JPH03153597A - Device for vaporizing cvd raw material for production of oxide superconductor - Google Patents

Device for vaporizing cvd raw material for production of oxide superconductor

Info

Publication number
JPH03153597A
JPH03153597A JP1294260A JP29426089A JPH03153597A JP H03153597 A JPH03153597 A JP H03153597A JP 1294260 A JP1294260 A JP 1294260A JP 29426089 A JP29426089 A JP 29426089A JP H03153597 A JPH03153597 A JP H03153597A
Authority
JP
Japan
Prior art keywords
gaseous
reactor
vaporizing
oxide superconductor
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1294260A
Other languages
Japanese (ja)
Inventor
Shinya Aoki
青木 伸哉
Taichi Yamaguchi
太一 山口
Akira Kagawa
香川 昭
Tsukasa Kono
河野 宰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1294260A priority Critical patent/JPH03153597A/en
Publication of JPH03153597A publication Critical patent/JPH03153597A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45512Premixing before introduction in the reaction chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form an oxide superconductor film having a uniform compsn. free from unequalness on a substrate by connecting plural vaporizing cylinders for generating gaseous raw materials to a manifold and connecting the vaporizing cylinders disposed at upper and lower parts vertically along a perpendicular plane to the manifold. CONSTITUTION:A carrier gas is sent from respective supply holes 14 into the respective vaporizing cylinders 10, 11, 12 and gaseous oxygen is sent from a 1st introducing pipe 17 and a 2nd introducing pipe 20 into a mixing pipe 16. The respective vaporizing cylinders 10, 11, 12 are heated near to the vaporizing temp. of the respective gaseous source compds. The gaseous raw materials entering the mixing pipe 16 are sufficiently agitated and mixed by the gaseous flow of the gaseous oxygen sent from the 1st introducing pipe 17 and the gaseous flow of the gaseous oxygen sent from the 2nd introducing pipe 20. The mixture arrives at a reactor 18. The gaseous mixture composed of the gaseous raw materials and the gaseous oxygen arriving at the reactor 18 is heated in the reactor 18 and reacts with the gaseous O2 in the atmosphere, by which the respective oxides of Y and Ba and Cu and formed as the film with the uniform compsn. Reaction is generated in the respective elements by the high-temp. state at the time of the film formation and the film of the oxide super conductor consisting of the Y-Ba-Cu-O system is formed.

Description

【発明の詳細な説明】 [産業上の利用分野」 この発明は、酸化物超電導体の膜を金属錯体を1Q科と
するCVD法によって作成する方法に関し、原料ガスの
均一化と膜質の均一化を向上せしめたものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to a method for producing an oxide superconductor film by a CVD method using a metal complex as the 1Q family, and the invention relates to a method for making a film of an oxide superconductor by a CVD method using a metal complex as a 1Q family, and in which the material gas is made uniform and the film quality is made uniform. It has improved.

「従来の技術J スパッタリング法やMBE法などの薄膜形成手段に対し
て成膜速度が速く、単時間でより厚い膜を形成できる手
段として、化学気相蒸着法(CVD法)が知られている
``Conventional technology J: Chemical vapor deposition (CVD) is known as a method that has a faster deposition rate than thin film formation methods such as sputtering and MBE, and can form thicker films in a single time. .

第2図は、このCVD法に用いられている装置の一例を
示すものである。
FIG. 2 shows an example of an apparatus used in this CVD method.

この例の装置は、酸化物超電導体を構成する元素の固体
原料を収納したバブラ1を複数備え、これらの3 、(
ブラIに各々マスフローコントローラ2を組み込んでな
る供給管3が接続され、供給管3がArガスなどのキャ
リアガス供給源に接続されるとともに、各バブラ1が排
出管5を介し、リアクタ6に接続されて構成されている
。なお、第1図において符号7はエアーバルブを示して
いる。
The device of this example is equipped with a plurality of bubblers 1 containing solid raw materials of elements constituting an oxide superconductor.
A supply pipe 3 incorporating a mass flow controller 2 is connected to each bubbler I, and the supply pipe 3 is connected to a carrier gas supply source such as Ar gas, and each bubbler 1 is connected to a reactor 6 via a discharge pipe 5. has been configured. In addition, in FIG. 1, the reference numeral 7 indicates an air valve.

前記リアクタ6は、内部雰囲気を調節可能に構成された
容器状のもので、基板保持部とヒータを備えて構成され
、各バブラ1から送られてくる原料ガスを反応させて反
応物を基板上に堆積できるようになっている。
The reactor 6 is a container-shaped container whose internal atmosphere can be adjusted, and is equipped with a substrate holder and a heater. can be deposited in the

「発明が解決しようとする課題J 第2図に示す構成の装置において、酸化物超電導体を製
造しようとした場合、酸化物超電導体の構成原料は常温
で固体であるので、気化筒lで加熱気化さU゛て原料ガ
スを発生させた場合であ−)てし、排出管5の途中で原
料ガスが再結晶を起こして目詰まりを生じたり、あるい
は、目詰まりを起こさなかった場合であってらリアクタ
6の反応部で均一に混合されない問題がある。このよう
に均一な混合ができないようであると、得られた酸化物
超電導体の膜に成分元素のむらを生じさせるなど、均質
な膜が得られにくく、高い臨界電流密度の酸化物超電導
体を安定的に製造できない問題がある。
``Problem to be Solved by the Invention J When attempting to manufacture an oxide superconductor using the apparatus shown in Figure 2, since the constituent raw materials of the oxide superconductor are solid at room temperature, they are heated in a vaporization tube l. In the case where the raw material gas is generated by vaporization (U), the raw material gas recrystallizes in the middle of the discharge pipe 5 and causes clogging, or in the case where no clogging occurs. There is a problem that the mixture is not uniformly mixed in the reaction section of the Tera reactor 6. If uniform mixing is not possible in this way, the resulting oxide superconductor film may have unevenness in the component elements, resulting in a non-uniform film. There is a problem in that it is difficult to obtain and cannot stably produce oxide superconductors with high critical current density.

本発明はiq記課題を解決するためになされたもので、
原料ガスがりアクタに到達する前に途中の配管系で目詰
まりを起こすことがなくなるとともに、基板上にむらの
ない状態で組成の均一な酸化物超電導体の膜を形成する
ことができる気化装置の提供を目的とする。
The present invention has been made to solve the problems listed in q.
This vaporization device eliminates the possibility of clogging of the piping system before the raw material gas reaches the actor, and forms an oxide superconductor film with a uniform composition on the substrate without any unevenness. For the purpose of providing.

[課題を解決するための手段」 本発明は前記課題を解決するために、酸化物超電導体を
構成する各元素の化合物を用いて化学蒸着によ−)で基
材上に酸化物超電導体を生成させる装置において、各元
素の化合物を収納する複数の反応部を上下に並んで個々
に配置し、各反応部のガス排出孔を同一鉛直面に沿って
上下に並設して各々縦型の集合管の側壁に連結するとと
らに、集合管の底部に混合管を接続し、この混合管をリ
アクタに連結する一方、混合管に酸素ガスの供給管を連
結してなるものである。
[Means for Solving the Problems] In order to solve the above problems, the present invention provides an oxide superconductor on a substrate by chemical vapor deposition using a compound of each element constituting the oxide superconductor. In the generation device, a plurality of reaction sections containing compounds of each element are individually arranged vertically, and the gas exhaust holes of each reaction section are arranged vertically in parallel along the same vertical plane. In addition to being connected to the side wall of the collecting pipe, a mixing pipe is connected to the bottom of the collecting pipe, this mixing pipe is connected to a reactor, and an oxygen gas supply pipe is connected to the mixing pipe.

「作用 」 原料ガスを発生させる複数の気化筒が集合管に接合され
ているので、集合管で原料ガスの混合がなされることに
加え、集合管に接続された混合管に酸素ガスを流入させ
つつ原料ガスを攪拌混合するので、十分に混合された原
料ガスがりアクタに送られる。また、鉛直面に沿って上
下に配置した気化筒が集合管に接続されているので、ガ
スの流れる方向の前方側に向いた場合の左右方向に原料
ガスのむらを生じることがなくなり、リアクタ内部の基
(オ上に、組成むらのない酸化物超電導体の膜が生成す
る。
"Function" Since multiple vaporization cylinders that generate raw material gas are connected to the collecting pipe, in addition to mixing the raw material gases in the collecting pipe, oxygen gas is also allowed to flow into the mixing pipe connected to the collecting pipe. Since the raw material gas is stirred and mixed at the same time, the sufficiently mixed raw material gas is sent to the actor. In addition, since the vaporization cylinders arranged vertically above and below are connected to the collecting pipe, there is no unevenness in the raw material gas in the left and right direction when facing forward in the direction of gas flow, and the inside of the reactor is An oxide superconductor film with uniform composition is formed on the base (O).

「実施例」 第1図は、本発明の一実施例を示すもので、図中符号1
0.11.12は、原料を気化するための気化筒を示し
ている。これらの気化筒10,11゜12は、各々水平
かつ平行に、上下に整列状態で配置されている。これら
の気化筒10.If、+2の内部には、容器状の収納部
I3が設けられ、収納部13・・・には酸化物超電導体
製造用の原料GI。
"Embodiment" FIG. 1 shows an embodiment of the present invention, and the reference numeral 1 in the figure shows an embodiment of the present invention.
0.11.12 indicates a vaporization cylinder for vaporizing the raw material. These vaporizer cylinders 10, 11 and 12 are arranged horizontally and in parallel, vertically aligned. These vaporizer cylinders 10. A container-shaped storage section I3 is provided inside If, +2, and the storage section 13... contains raw material GI for producing an oxide superconductor.

Gv、Gjが収納されている。Gv and Gj are stored.

前記原料G 、、G 、、G 、は、h々酸化物超電導
体を構成する元素の化合物であって、Y −B a−C
u−O系の酸化物超電導体を製造する場合、原料GIと
してCuの気相源、原料G、としてYの気相源、原料G
、としてBaの気相源を用いる。より具体的には器気相
源として、前記各元素のアセチルアセトン化合物、ヘキ
サフルオロアセチルアセトン化合物などのノケトン化合
物、シクロペンタジェニル化合物などの粉末を使用する
。また、BaソースとしてBa−ビス−2,2,6,6
テトラメチルー3.5−へブタンジオナート「略称B 
a(D P M ’)tJ、Ba−ビス1.1,1.2
.2−ペンタフルオロ−6,6−シメチルー3,5ヘプ
タンジオン「略称B a(P P M )yJ、Ba−
ビス−11,1,5,5,5−ヘキサフルオロ−2,4
−ペンタンジオン[略称Ba(HFA)tJなどのβ−
ジケトンキレート錯体などが使用される。なお、この実
施例の装置にあっては、気化筒10にCuの錯体を収納
し、気化筒11にYの錯体を収納し、気化筒12にBa
の錯体を収納している。
The raw materials G,,G,,G are compounds of elements constituting the oxide superconductor, and are Y-Ba-C
When producing a u-O based oxide superconductor, a gaseous source of Cu as the raw material GI, a gaseous source of Y as the raw material G, and a gaseous source of Y as the raw material G.
, a Ba gas phase source is used. More specifically, powders of acetylacetone compounds, noketone compounds such as hexafluoroacetylacetone compounds, and cyclopentagenyl compounds of each of the above-mentioned elements are used as the gas phase source. In addition, as a Ba source, Ba-bis-2,2,6,6
Tetramethyl-3,5-hebutandionate “abbreviation B
a(D P M') tJ, Ba-bis 1.1, 1.2
.. 2-Pentafluoro-6,6-dimethyl-3,5 heptanedione "Abbreviation: Ba(PPM)yJ, Ba-
Bis-11,1,5,5,5-hexafluoro-2,4
-pentanedione [abbreviation Ba (HFA) tJ etc. β-
Diketone chelate complexes and the like are used. In the apparatus of this embodiment, a Cu complex is stored in the vaporization tube 10, a Y complex is stored in the vaporization tube 11, and a Ba complex is stored in the vaporization tube 12.
It houses a complex of

また、気化筒10.If、12の」端側にはそれぞれキ
ャリアガスの供給孔14が形成されるとともに、各気化
筒10.II、+2の他端部10a、11a、12aは
鉛直に配置された縦型の集合管!5の側面に接続され、
各気化筒10,11.12の集合管15に対する接合部
分は、若干窄まって形成されている。なお、各気化筒1
0に導入するキャリアガスはArガスなどの不活性ガス
あるいは不活性ガスにO,ガスを混合したものなどが好
適に用いられる。
Also, the vaporizer cylinder 10. Carrier gas supply holes 14 are formed at the end sides of If and 12, respectively, and each vaporization cylinder 10. The other ends 10a, 11a, and 12a of II and +2 are vertical collecting pipes arranged vertically! Connected to the side of 5,
The joint portion of each vaporizing cylinder 10, 11, 12 with the collecting pipe 15 is formed to be slightly narrowed. In addition, each vaporizer cylinder 1
As the carrier gas introduced into the carrier gas, an inert gas such as Ar gas or a mixture of an inert gas and O gas is preferably used.

一方、集合管I5の底部は、水平に配置された混合管1
6の中央部に接合され、混合管16の一端部には酸素ガ
スの第1導入1FI7が接続されるとともに、混合管1
6の他端部にはりアクタ18が接続されている。更に、
混合管16において集合管I5に対する接合部分とりア
クタ18に対する接合部分との間lこは、酸素ガスの第
2導入管20が接合されている。なお、第1導入管17
には圧力計に接続された検出管21が接続されている。
On the other hand, the bottom of the collecting pipe I5 is connected to the horizontally arranged mixing pipe 1.
6, and one end of the mixing tube 16 is connected to the first oxygen gas introduction 1FI7, and the mixing tube 1
A beam actor 18 is connected to the other end of 6. Furthermore,
In the mixing pipe 16, a second oxygen gas introduction pipe 20 is connected between the joint part to the collecting pipe I5 and the joint part to the actor 18. Note that the first introduction pipe 17
A detection tube 21 connected to a pressure gauge is connected to.

前記リアクタI8は、内部に基板(基材)22を収納で
きる密閉容器23とこの密閉容器23の外周部に設置さ
れた加熱装置24を具備し、密閉容器23は真空排気装
置に接続されている。
The reactor I8 includes an airtight container 23 that can house a substrate (base material) 22 therein, and a heating device 24 installed on the outer periphery of this airtight container 23, and the airtight container 23 is connected to a vacuum evacuation device. .

次に前記構成のCVD装置を用いて基板22」−に酸化
物超電導体の膜を形成する場合について説明する。
Next, a case will be described in which an oxide superconductor film is formed on the substrate 22'' using the CVD apparatus having the above configuration.

まず、リアクタI8の内部に基板22をセットし、リア
クタ18の内部の排気を開始するとともに、加熱装置2
4でリアクタ18の内部を加熱する。続いて各気化筒1
0,11.12に、それぞれの供給孔14からキャリア
ガスを送るとともに、混合管16の内部に第1導入管!
7と第2導入管20から酸素ガスを送り、各気化[10
,11,12を各気相源化合物の気化温度付近まで加熱
する。
First, the substrate 22 is set inside the reactor I8, and the inside of the reactor 18 is started to be exhausted, and the heating device 2
4 to heat the inside of the reactor 18. Next, each carburetor 1
0, 11, and 12, the carrier gas is sent from each supply hole 14, and the first introduction pipe is inside the mixing pipe 16!
7 and the second introduction pipe 20, each vaporization [10
, 11, and 12 are heated to around the vaporization temperature of each gas phase source compound.

以上の操作によって各気相源化合物の一部が気化し、気
化した化合物のガス(原料ガス)はキャリアガスととも
に各気化筒10.11.12から集合管15に排出され
て集合管15に沿って下降しつつ混合され、混合管16
に至る。この混合管16に出た原料ガスには第1導入管
17から送られる酸素ガスが混合されるとと乙に、リア
クタ18に到達する前に第2導入管20から6酸素ガス
が供給されてリアクタI8に至る。ここで混合管16に
入った原料ガスは第1導入管17から送られる酸素ガス
の気流と第2導入管20から送られる酸素ガスの気流に
よって十分に攪拌混合されてリアクタ18に到達する。
Through the above operations, a part of each gas phase source compound is vaporized, and the gas of the vaporized compound (raw material gas) is discharged from each vaporization cylinder 10, 11, 12 to the collecting pipe 15 along with the carrier gas. The mixing tube 16 is mixed while descending.
leading to. When the raw material gas discharged into the mixing tube 16 is mixed with the oxygen gas sent from the first introduction tube 17, six oxygen gases are supplied from the second introduction tube 20 before reaching the reactor 18. This leads to reactor I8. Here, the raw material gas that has entered the mixing tube 16 is sufficiently stirred and mixed by the oxygen gas airflow sent from the first introduction tube 17 and the oxygen gas airflow sent from the second introduction tube 20, and reaches the reactor 18.

リアクタ18に到達された原料ガスと酸素ガスの混合ガ
スは、リアクタ18の内部で加熱されて分M?し、雰囲
気中のO,ガスと反応してYとBaとCuの6酸化物が
均一な組成で成膜され、成膜時の高温状態によって各元
素に反応が起こり、Yr3a−Cu−0系の酸化物超電
導体の膜が生成する。
The mixed gas of raw material gas and oxygen gas that has reached the reactor 18 is heated inside the reactor 18 for a minute of M? However, by reacting with O and gas in the atmosphere, a film of Y, Ba, and Cu hexoxides is formed with a uniform composition, and each element reacts with the high temperature conditions during film formation, forming a Yr3a-Cu-0 system. A film of oxide superconductor is formed.

ところで、面記気化簡10,11.12からそれぞれ発
生して集合管15に送られる原料ガスは、比重の大きい
ものであるので、均一に混合されないことが考えられる
。この点において前記構成の装置においては、混合管I
6に第1導入管I7と第2導入管20とから酸素ガスを
流入させて攪拌しつつリアクタ18に送るので、各原料
ガスの攪拌混合が十分になされる。また、気化筒10,
11.12と集合管15と混合管16との間に弁を設け
ていないので、原料ガスが途中で目詰まりを起こすこと
がない。更に、気化fml 0.11.12を同一鉛直
面に沿って水平かつ」エアに配置しているので、原料ガ
スの流れる方向の前方側に向いて左手側を流れる原料ガ
スの成分と右手側を流れる原料ガスの成分とが異なるこ
とがなくなり、基板22の左側と右側に形成される膜に
おいて成分むらを生じることかなくなる効果がある。
By the way, since the raw material gases generated from the surface vaporizers 10, 11, and 12 and sent to the collecting pipe 15 have a high specific gravity, it is possible that they are not mixed uniformly. In this respect, in the apparatus having the above configuration, the mixing tube I
Oxygen gas is introduced into the reactor 18 from the first inlet pipe I7 and the second inlet pipe 20 and sent to the reactor 18 while being stirred, so that each raw material gas is sufficiently stirred and mixed. In addition, the carburetor 10,
Since no valve is provided between 11 and 12, the collecting pipe 15, and the mixing pipe 16, there is no possibility that the raw material gas will become clogged on the way. Furthermore, since the vaporizer fml 0.11.12 is arranged horizontally and in the air along the same vertical plane, the ingredients of the raw material gas flowing on the left hand side facing forward in the flow direction of the raw material gas and the right hand side. There is an effect that the components of the flowing raw material gas do not differ, and that no component unevenness occurs in the films formed on the left and right sides of the substrate 22.

以上説明したように前記構成の装置によれば、リアクタ
18に十分に混合した状態の原料ガスを送ることができ
るので、均一な組成で部分的なむらを生じることのない
酸化物超電導体の膜を製造することができる。
As explained above, according to the apparatus having the above structure, it is possible to send the raw material gas in a sufficiently mixed state to the reactor 18, so that the oxide superconductor film has a uniform composition and does not have any local unevenness. can be manufactured.

なお、この実施例では、リアクタI8の内部に設ける基
材として基板22を設けたが、基板22のかわりにテー
プ状の基材とその繰出装置と巻取装置を設け、テープ状
の基材をリアクタI8の内部で繰り出し移動させつつそ
の上面に蒸着することでテープ状の酸化物超電導体を製
造することができるのは勿論である。
In this example, the substrate 22 was provided as a base material provided inside the reactor I8, but instead of the substrate 22, a tape-shaped base material, its feeding device, and a winding device were provided. Of course, it is possible to manufacture a tape-shaped oxide superconductor by depositing it on the upper surface of the reactor I8 while moving it inside the reactor I8.

「製造例」 第1図に示す構成の装置を用いてY −B a−CuO
系の酸化物超電導体の膜を製造した。
“Manufacturing Example” Y-B a-CuO
A film of the oxide superconductor system was fabricated.

CuソースにCuのアセチルアセトン化合物、Yのソー
スとしてYのシクロペンタジェニル化合物、Baソース
にB a(D P M )zを用い、キャリアガスとし
てArガスを用いた。
A Cu acetylacetone compound was used as the Cu source, a cyclopentagenyl compound of Y was used as the Y source, B a (D P M )z was used as the Ba source, and Ar gas was used as the carrier gas.

Cuソースを収納した気化筒の温度を180℃に、Yソ
ースを収納した気化筒の温度を180℃に、B aソー
スを収納した気化筒の温度を230℃にそれぞれ加熱し
て気化させ、各原料ガスを発生させた。また、第1導入
管から混合管に300ffic/分の割合で酸素ガスを
流入させるとともに、第2導入管から混合管に20−7
分の割合で酸素ガスを流入させた。また、リアクタの内
部を真空引きするとともに850℃に加熱してS rT
 io j製の基板の」−に成膜を行った。
The temperature of the vaporization cylinder containing the Cu source was heated to 180°C, the temperature of the vaporization cylinder containing the Y source was heated to 180°C, and the temperature of the vaporization cylinder containing the Ba source was heated to 230°C. Raw material gas was generated. In addition, oxygen gas was introduced into the mixing tube from the first introduction tube at a rate of 300 ffic/min, and at the same time, oxygen gas was introduced into the mixing tube from the second introduction tube at a rate of 20-7 ffic/min.
Oxygen gas was allowed to flow in at a rate of 1.5 min. In addition, the inside of the reactor was evacuated and heated to 850°C to
A film was formed on the substrate manufactured by Ioj.

得られたY −B a−Cu−0系の酸化物超電導体の
H膜は、臨界温度91に、IM界電流密度10’A/c
m”を示した。なお、基板の中心部を囲む複数の部分で
臨界温度と臨界電流密度を測定したが、どの部分の計測
結果も前記と同等の特性を示した。
The obtained H film of the Y-B a-Cu-0 based oxide superconductor was heated to a critical temperature of 91 and an IM field current density of 10'A/c.
The critical temperature and critical current density were measured at multiple parts surrounding the center of the substrate, and the measurement results at all the parts showed the same characteristics as above.

従って前記構造のCVD¥i置を使用することによって
部分的にむらのない超電導特性を発揮する酸化物超電導
体の膜を生成できることが判明した。
Therefore, it has been found that by using the CVD process having the above structure, it is possible to produce an oxide superconductor film exhibiting partially uniform superconducting properties.

「発明の効果」 以上説明したように本発明は、各気化面から発生させた
原料ガスを集合管に集め、次いで混合管に送り、この混
合管に導入管から酸素ガスを送り込んでリアクタに送る
ようになっていて、混合管への酸素ガスの導入によって
原料ガスどうしが十分に攪拌混合されるので、均一に混
合した原料ガスをリアクタに送ることができる。従って
リアクタにおいて、部分的に超電導特性にむらのない、
安定した酸化物超電導体の膜を形成することができる。
"Effects of the Invention" As explained above, the present invention collects the raw material gas generated from each vaporization surface into a collecting pipe, then sends it to a mixing pipe, and sends oxygen gas to this mixing pipe from an introduction pipe and sends it to a reactor. Since the raw material gases are sufficiently stirred and mixed by introducing oxygen gas into the mixing tube, the uniformly mixed raw material gases can be sent to the reactor. Therefore, in the reactor, the superconducting properties are uniform in some parts.
A stable oxide superconductor film can be formed.

また、各気化筒を上下に並べて配置し、集合管に接続し
て混合するので、ガスの流れる方向のml方側に向いて
左側と右側におけるガスの不均一性が解消され、リアク
タ内の基材上において左右方向に特性的むらのない酸化
物超電導体の膜が得られる。
In addition, since the vaporization cylinders are arranged vertically and connected to the collecting pipe for mixing, the non-uniformity of the gas on the left and right sides when facing the ml side of the gas flow direction is eliminated, and the base inside the reactor is An oxide superconductor film with uniform characteristics in the left-right direction can be obtained on the material.

以上のことからりアクタに送る原料ガスを均一化できる
ので、均質な高い臨界電流密度の膜を得ることができる
ようになり、成膜の大容量化を図ることができる。
Because of the above, the raw material gas sent to the actor can be made uniform, so that a homogeneous film with a high critical current density can be obtained, and a large capacity of film formation can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成図、第2図は従来装置
の一例の構成図である。 + 0.11.12・・・気化筒、I4・・導入孔、1
5・・・集合管、16・・・混合管、17・・・第1導
入管、18・・・リアクタ、20・・・第2導入管、2
2・・・基板(基材)、24・・・加熱装置。 第1図 10r+
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a block diagram of an example of a conventional device. + 0.11.12... Vaporizer tube, I4... Introductory hole, 1
5... Collecting pipe, 16... Mixing pipe, 17... First introduction pipe, 18... Reactor, 20... Second introduction pipe, 2
2... Substrate (base material), 24... Heating device. Figure 1 10r+

Claims (1)

【特許請求の範囲】[Claims]  酸化物超電導体を構成する各元素の化合物を用い、リ
アクタの内部において化学蒸着によって基材上に酸化物
超電導体を生成させる装置において、各元素の化合物を
収納する複数の反応筒が上下に並んで配置され、各反応
筒のガス排出孔が同一鉛直面に沿って上下に並設されて
各々縦型の集合管の側壁に連結されるとともに、集合管
の底部には混合管が接続され、この混合管がリアクタに
連結される一方、混合管に酸素ガスの導入管が連結され
てなることを特徴とする酸化物超電導体製造用CVD原
料の気化装置。
In a device that generates an oxide superconductor on a substrate by chemical vapor deposition inside a reactor using compounds of each element that makes up the oxide superconductor, multiple reaction tubes containing compounds of each element are lined up one above the other. The gas discharge holes of each reaction tube are arranged vertically in parallel along the same vertical plane and connected to the side wall of a vertical collecting pipe, and a mixing pipe is connected to the bottom of the collecting pipe. A CVD raw material vaporization apparatus for producing an oxide superconductor, characterized in that the mixing tube is connected to a reactor, and the mixing tube is connected to an oxygen gas introduction tube.
JP1294260A 1989-11-13 1989-11-13 Device for vaporizing cvd raw material for production of oxide superconductor Pending JPH03153597A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1294260A JPH03153597A (en) 1989-11-13 1989-11-13 Device for vaporizing cvd raw material for production of oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1294260A JPH03153597A (en) 1989-11-13 1989-11-13 Device for vaporizing cvd raw material for production of oxide superconductor

Publications (1)

Publication Number Publication Date
JPH03153597A true JPH03153597A (en) 1991-07-01

Family

ID=17805413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1294260A Pending JPH03153597A (en) 1989-11-13 1989-11-13 Device for vaporizing cvd raw material for production of oxide superconductor

Country Status (1)

Country Link
JP (1) JPH03153597A (en)

Similar Documents

Publication Publication Date Title
JPS59179775A (en) Method and device for depositting tungsten silicide
JPH04295089A (en) Apparatus for producing oxide superconducting film
TWI251620B (en) Process for CVD of Hf and Zr containing oxynitride films
JPH02225317A (en) Production of oxide superconductor by chemical gas phase deposition method
JPH08124798A (en) Zirconium(zr)organic metal precursor and preparation thereof
WO1988010323A1 (en) Complex compounds for forming thin film of oxide superconductor and process for forming thin film of oxide superconductor
US5140003A (en) Method for manufacturing layers from an oxide-ceramic superconductor material on a substrate using a cvd-process
JPH03153597A (en) Device for vaporizing cvd raw material for production of oxide superconductor
JPH11329117A (en) Cvd reactor
JPH03153598A (en) Device for vaporizing cvd raw material for production of oxide superconductor
JPH0285370A (en) Manufacture of thin oxide film
JPH04333572A (en) Method for gasifying mo stock for oxide superconductor
JPS62112781A (en) Chemical vapor deposition apparatus
JP3880708B2 (en) Manufacturing apparatus and manufacturing method of oxide superconductor
JPH03253570A (en) Production of metal oxide by chemical vapor deposition method
JPH01219016A (en) Production of thin superconducting ceramic film containing dispersed oxide
JPH0610138A (en) Production of oxide superconductor by mocvd method
JP3342785B2 (en) Apparatus and method for producing oxide superconducting conductor
JPS63307277A (en) Photo-mocvd device for preparing thin film of metal oxide
JP2526852Y2 (en) Apparatus for vapor phase growth of oxide superconducting thin film
JP2539032B2 (en) Continuous raw material supply device for oxide superconductor manufacturing apparatus and continuous raw material supply method
JP2661169B2 (en) Superconductor thin film manufacturing method
JP3127045B2 (en) Micro powder continuous feeder
JPH05311462A (en) Method for film formation by heat plasma
JPS5943988B2 (en) Ultrafine particle membrane manufacturing method and manufacturing device