JPH03153519A - Production of smectite - Google Patents

Production of smectite

Info

Publication number
JPH03153519A
JPH03153519A JP29522189A JP29522189A JPH03153519A JP H03153519 A JPH03153519 A JP H03153519A JP 29522189 A JP29522189 A JP 29522189A JP 29522189 A JP29522189 A JP 29522189A JP H03153519 A JPH03153519 A JP H03153519A
Authority
JP
Japan
Prior art keywords
smectite
colloidal silica
mol
urea
synthesized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29522189A
Other languages
Japanese (ja)
Other versions
JPH0613404B2 (en
Inventor
Hiroshi Tateyama
博 立山
Hidekazu Abe
英一 安部
Noriyuki Yamada
山田 則行
Osamu Ishibashi
修 石橋
Hideharu Hirosue
広末 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP1295221A priority Critical patent/JPH0613404B2/en
Publication of JPH03153519A publication Critical patent/JPH03153519A/en
Publication of JPH0613404B2 publication Critical patent/JPH0613404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain smectite consisting of fine crystals of very uniform diameter and having novel functional properties by forming fine colloidal silica from silicon alkoxide, adding magnesium salt and urea to the colloidal silica, mixing and heating them. CONSTITUTION:A 0.01-0.5mol aq. silicon alkoxide soln. is adjusted to pH2-5 and heated to 70-90 deg.C and fine colloidal silica is formed. This colloidal silica is cooled, mixed with 0.01-0.5mol magnesium salt and 0.05-0.5 mol urea, heated again to 70-90 deg.C and held at the temp. for 2-7days to obtain smectite. Smectite having higher crystallinity can be synthesized by further adding aluminum salt or aluminum alkoxide in the above-mentioned method.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、最近、無機質フィルム、ビラードクレイ、ガ
スクロ分離材として注目を集めている膨潤性を有する層
状粘土鉱物の合成に関するもので、本発明により合成さ
れたスメクタイトは0.5μm以下と非常に粒径のそろ
った微粒子の結晶から構成されていることを特徴として
いるため、天然産のスメクタイトと異なり、さらに新し
い機能性を有した新規な材料としての利用が考えられる
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to the synthesis of layered clay minerals with swelling properties, which have recently attracted attention as inorganic films, billard clays, and gas chromatography separation materials. Synthesized smectite is characterized by being composed of fine particle crystals with a very uniform particle size of 0.5 μm or less, and therefore, unlike naturally occurring smectite, it can be used as a new material with new functionality. It is possible to use

〈従来の技術〉 これまでのMgスメクタイトは水熱合成法という、常圧
法に比較すれば非常に煩雑な方法で合成されてきた。 
この方法は合成温度を100℃以上に上げるために密閉
した容器が必要であり、連続生産には不適であった。常
圧下で合成する方法としては、NaOHやKOHを用い
たZn5O,と8102を主原料とするZnスメクタイ
トの合成方法があるが、この方法は単に試薬の混合によ
り得られるので、均一な組成でなかったり、粒径が均一
でなかったり、またZnSO4のような特殊な元素を用
いなけらばならないという欠点もあった。
<Prior Art> Until now, Mg smectite has been synthesized by a hydrothermal synthesis method, which is extremely complicated compared to the normal pressure method.
This method required a sealed container to raise the synthesis temperature to over 100°C, and was unsuitable for continuous production. As a method for synthesizing under normal pressure, there is a method for synthesizing Zn smectite using NaOH or KOH as the main raw materials and Zn5O and 8102, but this method is obtained simply by mixing reagents, so the composition is not uniform. It also has drawbacks such as non-uniform grain size, and the need to use special elements such as ZnSO4.

〈発明が解決しようとしている問題点〉本発明は、比較
的安価なマグネシウム塩を用い、常圧下で尿素を用いた
均一沈澱法により、コロイド化学的方法を用い、0.5
μm以下の微粒子のスメクタイトを合成し、層状の層間
に各種イオン、ポリカチオン、育機物或は酸化物等をイ
ンクカレートさせた新規な材料を得ることを目的とする
ものである。
<Problems to be Solved by the Invention> The present invention uses a relatively inexpensive magnesium salt, a homogeneous precipitation method using urea under normal pressure, and a colloid chemical method.
The purpose is to synthesize smectite particles of micrometers or less, and to obtain a new material in which various ions, polycations, nucleators, oxides, etc. are ink-calated between the layers.

く問題点を解決するための手段〉 上記本発明の目的は次のごとき方法を採用することによ
り達成できる。即ち、シリカアルコキシドの0.01i
olから0.5iolの水溶液をpH2からpH5の間
に調整し、70″Cから90℃に加温後、微粒コロイダ
ルシリカを生成させる。この微粒子は数ナノメータから
数十ナノメータの大きさを有する超微粒子のコロイダル
シリカである。 冷却後、0.01■01から0.5i
olのマグネシウム塩、  0.05■O1から0.1
■0!の尿素を混合し、 再度70℃から90℃に加温
する。この際尿素の分解によりpHは3から9程度にま
で上昇するためマグネシウム塩は水酸化物に変化する。
Means for Solving the Problems> The above object of the present invention can be achieved by employing the following method. That is, 0.01i of silica alkoxide
An aqueous solution of 0.5 iol to 0.5 iol is adjusted to pH 2 to 5 and heated from 70"C to 90°C to produce fine colloidal silica particles. These fine particles have a size of several nanometers to several tens of nanometers. It is colloidal silica of fine particles. After cooling, 0.01■01 to 0.5i
Magnesium salt of ol, 0.05■O1 to 0.1
■0! of urea and heated again from 70°C to 90°C. At this time, the pH increases from about 3 to about 9 due to the decomposition of urea, so the magnesium salt changes to hydroxide.

この時コロイダルシリカは負の電荷を有し、マグネシウ
ム水酸化物は正の電荷を有することと、さらに反応漕の
中でpHが均一に変化していくため、両者は反応清白で
均一にヘテロ凝集を起こす。その後、2日から7日間同
温度に保持することにより、結晶成長し板状の形態を存
するスメクタイトを製造することができる。さらに、同
上の方法に、アルミニウム塩、或はアルミニウムアルコ
キシドを添加することにより、より結晶塵のよいスメク
タイトを合成することができる。
At this time, colloidal silica has a negative charge, magnesium hydroxide has a positive charge, and the pH changes uniformly in the reaction tank, so the reaction between the two is clear and uniformly hetero-coagulated. wake up Thereafter, by maintaining the temperature at the same temperature for 2 to 7 days, it is possible to produce smectite that undergoes crystal growth and has a plate-like form. Furthermore, by adding an aluminum salt or aluminum alkoxide to the above method, smectite with better crystal dust can be synthesized.

〈実施例〉 以下本発明の実施例を示す。<Example> Examples of the present invention will be shown below.

実施例I シリカアルコキシドとしてエチルシリケイトを用いた。Example I Ethyl silicate was used as the silica alkoxide.

 0.1101のエチルシリケイトの溶液をpH3に調
整し、  300ccのメスフラスコに入れ、オイルバ
ス中で90℃、12時間保持した後、冷却した。この時
溶液は、わずかに半透明を示しており、微粒のコロイダ
ルシリカが生成していた。この溶液に0.1iolの塩
化マグネシウムと尿素を添加した。再度オイルバス中で
90℃に4日間保持した後、冷却し、生成物を遠心分離
して、合成物の同定をX線粉末回折装置、並びに透過型
電子顕微鏡にて合成物の形態観察を行った。X線粉末回
折パターンを図1 (A)に示す。 この図より板状形
態を示すスメクタイトが合成されている事がわかる。 
図1(B)に0.03iolにした場合のX線粉末回折
パターンを示すが、0.1膳01の場合よりより結晶塵
の良いことがわかる。図2にO,1iolの合成物の電
子顕微鏡写真を示す。図2(A)に示すように板状の形
態を示すスメクタイトも認められるが、まだ、図2(B
)に示すように一部にコロイダルシリカの微粒子も認め
られることより、完全にスメクタイトには変化していな
い。
A solution of 0.1101 ethyl silicate was adjusted to pH 3, placed in a 300 cc volumetric flask, kept at 90° C. for 12 hours in an oil bath, and then cooled. At this time, the solution was slightly translucent, and fine particles of colloidal silica were produced. To this solution was added 0.1 iol of magnesium chloride and urea. After keeping it at 90°C for 4 days in an oil bath again, it was cooled, the product was centrifuged, and the morphology of the compound was observed using an X-ray powder diffraction device and a transmission electron microscope to identify the compound. Ta. The X-ray powder diffraction pattern is shown in Figure 1 (A). This figure shows that smectite with a plate-like morphology is synthesized.
FIG. 1(B) shows the X-ray powder diffraction pattern when the concentration is 0.03 iol, and it can be seen that the crystal dust is better than when the concentration is 0.1 iol. FIG. 2 shows an electron micrograph of a composite of O, 1iol. As shown in Figure 2(A), smectite with a plate-like morphology is also observed, but it is still difficult to see in Figure 2(B).
) As shown in Fig. 2, fine particles of colloidal silica are also observed in some parts, so it has not completely changed to smectite.

実施例2 0、l■olのエチルシリケイトと 0.02園01の
アルミニウムブトキシドの混合溶液をpH4に調整し、
300CCのメスフラスコに入れ、オイルバス中で80
℃、12時間保持した後、冷却した。この時溶液は、実
施例1と同様にわずかに半透明を示しており、微粒のコ
ロイダルシリカが生成していた。この溶液に0.11■
01の塩化マグネシウムと0.1iolの尿素を添加し
た。再度オイルバス中で80℃に6日間保持した後、冷
却し、遠心分離して、生成物の同定をX線粉末回折装置
、並びに透過型電子顕微鏡にて観察を行った。X線粉末
回折パターンを図3に示す。この図より板状形態を示す
スメクタイトが合成されている事がわかる。実施例1の
場合より、かなり結晶塵の良いことがわかる。図4に0
.1iolの合成物の電子顕微鏡写真を示す。図4(A
)、(B)に示すように板状の形態を示すスメクタイト
が多く認められ、はとんどコロイダルシリカの微粒子は
認められなかった。
Example 2 A mixed solution of 0.1 mol of ethyl silicate and 0.02 mol of aluminum butoxide was adjusted to pH 4,
Place in a 300CC volumetric flask and heat in an oil bath for 80
℃ for 12 hours, and then cooled. At this time, the solution was slightly translucent as in Example 1, and fine particles of colloidal silica were produced. 0.11μ in this solution
01 of magnesium chloride and 0.1 iol of urea were added. After being kept at 80° C. for 6 days in an oil bath again, it was cooled, centrifuged, and the product was identified using an X-ray powder diffractometer and a transmission electron microscope. The X-ray powder diffraction pattern is shown in FIG. This figure shows that smectite with a plate-like morphology is synthesized. It can be seen that the crystal dust is considerably better than in Example 1. 0 in Figure 4
.. An electron micrograph of 1 iol of the compound is shown. Figure 4 (A
), (B), many smectites with a plate-like morphology were observed, and almost no colloidal silica particles were observed.

(発明の効果) 以上述べてきたごとく、本発明方法は、初期に超微粒の
負の電荷を有するコロイダルシリカを生成させ、マグネ
シウム塩とアルミニウム塩、或はアルミニウムアルコキ
シドとを混合後、さらに尿素を添加し加温することによ
り、正の電荷を有するマグネシウム水酸化物のコロイド
粒子を生成させ、両コロイド粒子を均一にヘテロ凝集さ
せながら結晶成長させる新規な合成方法であるため、新
しい多(の用途に利用できるものである。
(Effects of the Invention) As described above, in the method of the present invention, ultrafine particles of negatively charged colloidal silica are initially produced, and after mixing magnesium salt and aluminum salt or aluminum alkoxide, urea is further added. This is a novel synthesis method that generates positively charged colloidal particles of magnesium hydroxide by adding and heating the colloidal particles, and grows crystals while uniformly heteroagglomerating both colloidal particles. It can be used for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)、 (B)は、実施例1の製造方法で合成
されたスメクタイトのX線粉末回折パターンである。2
θで20° と35゛近傍に非対称なピークプロファイ
ルが認められるが、これらのピークは単純な非晶質のプ
ロファイルとは異なりスメクタイトの生成していること
を示している。第2図はスメクタイトの形状を示す透過
型電子顕微鏡の写真である。第2図(A)は微粒ではあ
るが、板状の形態を示すスメクタイトが合成されている
ことを示している。第2図(B)は合成物の中に、まだ
未反応のコロイダルシリカが残存していることを示して
いる。第3図は実施例2の方法で合成されたスメクタイ
トのX線粉末回折パターンを示している。実施例1の場
合より、2θで5゛近傍に(001)反射の認められる
ことより、かなり結晶底の良いスメクタイトであること
を示している。第4図(^)、(B)はスメクタイトの
形状を示す透過型電子顕微鏡の写真を示す。0.1μm
から0.5μmの大きさを有する結晶底の良い薄板状の
スメクタイトである。 第 図 (ハラ (B〕 211(Cuにα) 211(Cuにα)
FIGS. 1(A) and 1(B) are X-ray powder diffraction patterns of smectite synthesized by the manufacturing method of Example 1. 2
Asymmetrical peak profiles are observed near 20° and 35°, but these peaks differ from simple amorphous profiles and indicate the formation of smectite. FIG. 2 is a transmission electron microscope photograph showing the shape of smectite. FIG. 2(A) shows that smectite having a plate-like form is synthesized, although it is fine particles. FIG. 2(B) shows that unreacted colloidal silica still remains in the composite. FIG. 3 shows an X-ray powder diffraction pattern of smectite synthesized by the method of Example 2. Compared to the case of Example 1, the fact that (001) reflection was observed in the vicinity of 5° at 2θ indicates that it is a smectite with a fairly good crystal base. Figures 4 (^) and (B) show transmission electron microscope photographs showing the shape of smectite. 0.1μm
It is a thin plate-like smectite with a good crystal bottom and a size of 0.5 μm. Diagram (Hara (B)) 211 (α to Cu) 211 (α to Cu)

Claims (1)

【特許請求の範囲】 1、シリカアルコキシドの0.01molから0.5m
olの水溶液をpH2からpH5の間に調整し、70℃
から90℃に加温後、微粒コロイダルシリカを生成させ
、冷却後、0.01molから0.5molのマグネシ
ウム塩、0.05molから0.5molの尿素を混合
し、再度70℃から90℃に加温後、2日から7日間同
温度に保持することを特徴とするスメクタイトの製造方
法。 2、同上の方法に、さらにアルミニウム塩、或いはアル
ミニウムアルコキシドを添加して合成することを特徴と
するスメクタイトの製造方法。
[Claims] 1. 0.01 mol to 0.5 m of silica alkoxide
An aqueous solution of ol was adjusted to between pH 2 and pH 5 and heated to 70°C.
After heating from 70°C to 90°C, fine colloidal silica was generated, and after cooling, 0.01 mol to 0.5 mol of magnesium salt and 0.05 mol to 0.5 mol of urea were mixed, and the mixture was heated again from 70°C to 90°C. A method for producing smectite, which comprises heating and then maintaining the same temperature for 2 to 7 days. 2. A method for producing smectite, which is characterized in that it is synthesized by adding an aluminum salt or an aluminum alkoxide to the same method as above.
JP1295221A 1989-11-13 1989-11-13 Method for producing smectite Expired - Lifetime JPH0613404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1295221A JPH0613404B2 (en) 1989-11-13 1989-11-13 Method for producing smectite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1295221A JPH0613404B2 (en) 1989-11-13 1989-11-13 Method for producing smectite

Publications (2)

Publication Number Publication Date
JPH03153519A true JPH03153519A (en) 1991-07-01
JPH0613404B2 JPH0613404B2 (en) 1994-02-23

Family

ID=17817775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1295221A Expired - Lifetime JPH0613404B2 (en) 1989-11-13 1989-11-13 Method for producing smectite

Country Status (1)

Country Link
JP (1) JPH0613404B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007613A1 (en) * 1994-09-02 1996-03-14 Akzo Nobel N.V. Synthetic swelling clay minerals
JP2003517988A (en) * 1999-12-22 2003-06-03 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing synthetic clay minerals
KR100598160B1 (en) * 2004-09-09 2006-07-10 한국지질자원연구원 Synthesis of beidellite from agalatomitedickite
JP2008087971A (en) * 2006-09-06 2008-04-17 National Institute For Materials Science Manufacturing method of synthetic layered silicate containing metal ion
JP2009107907A (en) * 2007-10-31 2009-05-21 Hitachi Chem Co Ltd Synthetic smectite and dispersion liquid containing this, clay film, waterproof film, and method of producing synthetic smectite and waterproof film
JP2011057486A (en) * 2009-09-08 2011-03-24 Hitachi Chem Co Ltd Synthetic smectite, method for manufacturing the same, and composite film
JP2014024711A (en) * 2012-07-26 2014-02-06 Shinshu Univ Smectite-coated silica particles and method for manufacturing the same
KR200481474Y1 (en) * 2015-12-02 2016-10-05 정은화 Pants with outer clothes

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996007613A1 (en) * 1994-09-02 1996-03-14 Akzo Nobel N.V. Synthetic swelling clay minerals
NL9401433A (en) * 1994-09-02 1996-04-01 Univ Utrecht Synthetic swellable clay minerals.
AU718224B2 (en) * 1994-09-02 2000-04-13 Albemarle Netherlands B.V. Synthetic swelling clay minerals
JP2003517988A (en) * 1999-12-22 2003-06-03 アクゾ ノーベル ナムローゼ フェンノートシャップ Method for producing synthetic clay minerals
KR100598160B1 (en) * 2004-09-09 2006-07-10 한국지질자원연구원 Synthesis of beidellite from agalatomitedickite
JP2008087971A (en) * 2006-09-06 2008-04-17 National Institute For Materials Science Manufacturing method of synthetic layered silicate containing metal ion
JP2009107907A (en) * 2007-10-31 2009-05-21 Hitachi Chem Co Ltd Synthetic smectite and dispersion liquid containing this, clay film, waterproof film, and method of producing synthetic smectite and waterproof film
JP2011057486A (en) * 2009-09-08 2011-03-24 Hitachi Chem Co Ltd Synthetic smectite, method for manufacturing the same, and composite film
JP2014024711A (en) * 2012-07-26 2014-02-06 Shinshu Univ Smectite-coated silica particles and method for manufacturing the same
KR200481474Y1 (en) * 2015-12-02 2016-10-05 정은화 Pants with outer clothes

Also Published As

Publication number Publication date
JPH0613404B2 (en) 1994-02-23

Similar Documents

Publication Publication Date Title
Yan et al. Preparation of magnesium hydroxide nanoflowers
Matijevic Preparation and properties of uniform size colloids
Xu et al. Hydrothermal synthesis of zinc oxide powders with controllable morphology
Chen et al. Synthesis of mono-dispersed ZnAl2O4 powders under hydrothermal conditions
JP4281943B2 (en) Method for producing plate-like alumina particles
Ni et al. A novel aqueous-phase route to prepare flower-shaped PbS micron crystals
JPH03153519A (en) Production of smectite
Wu et al. Template route to chemically engineering cavities at nanoscale: a case study of Zn (OH) 2 template
Huang et al. Fabrication of oriented oxide films from exfoliated yttrium hydroxide layers: Enhanced photoluminescence and unexplored behavior of energy transfer
JPS61201623A (en) Production of spherical flocculated particle of zirconia ultrafine crystal
CN111153420B (en) Magnesium-aluminum hydrotalcite nanotube and preparation method thereof
CN106256764A (en) A kind of method preparing the molecular sieve molded thing of nanoscale sodalite
JP6029052B2 (en) Method for producing smectite-coated silica particles
Chu et al. Inorganic hierarchical nanostructures induced by concentration difference and gradient
CN115124070A (en) Appearance-controllable delafossite type CuGaO 2 Method for producing a material
KR100575843B1 (en) A method for preparing floating globular particles of titanium oxide
Yinyan et al. Hydrothermal synthesis of lanthanide (hydr) oxide micro/nanorods in presence of tetrabutylammonium hydroxide
JPH0371366B2 (en)
JP2003236800A (en) Ceramics nano structural body, composition thereof, and manufacturing method therefor
Ghaffari et al. Precipitation of various shapes of nanosized zinc oxide from zinc chloride solutions by neutralization with MgO and Ca (OH) 2 as non-transparent basic agents
Wang et al. Growth of Pb5S2I6 meso-scale tubular crystals
Kawano et al. Characteristically shaped ZnO particles produced by periodic precipitation in organic gel media
CN117467410B (en) Composite abrasive particles with core-shell structure, preparation method thereof and CMP (chemical mechanical polishing) slurry
CN110773113B (en) Cobalt hydroxy silicate hollow microsphere and cobalt silicate hollow microsphere, and preparation method and application thereof
JP2001294424A (en) Method for manufacturing sodium titanate

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term