JPH03153511A - Method for finely flaking graphite - Google Patents

Method for finely flaking graphite

Info

Publication number
JPH03153511A
JPH03153511A JP1292673A JP29267389A JPH03153511A JP H03153511 A JPH03153511 A JP H03153511A JP 1292673 A JP1292673 A JP 1292673A JP 29267389 A JP29267389 A JP 29267389A JP H03153511 A JPH03153511 A JP H03153511A
Authority
JP
Japan
Prior art keywords
graphite
vacuum
gic
crushing
compd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1292673A
Other languages
Japanese (ja)
Other versions
JP2619294B2 (en
Inventor
Yoshihisa Kuga
良壽 空閑
Shigehisa Endo
茂寿 遠藤
Hiroyoshi Chiyoda
千代田 博宜
Kazuo Takeuchi
武内 一夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Resonac Corp
Original Assignee
Hitachi Powdered Metals Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP1292673A priority Critical patent/JP2619294B2/en
Publication of JPH03153511A publication Critical patent/JPH03153511A/en
Application granted granted Critical
Publication of JP2619294B2 publication Critical patent/JP2619294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain fine flaky particles having superior anisotropy by intercalating a guest substance between the layers of graphite to form an intercalation compd. and crushing this compd. in vacuum. CONSTITUTION:A guest substance such as K, K-NH3, Br, FeCl3 or SbCl5 is intercalated between the layers of graphite to form an intralaminar compd. This compd. is finely flaked by crushing in vacuum or in an atmosphere of an inert gas or dry air optionally after expansion by rapid heating. When the resulting fine flaky graphite is mixed with a solvent, oil, etc., and used to form a graphite coating film, a long service life and high reliability are obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電気、化学、冶金、ロケット等の分野に係わ
り、詳しくは、層状構造を成す黒鉛の層間に層間化合物
(Graphite Intercalation C
os+−pound :以下、GICと言う)を形成し
て、所定の雰囲気中で粉砕して微薄片化することを特徴
とする黒鉛の微薄片化方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to the fields of electricity, chemistry, metallurgy, rocketry, etc., and more specifically, the present invention relates to the fields of electricity, chemistry, metallurgy, rocketry, etc.
The present invention relates to a method for making graphite into fine flakes, which is characterized by forming an os+-pound (hereinafter referred to as GIC) and pulverizing it in a predetermined atmosphere to make fine flakes.

(従来技術) 黒鉛は層状構造の層間方向と層面に垂直な方向で、電気
伝導性や熱伝導率等の性質が異なる異方性を有し、既に
、工業用素材として広く用いられている。とりわけ電子
工学の分野、例えばカラーブラウン管の光吸収用黒色ス
トライブやファンネル内面の導電膜として黒鉛製塗膜が
用いられている。他方、絶縁性基板上に黒鉛の回路を描
画して電子部品に用いるなどの用途も拡大している。こ
のような黒鉛製塗膜は、その成膜工程において塗布むら
、脱離、ひび割れが無く、長寿命などの高信頼性が要求
されている。従って、黒鉛原料を微細化、特に微薄片化
して膜の性能、膜の強度、薄膜化等を向上することが重
要な課題となっていた。
(Prior Art) Graphite has anisotropy in which properties such as electrical conductivity and thermal conductivity differ in the interlayer direction of a layered structure and in the direction perpendicular to the layer plane, and it is already widely used as an industrial material. Particularly in the field of electronic engineering, graphite coatings are used, for example, as light-absorbing black stripes in color cathode ray tubes and conductive films on the inner surface of funnels. On the other hand, applications such as drawing graphite circuits on insulating substrates and using them in electronic components are also expanding. Such graphite coatings are required to have high reliability, such as being free from uneven coating, detachment, and cracking during the film-forming process, and having a long life. Therefore, it has become an important issue to improve the performance of the membrane, the strength of the membrane, the thinning of the membrane, etc. by making the graphite raw material finer, especially into fine pieces.

従来、水等に適当な分散剤を加えて24〜48時間以上
で湿式粉砕を行い、歩留り1.0wt%程度で0.2μ
m以下の黒鉛微薄片粒子が得られている。
Conventionally, wet pulverization was carried out for 24 to 48 hours by adding an appropriate dispersant to water, etc., and the yield was about 1.0 wt%.
Graphite fine flake particles with a size of less than m are obtained.

また、微粉末を乾式の状態で生成できれば、それを油、
溶剤等と混合して高機能的に用いることが可能になるた
め、実際に、黒鉛を真空中あるいはHe等不活性ガス中
で粉砕する方法が報告されている〔上原、浅井、神保、
田中:化学工学論文集。
Also, if fine powder can be produced in a dry state, it can be used in oil,
Since it is possible to use it highly functionally by mixing it with a solvent, etc., a method has actually been reported in which graphite is crushed in a vacuum or in an inert gas such as He [Uehara, Asai, Jimbo, et al.
Tanaka: Collection of chemical engineering papers.

第4巻、第6号、p639−645(1978))。Volume 4, No. 6, p639-645 (1978)).

一方、黒鉛はその層間にゲスト物質(インターカラン日
としてllN0s−HzSO4混酸、ハロゲン、アルカ
リ金属、アルカリ土類金属、フン化物、塩化物等種々の
物質を挿入(インターカレート)シて、GICを形成す
ることが知られており〔高橋、阿久沢;実験技術講座、
炭素、(陽1)1)、p171−178 (1982)
 ) 、HNO3−[1zSO4混酸のCICを形成し
て、これを800℃程度まで加熱し、ゲスト物質の1f
NOi−HgSO4を急激に脱ガスして見掛けの容梼を
数−数100倍程度に膨張させ、この膨張黒鉛に水蒸気
、ベンゼン等の有機蒸気を吸着させ、液体窒素で凍結さ
せた後、冷凍粉砕する方法が提案されている〔大阪工業
技術試験所ニュース:N0.12.  (1985))
On the other hand, graphite is made by inserting (intercalating) various substances such as guest substances (INOs-HzSO4 mixed acid, halogens, alkali metals, alkaline earth metals, fluorides, chlorides, etc.) between its layers to form GIC. [Takahashi, Akusawa; Experimental Technology Course,
Carbon, (Yo 1) 1), p171-178 (1982)
), HNO3-[1zSO4 mixed acid CIC is formed, and this is heated to about 800°C, and 1f of the guest substance is formed.
NOi-HgSO4 is rapidly degassed to expand its apparent volume several to several hundred times, and this expanded graphite adsorbs water vapor and organic vapors such as benzene. After freezing with liquid nitrogen, it is frozen and pulverized. A method has been proposed [Osaka Institute of Technology News: No. 12. (1985))
.

(発明が解決しようとする課題) しかし、上述した従来技術は、単に微粒子の調達を目的
としていたため、粒子形状は立体的あるいはブロック状
のものであり、重要な性質である異方性を生かせる薄片
形状のものではなかった。
(Problem to be solved by the invention) However, since the above-mentioned conventional technology was aimed simply at procuring fine particles, the particle shape was three-dimensional or block-like, and the important property of anisotropy could not be utilized. It was not flaky.

また、乾式粉砕では黒鉛等の層状物質のもつ高い潤滑性
、湿潤性のためにサブミクロンの微薄片粒子を得るには
困難な方法であった。
In addition, dry grinding is a difficult method to obtain submicron flakes due to the high lubricity and wettability of layered materials such as graphite.

−旦、層間化合物を生成した後、その急加熱脱ガス処理
、有機蒸気等の吸着液体窒素による冷却、凍結粉砕、さ
らに吸着蒸気の脱離という方法もあるが、得られた微薄
片の大きさは粒径で十数μm程度、アスペクト比(粒子
の径/厚さ)で700程度が限度であり、種々の繁雑な
工程が必要という欠点があった。しかも、数100倍に
膨張させた黒鉛でばかさ比重が非常に大きいため処理量
(重量)が非常に小さく、工業的スケールアップが困難
であること、また、混酸系の膨張黒鉛を製造する工程で
、その残酸が黒鉛中に滞まり、その完全除去が非常に困
難であった。そのため残酸(強酸)による腐食が将来的
に大きな問題となっていた。
- After first generating intercalation compounds, there is a method of rapid heating degassing treatment, cooling with liquid nitrogen that adsorbs organic vapors, freezing and crushing, and further desorption of adsorbed vapors, but the size of the obtained fine flakes However, the particle size is limited to about 10-odd micrometers, the aspect ratio (particle diameter/thickness) is limited to about 700, and there are disadvantages in that various complicated steps are required. Furthermore, since the graphite has been expanded several hundred times and has a very large bulk specific gravity, the processing amount (weight) is very small, making industrial scale-up difficult, and the process of manufacturing mixed acid-based expanded graphite. The residual acid remained in the graphite, making it extremely difficult to completely remove it. Therefore, corrosion due to residual acid (strong acid) has become a major problem in the future.

(課題を解決するための手段) 上記の課題は、黒鉛の層間にゲスト物質の原子、分子、
イオンをインターカレートして層間化合物を形成して真
空中または不活性ガス中で粉砕する本方法、または前記
層間化合物を急熱膨張化させた後、真空中、不活性ガス
中、乾燥空気中のいずれかの雰囲気中で粉砕する本方法
によって解決することができる。
(Means for solving the problem) The above problem is solved by the fact that atoms and molecules of guest substances are formed between the layers of graphite.
The present method involves intercalating ions to form an intercalation compound and pulverizing it in vacuum or in an inert gas, or the intercalation compound is rapidly thermally expanded and then in a vacuum, in an inert gas, or in dry air. can be solved by this method of grinding in any atmosphere.

前記ゲスト物質としてはカリウム(K)、カリウム−ア
ンモニア(K−MHI)、臭素(Br)、塩化鉄(Fe
Cls)、塩化アンチモン(SbC1,)を用いること
ができる。
The guest substances include potassium (K), potassium-ammonia (K-MHI), bromine (Br), iron chloride (Fe
Cls), antimony chloride (SbCl,) can be used.

(作用) 黒鉛は炭素原子の六角網状平面が層状に積層した構造か
ら成り、層状構造の平面と垂直方向とで物理的性質が異
なる異方性を有し、その層間にゲスト物質の原子、分子
、イオンを挿入してGICを形成する性質がある。その
層間にインターカレートのカリウム(K)、カリウム−
アンモニア(K−N)I:l)、臭素(Br)等をイン
ターカレートしたGICは、層間間隔が拡張されて機械
的な力による粉砕効率が向上し、更に加熱処理による脱
ガスによって、その層間が数−数百倍にも膨張するので
粉砕効率は著しく向上する。従って、GICあるいはそ
の膨張化物を真空、不活性ガス等の雰囲気中で粉砕する
ことにより、所望の大きさの微粒子、特に異方性に優れ
た微薄片粒子を製造することができる。
(Function) Graphite has a structure in which hexagonal network planes of carbon atoms are stacked in layers, and has anisotropy in which physical properties differ between the planes of the layered structure and the vertical direction, and atoms and molecules of guest substances are distributed between the layers. , has the property of inserting ions and forming GIC. Intercalated potassium (K), potassium-
GIC intercalated with ammonia (K-N) I:l), bromine (Br), etc. has an expanded interlayer spacing and improves the pulverization efficiency by mechanical force. Since the space between the layers expands several to hundreds of times, the pulverization efficiency is significantly improved. Therefore, by pulverizing GIC or its expanded product in a vacuum, an inert gas atmosphere, or the like, fine particles of a desired size, particularly fine flake particles with excellent anisotropy, can be produced.

(実施例) 以下に、本発明の実施例を図面を参照しつつ詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

K−GICを合成するため、粒径が90μm−125μ
mの天然黒鉛を乾燥器中で140℃、48時間乾燥させ
、更に約10−”Torrに真空引きして約14時間以
上、70℃で付着物質を焼き出しする。第1図は、層間
化合物を合成するためのブレーカプルシール付き反応容
器の概略図である。
In order to synthesize K-GIC, the particle size is 90μm-125μm.
m of natural graphite is dried in a drying oven at 140°C for 48 hours, and then vacuumed to about 10-” Torr and baked out at 70°C for about 14 hours or more. Figure 1 shows the intercalation compound. FIG. 2 is a schematic diagram of a reaction vessel equipped with a breaker pull seal for synthesizing.

焼き出し後、反応容器10中に純度99.9%のカリウ
ム金属1)と前記黒鉛12をアルゴンガス雰囲気中でサ
ンプリングする。コック13を開口し、反応容器を十分
(約10−’Torr)に真空引きした後、真空状態を
保ったまま反応管を切断部14で封じ切り、容器全体を
電気炉で加熱し、K−G ICの合成を進行させた。約
300℃で約72時間後、黒鉛は第1ステージの金色の
KC,に変化していることが61tEされた。更にに−
NH,−GICを生成するため、まず、前記方法と同様
にしてに−GICを合成した後、ブレーカプルシール1
5を破りN H,ガスを吸収させ、−44℃(アセトニ
トリル・スラッシュバス)で数時間反応させ、その後室
温で数時間次に過剰N H3を除去してK  NH3G
IC三元素系層間化合物を合成した。更に前記に−NH
+ −GICを750℃で20分間急加熱したところ、
膨張率約13倍の膨張黒鉛が得られた。第2図は、上記
層間化合物を粉砕するために試作した振動ボールミルの
概略図である。この粉砕容器は、粉砕雰囲気を操作でき
る構造とした。粉砕容器20に黒鉛試料21と粉砕媒体
のステンレス球22(外径5m)を仕込み、ヒーター2
3で加熱しながら真空排気して水や不純物を除去した後
、所望のガスを充填してバルブ24を閉じ、モーター電
源を入れる。モーター25の回転運動は、カンプリング
26を介して偏心重り27に伝達され、バネ28で支持
されたベース29に振動が与えられ、黒鉛試料はステン
レス球の衝撃力によって粉砕される。粉砕容器は一度に
最大6個取り付けることができる。粉砕条件は振動数9
94rpm、振幅10m、粉砕媒体のステンレス球のみ
かけの充填率50%、各松科は0.3gとし、同一条件
の下に各試料を仕込んで粉砕した0粒度分布の測定は自
然、遠心沈降法により行った。
After baking out, potassium metal 1) with a purity of 99.9% and the graphite 12 are sampled in the reaction vessel 10 in an argon gas atmosphere. After opening the cock 13 and evacuating the reaction vessel to a sufficient level (approximately 10 Torr), the reaction tube was sealed off with the cutting part 14 while maintaining the vacuum state, and the entire vessel was heated in an electric furnace to heat the K- Synthesis of GIC proceeded. After about 72 hours at about 300° C., the graphite was found to have transformed into first stage golden KC. Furthermore-
In order to generate NH, -GIC, first, -GIC was synthesized in the same manner as in the above method, and then breaker pull seal 1 was synthesized.
5 to absorb NH gas, react at -44°C (acetonitrile slush bath) for several hours, then at room temperature for several hours, then remove excess NH3 to form KNH3G.
An IC ternary intercalation compound was synthesized. Furthermore, -NH
+ - When GIC was rapidly heated at 750°C for 20 minutes,
Expanded graphite with an expansion rate of about 13 times was obtained. FIG. 2 is a schematic diagram of a vibrating ball mill prototyped for pulverizing the above-mentioned intercalation compound. This crushing container had a structure that allowed the crushing atmosphere to be controlled. A graphite sample 21 and a stainless steel ball 22 (outer diameter 5 m) as a grinding medium are placed in a grinding container 20, and a heater 2 is placed in the grinding container 20.
After removing water and impurities by evacuation while heating in Step 3, the desired gas is filled, the valve 24 is closed, and the motor power is turned on. The rotational motion of the motor 25 is transmitted to the eccentric weight 27 via the camp ring 26, vibrates the base 29 supported by the spring 28, and the graphite sample is crushed by the impact force of the stainless steel balls. Up to 6 grinding containers can be attached at one time. The crushing conditions are vibration frequency 9
94 rpm, amplitude 10 m, apparent filling rate of stainless steel balls as the grinding medium 50%, each pinceae 0.3 g, and each sample was charged and ground under the same conditions. The measurement of particle size distribution was natural, centrifugal sedimentation method. This was done by

第3図は、K−GIC及びに−NH,−GICの粉砕結
果と直接比較できるように真空乾燥処理を施した粒径8
8−125μ−の天然黒鉛を乾燥空気中、窒素ガス中、
真空中で粉砕実験を行った結果のグラフである。図中の
縦軸はフルイ通過50%径X、い横軸は粉砕時間tであ
る。本実験では真空中粉砕において、約3時間でX、。
Figure 3 shows particles with a particle size of 8.5 cm after vacuum drying so that they can be directly compared with the pulverization results of K-GIC and -NH, -GIC.
8-125 μ- natural graphite in dry air, nitrogen gas,
It is a graph of the results of a crushing experiment conducted in vacuum. In the figure, the vertical axis is the 50% sieve passing diameter X, and the horizontal axis is the crushing time t. In this experiment, in vacuum pulverization, X in about 3 hours.

=0.4μmの最小値が得られることがわかる。Nt中
粉砕のxsoにおいてもほぼ同様の結果である。一方、
乾燥空気中の粉砕では生成物のX、。は、粉砕時間が6
時間以内では他の場合よりも大きいことがわかる。
It can be seen that a minimum value of =0.4 μm is obtained. Almost the same results were obtained for xso milled in Nt. on the other hand,
For grinding in dry air, the product X. The grinding time is 6
It can be seen that within time it is larger than in other cases.

第4図にはに−G I Cの真空中粉砕、およびKNH
3GIC膨張黒鉛の真空中粉砕におけるX、。と粉砕時
間との関係を示した。第3図の天然黒鉛の真空中粉砕結
果と比較して、K−GICの真空粉砕では粉砕速度は小
さいが、X、。の最小値(粉砕時間=12時間)はほぼ
等しくxs。=0.4−〇、5μ糟であることがわかる
。また、膨張化KNH3GICの真空中粉砕において粉
砕時間が6時間以内ではみかけ上粉砕は進行せず、X、
Figure 4 shows the vacuum pulverization of Ni-GIC and the KNH
3X in vacuum grinding of GIC expanded graphite. The relationship between this and the grinding time was shown. Compared to the results of vacuum pulverization of natural graphite shown in Figure 3, the pulverization speed in vacuum pulverization of K-GIC is lower, but X. The minimum value of (milling time = 12 hours) is approximately equal to xs. It can be seen that =0.4-〇, 5 μm. In addition, in vacuum pulverization of expanded KNH3GIC, pulverization apparently does not proceed if the pulverization time is less than 6 hours, and X,
.

の値は0.8μmである。The value of is 0.8 μm.

次に、天然黒鉛(乾燥空気中及び真空中粉砕)、K−G
IC(真空中粉砕)、膨張化に−NHff −GIC(
真空中粉砕)で3時間粉砕して得られた生成物のX、。
Next, natural graphite (pulverized in dry air and in vacuum), K-G
IC (vacuum crushing), -NHff -GIC (for expansion)
X, the product obtained by grinding for 3 hours under vacuum grinding).

における粒子形状について各々電子顕微鏡による観察を
行った。天然黒鉛の乾燥空気中または真空中粉砕で得ら
れた生成物の形状は、塊状であり、凝集した様子が見ら
れ、一方、KGIC及び膨張化に−NHff −G I
 Cの真空中粉砕生成物の形状は、天然黒鉛のそれと比
較すると明らかに薄片状であることが認められた。
The particle shapes of each were observed using an electron microscope. The shape of the product obtained by dry air or vacuum pulverization of natural graphite is lumpy and agglomerated.
It was observed that the shape of the vacuum-pulverized product of C was clearly flaky when compared with that of natural graphite.

臭素をインターカラントとして用いた実施例では、膨張
黒鉛の膨張率は約2.75倍であり、粉砕特性(真空中
)もに−GICの場合とは異なった結果が得られた。こ
のことより、GICの粉砕特性は用いるインターカラン
トによって変化することがわかった。従って、上記実施
例の他に塩化鉄、塩化アンチモンをインターカラントと
して用いた場合にも異なる粉砕特性が得られ、微薄片粒
子生成の可能性が拡大する。
In the example in which bromine was used as an intercalant, the expansion rate of expanded graphite was about 2.75 times, and the crushing characteristics (in vacuum) were also different from those of -GIC. From this, it was found that the grinding characteristics of GIC vary depending on the intercalant used. Therefore, in addition to the above embodiments, when iron chloride or antimony chloride is used as an intercalant, different grinding characteristics can be obtained, and the possibility of producing fine flake particles is expanded.

(発明の効果) 本発明によって得られた黒鉛の大きさは、K−GICに
よる真空中粉砕において、X、。−0,4μ飄であり、
しかも微薄片形状であるので黒鉛の有する異方性の性質
を有効的に生かすことができる。
(Effects of the Invention) The graphite obtained by the present invention has a size of X when pulverized in vacuum by K-GIC. -0.4μ air,
Furthermore, since it is in the form of fine flakes, the anisotropic properties of graphite can be effectively utilized.

従って、油、溶剤等と混合して黒鉛塗膜に用いることに
より、高機能性膜を実現することができる。
Therefore, by mixing it with oil, solvent, etc. and using it in a graphite coating, a highly functional film can be realized.

各利用分野における黒鉛塗布膜は、長寿命かつ高倍転性
が得られ、膜の性能や強度も向上でき、超薄膜化の実現
が可能になった。また、本性により得られた微薄片は、
従来の混酸系のGrCではないため、腐食の原因となる
残数の除去や凍結等の繁雑な工程を必要としないので経
済的効果が大である。更に、本方法によるm1片粒子は
、カリウムを含むので天然黒鉛よりも高い電気伝導性を
有する利点がある。第5図には本発明により得られたに
−GICと天然黒鉛の粉体電気tit; tj’iを示
す。
Graphite coated films in various application fields have long lifespans and high conversion properties, and have improved film performance and strength, making it possible to create ultra-thin films. In addition, the fine flakes obtained by nature are
Since it is not a conventional mixed acid type GrC, it does not require complicated processes such as removal of residual particles that cause corrosion or freezing, so it has great economic effects. Furthermore, since the m1 piece particles produced by this method contain potassium, they have the advantage of having higher electrical conductivity than natural graphite. FIG. 5 shows the powder electrical tit; tj'i of Ni-GIC and natural graphite obtained according to the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、層間化合物合成用ブレーカプルシール付き反
応容器の概略図、 第2図は、粉砕用振動ボールミルの概略図、第3図は、
天然黒鉛の乾燥空気中、窒素ガス中、真空中のおける粉
砕実験結果を示すグラフ、第4図は、K−GIC及び膨
張化に−NH,−GICの真空中における粉砕実験結果
を示すグラフ、 第5図は、K−GICと天然黒鉛の粉体電気抵抗を示す
グラフである。 (符号の説明) IO・・・反応容器、1)・・・カリウム金属、12・
・・天然黒鉛、13・・・コック、14・・・封じ切り
、I5・・・ブレーカプルシール、20・・・粉砕容器
、21・・・黒鉛試料、22・・・ステンレス球、23
・・・ヒーター 24・・・バルブ、25・・・モータ
ー26・・・カップリング、27・・・偏心重り、28
・・・バネ、29・・・ベース。 圧縮密度(g/cm2) 手続補正書(方式) %式% 1、事件の表示 平成1年特許願第292673号 2)発明の名称 黒鉛の微薄片化方法 3、補正をする者 事件との関係
Figure 1 is a schematic diagram of a reaction vessel with a breaker pull seal for synthesis of intercalation compounds, Figure 2 is a schematic diagram of a vibrating ball mill for crushing, and Figure 3 is
A graph showing the results of a crushing experiment of natural graphite in dry air, nitrogen gas, and vacuum; FIG. 4 is a graph showing the results of a crushing experiment of K-GIC and expanded -NH,-GIC in vacuum; FIG. 5 is a graph showing the powder electrical resistance of K-GIC and natural graphite. (Explanation of symbols) IO...Reaction vessel, 1)...Potassium metal, 12.
... Natural graphite, 13 ... Cock, 14 ... Seal, I5 ... Breaker pull seal, 20 ... Grinding container, 21 ... Graphite sample, 22 ... Stainless steel ball, 23
... Heater 24 ... Valve, 25 ... Motor 26 ... Coupling, 27 ... Eccentric weight, 28
...Spring, 29...Base. Compressed density (g/cm2) Procedural amendment (method) % formula % 1. Indication of the case 1999 Patent Application No. 292673 2) Name of the invention Method for micro-exfoliating graphite 3. Person making the amendment Relationship with the case

Claims (3)

【特許請求の範囲】[Claims] (1)黒鉛の層間にゲスト物質の原子、分子、イオンを
インターカレートして層間化合物を形成して、真空中、
不活性ガス中、乾燥空気中のいずれかの雰囲気中で粉砕
することを特徴とする黒鉛の微薄片化方法。
(1) Intercalate atoms, molecules, and ions of a guest substance between the layers of graphite to form an intercalation compound, and
A method for finely exfoliating graphite, which is characterized by crushing in either an inert gas or dry air atmosphere.
(2)特許請求の範囲第(1)項記載の層間化合物を急
熱膨張化させた後、真空中、不活性ガス中、乾燥空気中
のいずれかの雰囲気中で粉砕することを特徴とする黒鉛
の微薄片化方法。
(2) The intercalation compound described in claim (1) is rapidly expanded by thermal expansion, and then pulverized in an atmosphere of vacuum, inert gas, or dry air. A method for micro-exfoliating graphite.
(3)特許請求の範囲第(1)項記載のゲスト物質がカ
リウム(K)、カリウム−アンモニア(K−NH_3)
、臭素(Br)、塩化鉄(FeCl_3)、塩化アンチ
モン(SbCl_5)であることを特徴とする黒鉛の微
薄片化方法。
(3) The guest substance described in claim (1) is potassium (K), potassium-ammonia (K-NH_3)
, bromine (Br), iron chloride (FeCl_3), and antimony chloride (SbCl_5).
JP1292673A 1989-11-10 1989-11-10 Manufacturing method of flaky graphite powder Expired - Fee Related JP2619294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292673A JP2619294B2 (en) 1989-11-10 1989-11-10 Manufacturing method of flaky graphite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292673A JP2619294B2 (en) 1989-11-10 1989-11-10 Manufacturing method of flaky graphite powder

Publications (2)

Publication Number Publication Date
JPH03153511A true JPH03153511A (en) 1991-07-01
JP2619294B2 JP2619294B2 (en) 1997-06-11

Family

ID=17784820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292673A Expired - Fee Related JP2619294B2 (en) 1989-11-10 1989-11-10 Manufacturing method of flaky graphite powder

Country Status (1)

Country Link
JP (1) JP2619294B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219719A (en) * 1990-12-15 1994-08-09 Yazaki Corp Graphite interlaminar compound
JPH07136498A (en) * 1993-11-24 1995-05-30 Nec Corp Production of fullerene intercalation compound
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115682A (en) * 1985-08-27 1987-05-27 インタ−カル カンパニ− Electric contactor such as motor brush containing intercalated graphite
JPH01148704A (en) * 1987-12-07 1989-06-12 Shinano Denki Seiren Kk Production of scaly graphite fine powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115682A (en) * 1985-08-27 1987-05-27 インタ−カル カンパニ− Electric contactor such as motor brush containing intercalated graphite
JPH01148704A (en) * 1987-12-07 1989-06-12 Shinano Denki Seiren Kk Production of scaly graphite fine powder

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219719A (en) * 1990-12-15 1994-08-09 Yazaki Corp Graphite interlaminar compound
JPH07136498A (en) * 1993-11-24 1995-05-30 Nec Corp Production of fullerene intercalation compound
US10538691B2 (en) 2004-08-27 2020-01-21 Toyo Tanso Co., Ltd. Expanded-graphite sheet

Also Published As

Publication number Publication date
JP2619294B2 (en) 1997-06-11

Similar Documents

Publication Publication Date Title
Zhao et al. Colloidal synthesis of VSe 2 single-layer nanosheets as novel electrocatalysts for the hydrogen evolution reaction
Kalyanaraman et al. Synthesis and consolidation of iron nanopowders
US10850496B2 (en) Chemical-free production of graphene-reinforced inorganic matrix composites
CN105803420A (en) Diamond composite wrapped by graphene and/or carbon nanotubes and preparation method and application of diamond composite wrapped by graphene and/or carbon nanotubes
JP5602480B2 (en) Method for producing alumina particles provided with AlN modified layer
Demir et al. An experimental study on microstructure of tungsten alloys
CN106395768B (en) Synthesis method of ultrathin boron nitride nanosheet
CN112591752A (en) Rapid preparation of V by molten salt chemical reaction2AlC powder preparation method and powder application thereof
Heng et al. Fe/nanoporous carbon hybrid derived from metal–organic framework for highly effective microwave absorption
Sreedhar et al. Synthesis and study of reduced graphene oxide layers under microwave irradiation
JPH03153511A (en) Method for finely flaking graphite
Cho et al. Synthesis and consolidation behavior of Al/AlN composite powders by reactive RF thermal plasma spraying
Wang et al. In situ growth of heterostructured Sn/SnO nanospheres embedded in crumpled graphene as an anode material for lithium ion batteries
CN113023731B (en) Method for preparing silicon powder
CN109722644B (en) Surface modification method of carbon nano hybrid material
WO2021193737A1 (en) Porous silicon microparticles and method for manufacturing same
CN107983963A (en) A kind of low temperature preparation method of pure W-Cu nanocomposite powder
CN112645333B (en) Preparation method of nano silicon powder, prepared nano silicon powder and application
Wei et al. Enhancing the effective mass and covalent bond strength of Cu3SbSe4-based thermoelectric materials by Mn/Sn co-doping
CN106623976A (en) Preparation method of graphene-metal-based bulk composite material
KR101936865B1 (en) Method for manufacturing nanopowder through grinding silicon carbide by chemical-physical hybrid method and the nanopowder
Kim et al. Enhanced thermal diffusivity of copperbased composites using copper-RGO sheets
KR20170024471A (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
Wang et al. Low-temperature synthesis of near-monodisperse globular MoS2 nanoparticles with sulphur powders
CN114772591B (en) Method and equipment for low-temperature nanocrystallization of soft material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees