JPH03153700A - Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity - Google Patents

Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity

Info

Publication number
JPH03153700A
JPH03153700A JP29148989A JP29148989A JPH03153700A JP H03153700 A JPH03153700 A JP H03153700A JP 29148989 A JP29148989 A JP 29148989A JP 29148989 A JP29148989 A JP 29148989A JP H03153700 A JPH03153700 A JP H03153700A
Authority
JP
Japan
Prior art keywords
carrier
protein
aequorin
immobilized
apoaequorin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29148989A
Other languages
Japanese (ja)
Inventor
Akinari Erisumi
江利角 晃也
Shuhei Yoshino
修平 善野
Satoshi Inoue
敏 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP29148989A priority Critical patent/JPH03153700A/en
Publication of JPH03153700A publication Critical patent/JPH03153700A/en
Pending legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)

Abstract

PURPOSE:To obtain the subject immobilized protein, readily recoverable and reutilizable after use and useful as biosensor, etc., by physically binding a luminous protein having aequorin activity to an organic or inorganic carrier having the ability to bind to the protein. CONSTITUTION:An organic or inorganic carrier (e.g. activated alumina) having the ability to bind to a protein (e.g. apoaequorin) is swelled in a buffer solution and the swollen carrier is then suspended in a solution containing the protein having aequorin activity and allowed to stand at 37 deg.C for 30min to adsorb the protein thereon. The buffer solution containing the carrier is further subjected to centrifugation and separated into the carrier and a supernatant liquid and the carrier is subsequently washed with the buffer solution to afford the objective immobilized protein having the aequorin activity. Furthermore, a protein having the aequorin activity prepared according to a technique of recombinant DNA is preferably used as the protein having the aequorin activity.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、担体に固定化されたエクオリン活性を有する
蛋白質、該蛋白質と該蛋白質の基質となり得る発光体と
の複合体およびそれらの調製法に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a protein having aequorin activity immobilized on a carrier, a complex of the protein and a luminescent material that can be a substrate for the protein, and a method for preparing them. Regarding.

[従来の技術とその問題点] エクオリンは、米国ワシントン州フライデーハーバ−島
近郊に生息する発光クラゲより分離されたカルシウム受
容発光蛋白質である。
[Prior art and its problems] Aequorin is a calcium-accepting photoprotein isolated from a luminescent jellyfish that lives near Friday Harbor Island, Washington, USA.

エクオリンは1分子に2分子(あるいは3分子)のCa
”イオンが結合することによりエクオリン分子中に含ま
れる活性化状態にあるセレンテラジンが酸化され、光と
002を放出する。この発光には、Ca”イオンが不可
欠なことより、エクオリンを用いてCa’°を特異的に
定量検出することが可能である。 Ca”イオンの検出
限界は 10−’kl程度であり、非常に感度が良いこ
とが特徴である。
Aequorin contains two (or three) molecules of Ca in one molecule.
When the ions combine, coelenterazine in the activated state contained in the aequorin molecule is oxidized and emits light and 002.Since Ca' ions are essential for this light emission, aequorin is used to oxidize coelenterazine in the activated state and emit light and 002. It is possible to specifically and quantitatively detect °. The detection limit for Ca'' ions is approximately 10-'kl, and is characterized by extremely high sensitivity.

しかしながら、エクオリンの天然物からの分動は発光ク
ラゲ101−ンから 201]mg程度にすぎず、生産
量は十分でなく、一定の供給が保証されていない。
However, the amount of aequorin extracted from natural products is only about 201 mg from 101 mg of luminescent jellyfish, and the amount of production is insufficient, and a constant supply is not guaranteed.

本発明者等は組換えDNへの手法を用いて、発光クラゲ
よりアポエクオリンのcDN^をクローニングし、その
1次構造を決定した (特開昭81−135.5861
.次いで、このcDN^を用いて大I1g菌を宿主とし
、その菌体内及び菌体外でのアポエクオリンの生産に成
功した (特開昭52−1.96.Q31)。
The present inventors used a recombinant DNA technique to clone the cDN^ of apoaequorin from a luminescent jellyfish, and determined its primary structure (Japanese Patent Application Laid-Open No. 81-1355861
.. Next, using this cDN^, they used a large I1g bacterium as a host and succeeded in producing apoaequorin inside and outside the bacterium (Japanese Patent Application Laid-open No. 52-196-Q31).

さらに陰イオン交換クロマトグラフィー7去によるアポ
エクオリンの精製法も確立した (特開平1−1ff2
.3!17) 、さらに機能遺伝子と結合したエクオリ
ン遺伝子を作成し、その融合蛋白質の生産に成功したく
特開昭64−261,942) 、また、エクオリンの
発光を利用した金属の検出方法を開発したく特開昭62
−281,942) 、そして、特異的結合蛋白質の遺
伝子と結合したエクオリン遺伝子を作成し、その融合蛋
白質の生産に成功した(特願昭6:l−308,424
) 。
Furthermore, a purification method for apoaequorin by anion exchange chromatography was also established (JP-A-1-1FF2).
.. 3!17) Furthermore, we created an aequorin gene combined with a functional gene and hoped to successfully produce its fusion protein (Japanese Patent Application Laid-open No. 64-261,942), and also developed a metal detection method using the luminescence of aequorin. Shitaku Tokukai 1986
-281,942), created an aequorin gene combined with a gene for a specific binding protein, and succeeded in producing the fusion protein (Patent Application Sho 6:l-308,424).
).

ざらに、酵素免I2測定法に利用すべく、その融合蛋白
質の高純度精製標品の調製法を確立した(特願平1−6
9.8521.そして、この特異的結合能を有する蛋白
質との融合蛋白質を用いた免疫測定法も確立した(特願
平1−74.742)。
Furthermore, we established a method for preparing a highly purified sample of the fusion protein for use in the enzyme-linked I2 measurement method (Patent Application No. 1-6).
9.8521. An immunoassay method using a fusion protein with a protein having this specific binding ability was also established (Japanese Patent Application No. 1-74-742).

以上の発明により、エクオリンの安定的な供給が可能と
なった。エクオリン自体の診断薬等への応用性は、当業
者に周知であるが、更に有用性を高めるにはエクオリン
の固定化が不可欠であり、該固定化が可能となれば、上
述のような特異的な活性を保持したまま、しかも水に不
溶性のエクオリン、即ち、固定化エクオリンを作ること
かでき、更に反応終了液中よりエクオリンのみを変性さ
せずに回収し、これを再利用することが可能となる。該
再利用が可能になれば、バイオセンサー等への利用も可
能となることが予測できる。
The above invention has made it possible to stably supply aequorin. The applicability of aequorin itself as a diagnostic agent is well known to those skilled in the art, but in order to further increase its usefulness, immobilization of aequorin is essential. It is possible to produce aequorin that is insoluble in water, i.e., immobilized aequorin, while retaining its activity, and it is also possible to recover only aequorin from the reaction solution without denaturation and reuse it. becomes. If such reuse becomes possible, it can be predicted that it will also become possible to use it for biosensors and the like.

本発明者は上述の技術的事情にかんがみ、研究の結果、
エクオリンを物理吸着法により特定の担体に固定化する
ことができた1以上の説明から明らかなように、本発明
の目的は物理吸着法により固定化したエクオリン活性を
有する蛋白質および該蛋白質と該蛋白質の基質となり得
る発光体との複合体の調製に関する方法、及び物理吸着
法により固定化されたエクオリン活性を有する蛋白質お
よび該蛋白質と該蛋白質の基質となり得る発光体との複
合体を撞供することである。
In view of the above-mentioned technical circumstances, as a result of research, the present inventor has
As is clear from one or more explanations in which aequorin could be immobilized on a specific carrier by a physical adsorption method, the object of the present invention is to immobilize aequorin to a specific carrier by a physical adsorption method, and to immobilize the protein and the protein. A method for preparing a complex with a luminescent material that can serve as a substrate for the protein, and a method for preparing a complex with a luminescent material that can serve as a substrate for a protein having aequorin activity immobilized by a physical adsorption method, and a complex of the protein and a luminescent material that can serve as a substrate for the protein. be.

E問題点を解決するための手段] 本発明は、下記(1)〜(3)の構成を有する。Measures to solve problem E] The present invention has the following configurations (1) to (3).

(1) i白質との結合能を有する有m貿苦しくは無機
質の担体にエクオリン活性を有する蛋白質を物理的に結
合せしめることを特徴とする担体に固定化されたエクオ
リン活性を有する蛋白質の調製法。
(1) A method for preparing a protein having aequorin activity immobilized on a carrier, which comprises physically binding a protein having aequorin activity to a preferably inorganic carrier that has the ability to bind to white matter. .

(2)前記第 (1)項に記載の調製法により調製され
てなる固定化されたエクオリン活性を有する蛋白質。
(2) An immobilized protein having aequorin activity prepared by the preparation method described in item (1) above.

(3)前記第 (2)項に記載の蛋白質と該蛋白質の基
質となり得る発光体との複合体。
(3) A complex of the protein according to item (2) above and a luminescent material that can serve as a substrate for the protein.

本発明の構成につき以下に詳述する。The configuration of the present invention will be explained in detail below.

ここでエクオリン活性を有する蛋白質とは、アポエクオ
リン蛋白質の他、種々の機能蛋白質とアポエクオリンと
の融合蛋白質や種々の物質により修飾を受けた修飾アポ
エクオリン等の蛋白質であってエクオリン活性を有する
ものを言う。
Here, proteins having aequorin activity include, in addition to apoaequorin protein, proteins such as fusion proteins of various functional proteins and apoaequorin, and modified apoaequorin modified with various substances, which have aequorin activity. say.

本発明は、エクオリン活性を有する物理吸着法により担
体に固定化されたエクオリン及びその調製法によるもの
で、例えば後述の実施例に示す方1去で実施することが
できる。
The present invention is based on aequorin immobilized on a carrier by a physical adsorption method having aequorin activity, and a method for preparing the same, which can be carried out, for example, by the method shown in the Examples below.

本発明を添付図及び表によって説明すると、第1図は担
体に固定化されたエクオリン活性を有する蛋白iyA製
工程図(フローシート)を示す、担体を20mM Tr
is−HCI (pH7,5) 、lOmkl EDT
A緩’fr?ltで膨■させる0次にアポエクオリンを
20+IIM Trls−HCI(p1+7.[il、
l0II+M EDTA綴;封液に溶解させたものに膨
潤させた担体を混合して、担体にアポエクオリンを物理
吸着により固定化(以下固定化物吸着担体という)する
The present invention will be explained with reference to the accompanying figures and tables. Figure 1 shows a process diagram (flow sheet) for producing iyA, a protein with aequorin activity immobilized on a carrier.
is-HCI (pH 7,5), lOmkl EDT
A loose'fr? Inflate with lt.
10II+M EDTA: A swollen carrier is mixed with a solution dissolved in a sealing liquid, and apoaequorin is immobilized on the carrier by physical adsorption (hereinafter referred to as an immobilized substance adsorption carrier).

遠心分列により該吸着担体からアボエクオリン溶液を分
別したのち、20mM T「1s−HCl(pH7,6
)。
After separating the aboaequorin solution from the adsorption carrier by centrifugation, 20mM T'1s-HCl (pH 7,6
).

lQmM EDTA綴街液で該吸着担体を2回洗浄して
遊離のアポエクオリンを除去する0本操作により遊離の
アポエクオリンは99%以上除去され、中性の担体に物
理吸着により固定化されたアポエクオリンが調製される
By washing the adsorption carrier twice with 1QmM EDTA liquid to remove free apoaequorin, more than 99% of the free apoaequorin was removed, and the apoaequorin immobilized on the neutral carrier by physical adsorption was removed. Aequorin is prepared.

第2図は、上記操作により固定化されたアポエクオリン
を模式的に示す0分子間力や疎水相互作用などの種々の
物理的な力によって、アポエクオリンが担体に物理吸着
される。これにより、アポエクオリンが担体に物理的に
固定化される0以上の操作は凡てO℃〜40℃で開放雰
囲気内で一査夜以内好ましくは6時間以内で連続的に実
施される。使用される担体としては、後述の実施例に例
示されているような有機1JjL若しくは無機質の粉末
(球状微粒子)が使用できる。また、担体とアポエクオ
リンとの結合状態が物理吸着か化学吸着であるかは、後
述の実施例の説明から判断される。
FIG. 2 schematically shows apoaequorin immobilized by the above operation. Apoequorin is physically adsorbed onto the carrier by various physical forces such as intermolecular force and hydrophobic interaction. Accordingly, all of the above operations in which apoaequorin is physically immobilized on the carrier are carried out continuously at 0° C. to 40° C. in an open atmosphere within one night, preferably within 6 hours. As the carrier used, organic powder or inorganic powder (spherical fine particles) as exemplified in the Examples below can be used. Further, whether the bonding state between the carrier and apoaequorin is physical adsorption or chemical adsorption can be determined from the description of Examples below.

また、実施例で使用された担体く商品)は、アポエクオ
リンと化学結合する基を持っていない。
Furthermore, the carrier (commercial product) used in the Examples does not have a group that chemically bonds with apoaequorin.

第 表 第1表は、@記第!図の調製工程により固定化されたア
ポエクオリンの各担体に対する吸着量を示したものであ
る。吸着量は、遊離のアポエクオリンの量より求めてい
る。担体別の吸着量としてはGlass Powder
が最も多く、次いで^1barliteXAD−2が多
い。
Table 1 is @recorded! The figure shows the adsorption amount of apoaequorin immobilized by the preparation process shown in each carrier. The amount of adsorption is determined from the amount of free apoaequorin. As for adsorption amount by carrier, Glass Powder
is the most common, followed by ^1barliteXAD-2.

第  2  表 4℃、2時間処理したものを、膨潤させた担体と混合し
、吸着していないエクオリンの発光を測定することで求
めた。
Table 2 It was determined by mixing the treated product at 4° C. for 2 hours with a swollen carrier and measuring the luminescence of unadsorbed aequorin.

第  3 表 第2表は、担体に起因する散乱等でどの程度、発光の強
度が減少するかを現わしたものである。
Table 3 Table 2 shows how much the intensity of light emission decreases due to scattering caused by the carrier.

光子減少率の測定は、後述の実施例3に例示されている
ように、例えば、固定化に要した担体と同量の担体を2
0mM Tris−H[:1(pH7,8)、lOv&
l EDTAli街液で膨潤させた後、アポエクオリン
をセレンテラジンおよび2−メルカプトエタノール共存
下で、第3表は、担体に固定化されていないエクオリン
の活性に対しての固定化エクオリンの相対活性を現わし
ている。この(aは、担体く固定化されたエクオリンの
発光を1i1)定し、前記第2表の光子の減少率から実
際の発光量を求めたものである。
To measure the photon reduction rate, for example, as illustrated in Example 3 below, the same amount of carrier as that required for immobilization was used.
0mM Tris-H[:1 (pH 7,8), lOv&
Table 3 shows the relative activity of immobilized aequorin with respect to the activity of aequorin not immobilized on a carrier. I'm watching. This (a is the luminescence of aequorin immobilized on a carrier is determined as 1i1), and the actual luminescence amount was determined from the photon reduction rate in Table 2 above.

その結果、相対活性はアガロース系の5ephadax
G−200が最も良く、担体としては最も有利であると
考えられた。このようにして担体に固定化されたエクオ
リン活性を有する蛋白質を調製する方法が確立された。
As a result, the relative activity was determined by the agarose-based 5ephadax.
G-200 was considered to be the best and most advantageous as a carrier. In this way, a method for preparing a protein having aequorin activity immobilized on a carrier was established.

以上の結果を総合すると、アポエクオリンは物理吸着に
より中性の担体に固定化され、かつ、固体化されたアポ
エクオリンは明らかにエクオリン活性を有していた。し
かもその吸着したアポエクオリンの割合の高さから考え
て、アポエクオリンの吸着力は非常に強いものであると
言え、アポエクオリンがあらゆる担体へ固定化可能であ
ることは容易に予測される。
Taking the above results together, apoaequorin was immobilized on a neutral carrier by physical adsorption, and the solidified apoaequorin clearly had aequorin activity. Moreover, considering the high proportion of adsorbed apoaequorin, it can be said that the adsorption power of apoaequorin is very strong, and it is easily predicted that apoaequorin can be immobilized on any carrier.

また、アポエクオリンが非常に吸着力の強い蛋白質であ
ることにより、エクオリン活性を有する蛋白質であるな
らば、物理吸着による固定化が可能であると考えられる
。さらに固定化すると言うことは一種の修飾を行うこと
であり、その修飾されたアポエクオリン、即ち固定化さ
れたアポエクオリンがエクオリン活性を有することから
考えて、先の固定化されたエクオリン活性を育する蛋白
質も、また同様にエクオリン活性を示すと思われる。言
い替えれば、エクオリン活性を有するあらゆる蛋白質は
、担体に固定化され、かつエクオリン活性を示すと考え
られる。
Furthermore, since apoaequorin is a protein with extremely strong adsorption power, it is thought that immobilization by physical adsorption is possible if the protein has aequorin activity. Furthermore, immobilization means to carry out a kind of modification, and considering that the modified apoaequorin, that is, the immobilized apoaequorin, has aequorin activity, it is possible to increase the aequorin activity of the previously immobilized apoaequorin. It is thought that proteins that exhibit aequorin activity as well. In other words, any protein having aequorin activity is immobilized on a carrier and is considered to exhibit aequorin activity.

また、エクオリン活性は、エクオリン活性を有する蛋白
質と該蛋白質の基質となり得る発光体が複合体を形成す
ることによって初めて示されるが、本発明の実施例によ
り、エクオリン活性を有する蛋白質と該蛋白質の基質と
なり得る発光体の複合体が固定化され、かつエクオリン
活性を有することは、容易に理解できる。
In addition, aequorin activity is first shown when a protein with aequorin activity and a luminescent material that can be a substrate for the protein form a complex. It is easy to understand that the potential luminescent complex is immobilized and has aequorin activity.

以上、本発明により固定化されたエクオリン活性を有す
る蛋白質、および該蛋白質と該蛋白質の基質となり得る
発光体との複合体とその調製法が提供された。
As described above, the present invention provides an immobilized protein having aequorin activity, a complex of the protein and a luminescent material that can serve as a substrate for the protein, and a method for preparing the same.

[発明の効果] 本発明の方法によれば、発光蛋白質であるエクオリンを
担体に固定化することができ、さらに、固定化すること
によって水に不溶性となり、使用後の蛋白質を回収・再
利用することも可能となる。
[Effects of the Invention] According to the method of the present invention, aequorin, which is a photoprotein, can be immobilized on a carrier, and furthermore, by immobilization, it becomes insoluble in water, and the protein after use can be recovered and reused. It also becomes possible.

また、検出感度の良さから、固定化することによりバイ
オセンサー等の各種測定検出法への応用も期待でき、そ
の利用範囲は極めて広い。
Furthermore, due to its high detection sensitivity, it can be expected to be applied to various measurement and detection methods such as biosensors by immobilization, and its range of use is extremely wide.

本発明の固定化されたエクオリン活性を有する蛋白質の
有用性は、当業者に自明であり、上記の開示により、当
業者は特許請求された本発明を実施できる。しかし、こ
の特許の理解を増すために、本発明に重要な固定化エリ
フォリンのm製法に使われる手順を以下に明らかにする
The utility of the proteins with immobilized aequorin activity of the present invention will be obvious to those skilled in the art, and the above disclosure will enable one skilled in the art to practice the claimed invention. However, in order to increase the understanding of this patent, the procedures used in the preparation of immobilized erifolin, which are important to the present invention, are set forth below.

[実施例] 実施例1 [物理吸着法によるエクオリンの担体への固
定化] 担体として、Glass Powder (325ae
sh) (和光純薬工業■)、活性アルミナ(和光純薬
工業■)、Wakogel C−200(和光純薬工業
[) 、 ToyopearlHW−60Fine (
東洋曹達工業@l) 、 CallulofinaGC
L−300−m (チッソ@ ) 、 Ca1lulo
fina GCL−1000−+e(チッソH)、 5
ephadex G−10(Pharsacla Fi
neChemicals社)、 5ephadex  
G−200(Pharmacia  FineChem
icals社)、5epharose 4B (Pha
ra+acla Fine(hBicals社)、^m
ber目ta X^ト2(Aldrich社)、Amb
erlite XAD−7(AIdrich社)、およ
び5ephacrylS−1000(Pharmaci
a Fine Chemicals社)を使用した。
[Example] Example 1 [Immobilization of aequorin onto a carrier by physical adsorption method] As a carrier, Glass Powder (325ae
sh) (Wako Pure Chemical Industries ■), activated alumina (Wako Pure Chemical Industries ■), Wakogel C-200 (Wako Pure Chemical Industries [), ToyopearlHW-60Fine (
Toyo Soda Kogyo @l), CallulofinaGC
L-300-m (Chisso@), Callulo
fina GCL-1000-+e (Chisso H), 5
ephadex G-10 (Pharsacla Fi
neChemicals), 5ephadex
G-200 (Pharmacia FineChem
icals), 5epharose 4B (Pha
ra+acla Fine (hBicals), ^m
berme ta X^to 2 (Aldrich), Amb
erlite XAD-7 (AIdrich), and 5ephacryl S-1000 (Pharmaci
a Fine Chemicals) was used.

該担体5〜l0mgをルミフォトメーター(TO−40
00゜ラボサイエンス社)のポリスチレンキュベツト(
外径fox 6Smm)中で201M Tris−HC
I(pH7,6)。
5 to 10 mg of the carrier was measured using a Lumiphotometer (TO-40
Polystyrene cuvette (00゜Lab Science Co., Ltd.)
201M Tris-HC in outer diameter fox 6Smm)
I (pH 7,6).

10mM EDTA kpifi液で膨潤させた後、遠
心分離により余分の20mM Trls−HCI(pH
7J)、l0mM EDTA綴i液を除去した0次に、
20mM Tris−IIcI/10mM EDTAを
含むアポエクオリン溶液に膨潤させた担体に懸濁させ、
37℃で30分間反応させた。
After swelling with 10mM EDTA kpifi solution, excess 20mM Trls-HCI (pH
7J), 10mM EDTA irritant fluid was removed,
Suspended in a carrier swollen in an apoaequorin solution containing 20mM Tris-IIcI/10mM EDTA,
The reaction was carried out at 37°C for 30 minutes.

このとぎに用いたアポエクオリンは、以下の方法により
調製した。すなわち、組換え DNAの手法により製造
したアポエクオリン (特開昭83−102.695)
を、陰イオン交換クロマトグラフィー法により処理しく
特開平1−132,397) 、ざらに逆相II P 
L Cによr)精製した。逆相1)PLcとしては、商
品名コスモシル1Oc4−300 (10x 150s
+o)ノカラムニ、溶媒系として水/アセトニトリル(
共に 0.1%トリフルオロ酢酸を含む)系を用い、グ
ラジェントは20〜80%で行い、アポエクオリンピー
クを分取した。このアポエクオリン画分を凍結乾燥して
アポエクオリンを調整し、−20℃で保存したものを使
用した(以下の説明については第1図参照)。
Apoequorin used in this step was prepared by the following method. That is, apoaequorin produced by recombinant DNA method (Japanese Patent Application Laid-open No. 102-695-1983)
was treated by an anion exchange chromatography method (JP-A-1-132,397), a reverse phase II P
Purified by LC. Reverse phase 1) As PLc, product name Cosmosil 1Oc4-300 (10x 150s
+o) water/acetonitrile as solvent system (
Using a system (both containing 0.1% trifluoroacetic acid), a gradient was performed from 20 to 80%, and the apoaequorin peak was fractionated. This apoaequorin fraction was freeze-dried to prepare apoaequorin, which was stored at -20°C and used (see Figure 1 for the following explanation).

次に、37℃で30分間吸着させた後、遠心分離を行な
い、担体と上澄に分けた。このときの上澄を上澄(1)
とした、そして、担体に吸着していない余分のアポエク
オリンを除去するために、 20■MTrls−HCI
(pt17J)、lomM EDTA 緩衝液で担体を
洗浄し、遠心分離をして、担体と上澄(2)に分けた。
Next, after adsorption at 37°C for 30 minutes, centrifugation was performed to separate the carrier and supernatant. The supernatant at this time is the supernatant (1).
Then, in order to remove excess apoaequorin not adsorbed to the carrier, 20 MTrls-HCI
(pt17J), the carrier was washed with lomM EDTA buffer, centrifuged, and separated into the carrier and supernatant (2).

さらに、再度担体を20m1J Trls−HCI(p
H7,5)、IO++MED丁^綴ili液で洗浄し、
遠心分離で上澄(3)と担体に分けた0以上の)桑作に
より1むられた担体をアポエクオリン固定化担体とした
Furthermore, the carrier was again treated with 20 m1J Trls-HCI (p
H7, 5), washed with IO++ MED Ding^Tsuiri liquid,
The supernatant (3) and the carrier were separated by centrifugation (0 or more), and the carrier was used as an apoaequorin-immobilized carrier.

実施例2[アポエクオリンの担体への 吸着量の測定] 実施例1で得られた上iR(1)〜(3)につぎ、それ
ぞれエクオリン活性を測定し、これより各担体への吸着
量を求めた0反応液100μL中に20+*MTris
−1)cI (pH7,8)、10mM  EDTA 
 緩衝液、 2  μg/ailセレンテラジン5μm
、2−メルカプトエタノール1μl、上澄を含む。
Example 2 [Measurement of the amount of apoaequorin adsorbed on the carrier] Next to the above iRs (1) to (3) obtained in Example 1, the aequorin activity was measured, and from this the amount of adsorption on each carrier was determined. 20+*MTris in 100 μL of the determined 0 reaction solution
-1) cI (pH 7, 8), 10mM EDTA
Buffer, 2 μg/ail coelenterazine 5 μm
, 1 μl of 2-mercaptoethanol, including supernatant.

4℃に2時間放置したのち、反応液の一部をルミフォト
メーター(TD−4000,ラボサイエンス社)のキュ
ベツト中に移し、3hM CaCl2/:10mM T
ris−IIcI (pH7,a)を100μl注入し
、その発光量を測定した。
After being left at 4°C for 2 hours, a portion of the reaction solution was transferred into a cuvette of a Lumiphotometer (TD-4000, Labo Science) and diluted with 3hM CaCl2/:10mM T.
100 μl of ris-IIcI (pH 7, a) was injected, and the amount of luminescence was measured.

それらの結果から、各担体に対する吸着量を求め、さら
に全アポエクオリン中での固定化アポエクオリンの割合
を求めたものが前述の第1表である。吸着量は、Gla
ss Powder (325mash)や^■bar
lita X^ト2が多く、ゲル状担体よりも球形担体
の方が固定化担体として有利であると考えられた。
From these results, the adsorption amount for each carrier was determined, and the proportion of immobilized apoaequorin in the total apoaequorin was determined, as shown in Table 1 above. The adsorption amount is Gla
ss Powder (325mash) and ^■bar
It was considered that the spherical carrier was more advantageous as an immobilization carrier than the gel-like carrier.

さらに、吸着の割合を見ると、全ての担体について約8
0%以上のアポエクオリンが吸着しており、吸着量とし
ては異富に多く、アポエクオリンの吸着力の強さが示さ
れている。
Furthermore, looking at the adsorption rate, for all carriers approximately 8
More than 0% of apoaequorin was adsorbed, and the adsorption amount was extremely large, indicating the strength of apoaequorin's adsorption power.

また上澄(3)中のアポエクオリンの量は、上澄(1)
中のアポエクオリンの量と比較して、約1%以下であっ
た。このことは、2回の洗浄で、担体に吸着していない
余剰のアポエクオリンがほぼ完全に除去されており、か
つ吸着によりアポエクオリンが完全に固定化されている
ことを示してし入る。
Also, the amount of apoaequorin in the supernatant (3) is the same as that in the supernatant (1).
The amount of apoaequorin in the sample was about 1% or less. This indicates that the excess apoaequorin not adsorbed to the carrier was almost completely removed by the two washings, and that the apoaequorin was completely immobilized by adsorption.

実施例3〔担体による発光の散乱の影響の測定コ担体に
固定化されたアポエクオリンの相対活性を測定する際に
、担体による発光の散乱等により、測定値が実際の発光
量よりも低い値として測定される。そこで、担体による
発光の散乱等の影響を見るために以下の測定を行rjつ
た。
Example 3 [Measurement of the influence of scattering of luminescence by a carrier] When measuring the relative activity of apoaequorin immobilized on a carrier, the measured value is lower than the actual amount of luminescence due to scattering of luminescence by the carrier, etc. It is measured as. Therefore, the following measurements were carried out to examine the effects of scattering of light emitted by the carrier.

実施例1で使用した担体と同量の担体を実施例1と同様
の方法で膨潤させ、遠心分離により余分の20mM T
rls−IIcI(p)17.8)、lO+aM ED
TA緩衝液を除去した0次に、20mM Tris−1
)CI(pH7,6)、10m1l EDTA綴街液、
2μg /mIlセレンテラジン10μm、2−メルカ
プトエタノール2μm、アポエクオリン 500μgを
含む反応液200μ℃を4℃で2時間放置したのち、こ
れを上記の担体と素早く混合し、混合直後のエクオリン
活性を測定した。
The same amount of carrier as used in Example 1 was swollen in the same manner as in Example 1, and the excess 20mM T was swollen by centrifugation.
rls-IIcI(p)17.8), lO+aM ED
TA buffer was removed and 20mM Tris-1
) CI (pH 7,6), 10ml EDTA liquid,
A reaction solution containing 10 μm of 2 μg/ml coelenterazine, 2 μm of 2-mercaptoethanol, and 500 μg of apoaequorin was allowed to stand at 4° C. for 2 hours, and then quickly mixed with the above carrier, and the aequorin activity immediately after mixing was measured.

この操作に於て、担体と反応液の混合からエクオリン活
性測定までに要する時間(約10秒)では、エクオリン
の吸着は殆ど起こっていないことも確詔済みであるので
、この測定の結果から、吸着していないエクオリンの発
光が各担体によりどの程度、散乱等によって低い値とし
て測定されるかが求められた。この結果を示したのが第
2表である。
In this operation, it has been confirmed that almost no adsorption of aequorin occurs during the time required from mixing the carrier and reaction solution to measuring aequorin activity (approximately 10 seconds), so based on the results of this measurement, It was determined to what extent the luminescence of unadsorbed aequorin was measured as a low value by each carrier due to scattering or the like. Table 2 shows the results.

実施例4[固定化エクオリンの相対活性測定コ20mM
 Trls−HCI(pH7,5)、IOm&l ED
TA&1ifi液、2μg /−42セレンテラジン5
μ2.2−メルカプトエタノール1μmを含む反応液1
00μmを、実施例1で得られたアポエクオリン固定化
担体に加え、4℃で2時間放匝した後、エクオリン活性
を測定した。
Example 4 [Relative activity measurement of immobilized aequorin 20mM
Trls-HCI (pH 7,5), IOm&l ED
TA&1ifi solution, 2μg/-42 coelenterazine 5
Reaction solution 1 containing 1 μm μ2.2-mercaptoethanol
00 μm was added to the apoaequorin immobilized carrier obtained in Example 1, and after leaving it to stand at 4° C. for 2 hours, the aequorin activity was measured.

この結果と、先の実施例3で得られた各担体による散乱
等の影響の結果から、固定化エクオリンの相対活性を求
めた。
The relative activity of immobilized aequorin was determined from this result and the results of the influence of scattering etc. by each carrier obtained in Example 3 above.

この結果を第3表に示す、全ての担体で、固定化後もエ
クオリン活性を保持していることが確認されたが、デキ
ストラン系担体の5ephadex G−200がその
相対活性の高さから、固定化担体としては、最も有利で
あることが確認された。
The results are shown in Table 3. It was confirmed that all carriers retained aequorin activity even after immobilization, but 5ephadex G-200, a dextran-based carrier, was immobilized due to its high relative activity. It has been confirmed that this is the most advantageous carrier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の実施例に係るエクオリン活性を有す
る固定化されたアポエクオリンのX15+製法を示す工
程図(フローシート)である。 第2図は、物理吸着法により固定化されたアポエクオリ
ンを模式的に示したものである。アポエクオリンが分子
間力や疎水相互作用などの物理的rJ力によって、担体
に固定化される。 以  上
FIG. 1 is a process diagram (flow sheet) showing a method for producing X15+ of immobilized apoaequorin having aequorin activity according to an example of the present invention. FIG. 2 schematically shows apoaequorin immobilized by physical adsorption. Apoequorin is immobilized on the carrier by physical rJ forces such as intermolecular forces and hydrophobic interactions. that's all

Claims (3)

【特許請求の範囲】[Claims] (1)蛋白質との結合能を有する有機質若しくは無機質
の担体にエクオリン活性を有する蛋白質を物理的に結合
せしめることを特徴とする担体に固定化されたエクオリ
ン活性を有する蛋白質の調製法。
(1) A method for preparing a protein having aequorin activity immobilized on a carrier, which comprises physically binding a protein having aequorin activity to an organic or inorganic carrier capable of binding to a protein.
(2)特許請求の範囲第(1)項に記載の調製法により
調製されてなる固定化されたエクオリン活性を有する蛋
白質。
(2) An immobilized protein having aequorin activity prepared by the preparation method described in claim (1).
(3)特許請求の範囲第(2)項に記載の蛋白質と該蛋
白質の基質となり得る発光体との複合体。
(3) A complex of the protein according to claim (2) and a luminescent substance that can serve as a substrate for the protein.
JP29148989A 1989-11-09 1989-11-09 Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity Pending JPH03153700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29148989A JPH03153700A (en) 1989-11-09 1989-11-09 Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29148989A JPH03153700A (en) 1989-11-09 1989-11-09 Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity

Publications (1)

Publication Number Publication Date
JPH03153700A true JPH03153700A (en) 1991-07-01

Family

ID=17769533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29148989A Pending JPH03153700A (en) 1989-11-09 1989-11-09 Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity

Country Status (1)

Country Link
JP (1) JPH03153700A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1145002B2 (en) 1998-07-06 2008-12-10 PerkinElmer Cellular Sciences Belgium BVBA Bioluminescent assay for agonists or antagonists of a calcium-coupled receptor
US7947509B2 (en) 2001-02-07 2011-05-24 Massachusetts Institute Of Technology Optoelectronic detection system
US8067184B2 (en) 2001-02-07 2011-11-29 Massachusetts Institute Of Technology Optoelectronic detection system
US8216797B2 (en) 2001-02-07 2012-07-10 Massachusetts Institute Of Technology Pathogen detection biosensor
US8722347B2 (en) 1997-12-09 2014-05-13 Massachusetts Institute Of Technology Optoelectronic sensor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722347B2 (en) 1997-12-09 2014-05-13 Massachusetts Institute Of Technology Optoelectronic sensor
EP1145002B2 (en) 1998-07-06 2008-12-10 PerkinElmer Cellular Sciences Belgium BVBA Bioluminescent assay for agonists or antagonists of a calcium-coupled receptor
US7947509B2 (en) 2001-02-07 2011-05-24 Massachusetts Institute Of Technology Optoelectronic detection system
US8067184B2 (en) 2001-02-07 2011-11-29 Massachusetts Institute Of Technology Optoelectronic detection system
US8216797B2 (en) 2001-02-07 2012-07-10 Massachusetts Institute Of Technology Pathogen detection biosensor
US8835127B2 (en) 2001-02-07 2014-09-16 Massachusetts Institute Of Technology Optoelectronic detection system
US9005989B2 (en) 2001-02-07 2015-04-14 Massachusetts Institute Of Technology Optoelectronic detection system
US9291549B2 (en) 2001-02-07 2016-03-22 Massachusetts Institute Of Technology Pathogen detection biosensor
US9494579B2 (en) 2001-02-07 2016-11-15 Massachusetts Institute Of Technology Optoelectronic detection system

Similar Documents

Publication Publication Date Title
Nauss et al. Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments: implications for the substructure of myosin
CN105073770B (en) Streptavidin mutain and its application method
Holmberg et al. The biotin‐streptavidin interaction can be reversibly broken using water at elevated temperatures
Bon et al. Postsynaptic effects of crotoxin and of its isolated subunits
Luo et al. Cooperative adsorption of proteins onto hydroxyapatite
JP2965131B2 (en) Magnetic carrier for nucleic acid binding and nucleic acid isolation method using the same
JPH03500457A (en) Modified glass supports for peptide and protein sequencing
Hucho et al. The acetylcholine receptor as part of a protein complex in receptor‐enriched membrane fragments from Torpedo californica electric tissue
JPS6037996A (en) Recovery of cell wall protein
CN106405075B (en) A kind of immunomagnetic beads and preparation method thereof
He et al. Nickel (II)-immobilized sulfhydryl cotton fiber for selective binding and rapid separation of histidine-tagged proteins
Chen et al. Preparation of C60‐functionalized magnetic silica microspheres for the enrichment of low‐concentration peptides and proteins for MALDI‐TOF MS analysis
Du et al. L-histidine functionalized multi-walled carbon nanotubes for on-line affinity separation and purification of immunoglobulin G in serum
Sun et al. Affinity adsorption and separation behaviors of avidin on biofunctional magnetic nanoparticles binding to iminobiotin
CN109758989A (en) It is a kind of for purifying the preparation method of the nanometer magnetic bead of histidine tagged protein matter
JP6488406B2 (en) Method for preparing bioorganically coated gold and silver nanoparticles using blue light
JPH03153700A (en) Protein, immobilized on carrier by physical adsorption method and capable of exhibiting aequorin activity
Odabaşı et al. Cibacron Blue F3GA‐attached magnetic poly (2‐hydroxyethyl methacrylate) beads for human serum albumin adsorption
ES2952767T3 (en) Production method for affinity chromatography resin
Yavuz et al. Dye affinity hollow fibers for albumin purification
Podell et al. Isolation and characterization of a plasma membrane fraction from sea urchin sperm exhibiting species specific recognition of the egg surface
Matsuura et al. Direct visualization of hetero-enzyme co-encapsulated in mesoporous silicas
Durham The cause of irreversible polymerisation of tobacco mosaic virus protein
Urano et al. Influence of anionic compounds on adsorption behavior of bovine serum albumin at oxide-water interfaces
JPS6296085A (en) High molecular weight single chain urokinase and its production