scanning direction, and a scanning lens, the scanning optical system as a whole can be controlled by wavelength fluctuations of light from the laser light source. An achromatic laser scanning optical system characterized by correcting variations in image plane position on a main scanning plane and variations in image plane position on a sub-scanning plane. 2. The laser scanning optical system according to claim 1, wherein the cylindrical lens is composed of at least two lenses. 3. The laser scanning optical system according to claim 1 or 2, wherein the collimator lens is composed of at least two lenses. 4. The laser scanning optical system according to claim 1, wherein a part of the collimator lens and the cylindrical lens are movable in the optical axis direction.
JP29419289A 1989-01-09 1989-11-13 Achromatic laser scanning optics Expired - Lifetime JP2907292B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP29419289A JP2907292B2 (en) 1989-11-13 1989-11-13 Achromatic laser scanning optics
DE69014908T DE69014908T3 (en) 1989-01-09 1990-01-08 Achromatic optical laser scanning system.
EP90100307A EP0378149B2 (en) 1989-01-09 1990-01-08 Achromatic-type laser scanning optical system
US07/921,403 US5270851A (en) 1989-01-09 1992-07-30 Achromatic-type laser scanning optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29419289A JP2907292B2 (en) 1989-11-13 1989-11-13 Achromatic laser scanning optics

Publications (2)

Publication Number Publication Date
JPH03154018A true JPH03154018A (en) 1991-07-02
JP2907292B2 JP2907292B2 (en) 1999-06-21

Family

ID=17804509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29419289A Expired - Lifetime JP2907292B2 (en) 1989-01-09 1989-11-13 Achromatic laser scanning optics

Country Status (1)

Country Link
JP (1) JP2907292B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722587B1 (en) * 1999-11-04 2007-05-28 엘지전자 주식회사 Objective Lens And Optical Pickup Apparatus Using The Same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722587B1 (en) * 1999-11-04 2007-05-28 엘지전자 주식회사 Objective Lens And Optical Pickup Apparatus Using The Same

Also Published As

Publication number Publication date
JP2907292B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
US5055663A (en) Optical scanning system and method for adjusting thereof
US5111325A (en) F-θ lens
US4512625A (en) Scanner optics with no cross scan field curvature
US4796962A (en) Optical scanner
JPH06118325A (en) Optical scanner
EP0649043B1 (en) Minimization of differential bow in multiple beam scanning optical systems
US4099829A (en) Flat field optical scanning system
JPH04194814A (en) Light beam scanning optical system
US5128795A (en) Scanning lens and scanning apparatus using scanning lens
US6661447B2 (en) Image-recording device for a printing form having macrooptics of the offner type
EP0441350B1 (en) Optical system for light beam scanning
JPH02181712A (en) Achromatic optical system for laser scanning
EP0637770B1 (en) Compact ROS imaging system
JPH03154018A (en) Achromatic laser scanning optical system
JP3221338U (en) F-theta lens
EP0018787A1 (en) Optical scanning apparatus
US5136416A (en) Optical scanning unit for use in laser beam printer or the like
US5311348A (en) Cylindrical lens system for use in laser beam scanning apparatus and scanning apparatus including same
JP2001108928A (en) Optical scanner and image forming device
JP3595374B2 (en) Scanning optical system and method of correcting spherical aberration in scanning optical system
JP3100761B2 (en) Scanning optical system with temperature compensation
JP3586394B2 (en) Scanning optical system using diffraction surface
JP2001264664A (en) Optical scanner
JPH04107517A (en) Light source unit and lens used for same
JP3381333B2 (en) Optical scanning device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090402

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100402

Year of fee payment: 11