JPH0315261A - Stepping type linear actuator - Google Patents

Stepping type linear actuator

Info

Publication number
JPH0315261A
JPH0315261A JP1195901A JP19590189A JPH0315261A JP H0315261 A JPH0315261 A JP H0315261A JP 1195901 A JP1195901 A JP 1195901A JP 19590189 A JP19590189 A JP 19590189A JP H0315261 A JPH0315261 A JP H0315261A
Authority
JP
Japan
Prior art keywords
magnetic
yoke
movable
linear actuator
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1195901A
Other languages
Japanese (ja)
Other versions
JP2682156B2 (en
Inventor
Shoji Oba
荘司 大庭
Ryota Shimizu
亮太 清水
Hideki Oura
大浦 秀樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP1069603A external-priority patent/JPH02248055A/en
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of JPH0315261A publication Critical patent/JPH0315261A/en
Application granted granted Critical
Publication of JP2682156B2 publication Critical patent/JP2682156B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Linear Motors (AREA)

Abstract

PURPOSE:To reduce the cost by providing a fixed magnetic member, first and second moving bodies and a magnetic drive means. CONSTITUTION:A stepping type linear actuator comprises a fixed substrate 10 composed of magnetic material, and a pair of moving bodies 20, 40 to be supported thereon while abutting thereon. Yokes 22, 23 having rectangular cross section are arranged, while being coupled with a yoke 21, between the moving bodies thus constituting a magnetic drive means together with electromagnetic coils 30, 32. The fixed substrate 10 is provided with guide members 15, 16 for the moving bodies 20, 40. When power is fed alternately to the magnetic drive means according to the facing surface, the moving bodies 20, 40 make stepping movement continuously.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電磁i械変換手段を用い簡単な構成でもって
直進運動を可能にする歩進型のリニアアクチュエータに
関する. 従来の技術 従来、電磁機械変換手段を用いて直進運動をなす方法と
して、例えば螺旋状に記録された情報トラックを有する
ディスク状の記録媒体から記録情報を再生する光ディス
ク装置の光ピックアップ移送手段に示されるように回転
運動のモータにボールネジ,ラソクピニオンなどの変換
機構を用い回転運動を直進運動に変換する方法が一般的
にある.また、上記の変換機構を用いず被駆動体を直接
駆動する方法としてリニアモータあるいはリニアパルス
モークが知られている.これらの駆動装置は主に磁性材
料からなり走行路を形戒する固定子とその固定子とわず
かな空隙を保って対向する可動子から構成される。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a step-type linear actuator that uses electromagnetic i-mechanical conversion means to enable linear motion with a simple configuration. 2. Description of the Related Art Conventionally, a method of achieving linear motion using an electromagnetic mechanical conversion means has been proposed, for example, in an optical pickup transport means of an optical disk device that reproduces recorded information from a disk-shaped recording medium having a spirally recorded information track. Generally speaking, there is a method of converting rotational motion into linear motion by using a conversion mechanism such as a ball screw or a lasso pinion in the rotary motor. Furthermore, a linear motor or linear pulse smoke is known as a method for directly driving a driven object without using the above conversion mechanism. These drive devices mainly consist of a stator made of a magnetic material that defines a running path, and a movable element that faces the stator with a small gap.

例えば、第16図にリニアバルスモー夕の一例を示す。For example, FIG. 16 shows an example of a linear pulse mode.

第16図において、磁性材料より構成された走行路であ
る固定子210は一定のビッチPの磁極歯211からな
りその固定子210とわずかな隙間を介して対向する可
動子220は永久磁石224を挟持し上記固定子2{0
の磁極tJT211と同一形状でピッチがP/2だけず
れかつ互いにP/4だけずれて配された磁極歯225を
有する一対のヨーク221,222とそのヨーク22l
,222に装着された一対の電磁コイル手段231,2
32とから構成され、その電磁コイル手段231,23
2が交互に励磁されることにより永久磁石224からの
磁束が制御され、例えば電磁コイル232に矢印A方向
の電流を流すことによりョーク222の磁極歯225を
貫通する磁束は一方が減少し他方が増加することにより
可動子220の磁極歯225と固定子210の峨極歯2
11は互いに引合い可動子220は固定子210に対し
歩進的に変位される。
In FIG. 16, a stator 210, which is a running path made of a magnetic material, has magnetic pole teeth 211 with a constant pitch P, and a movable element 220, which faces the stator 210 with a slight gap, has a permanent magnet 224. Clamping stator 2 {0
A pair of yokes 221 and 222 having magnetic pole teeth 225 having the same shape as the magnetic pole tJT211 but with a pitch shifted by P/2 and shifted by P/4 from each other, and the yoke 22l thereof.
, 222, a pair of electromagnetic coil means 231, 2
32, and its electromagnetic coil means 231, 23
2 are alternately excited, the magnetic flux from the permanent magnet 224 is controlled. For example, by passing a current in the direction of arrow A through the electromagnetic coil 232, the magnetic flux passing through the magnetic pole teeth 225 of the yoke 222 decreases on one side and decreases on the other. By increasing the magnetic pole teeth 225 of the mover 220 and the polar teeth 2 of the stator 210.
11 are attracted to each other, and the movable element 220 is displaced stepwise with respect to the stator 210.

このように直進駆動する方法として変換機構を用いる方
法あるいは直接駆動する方法としてリニアモー夕が従来
から知られているが、一方上記リニアモー夕の様な直接
駆動方法と異なり他の直接駆動として例えば米国特許4
697 164号に示される方法が提案されている. この構成は、PJIH動部である基軸に対し装着された
一対のステータ手段と、そのステータ手段に対し基軸上
を摺動自在に配した一対の電機子と、その電機子に対し
端部にて旋回可能に連結され上記基軸を囲むセンター孔
を有するラッチング手段と、上記ステータ手段と電機子
間に配したばね部材からなる。このタイプの駆動方注は
、ステータ手段内に含まれる一対の電磁コイルを同様に
交互に励磁することによりばね部材の押し付け力に逆ら
い電機子がステータ側に吸引されると共に、その電機子
とtallして円盤上のラッチング手段がその端部を回
勤支点として旋回運動を行ない上記センター孔部で基軸
を掴み直進駆動を行なうものである. 発明が解決しようとするiI!a しかしながらこれらの直進運動する方法のいずれにおい
ても走行路の構成が複雑で可動部の有効ストロークに加
えて可動部自体の長さが必要であり装置全体に占める面
積が大きくなり有効なストロークを得る上において限界
があった。
Linear motors have long been known as a method of linear driving such as a method using a conversion mechanism or a method of direct driving.However, unlike the direct driving method such as the linear motor described above, there are other direct driving methods such as those disclosed in the U.S. patent. 4
697 No. 164 has proposed a method. This configuration consists of a pair of stator means attached to a base shaft which is a PJIH moving part, a pair of armatures slidably disposed on the base shaft relative to the stator means, and an end portion attached to the armature. It consists of a latching means that is rotatably connected and has a center hole surrounding the base shaft, and a spring member disposed between the stator means and the armature. In this type of driving method, a pair of electromagnetic coils included in the stator means are similarly excited alternately, so that the armature is attracted toward the stator against the pressing force of the spring member, and the armature and the tall The latching means on the disk performs a turning motion using its end as a turning fulcrum, gripping the base shaft at the center hole and driving in a straight line. iI that invention tries to solve! a However, in all of these methods of linear movement, the configuration of the traveling path is complicated, and in addition to the effective stroke of the moving part, the length of the moving part itself is required, which increases the area occupied by the entire device, making it difficult to obtain an effective stroke. There were limits at the top.

またリニアパルスモー夕等の直進駆動においても必ず一
定のわずかな空隙を介して可動子が走行されるため精度
の高い突起状の磁極歯が走行路全体にわたり必要となり
固定子全体および可動子共に高い形状精度が要望され生
産コストが増加すると共に、装置外部からの振動,衝撃
及び姿勢状態により走行路に対する可動子の支持機構の
安定性を保つのが困難であった. 更に、上記他の直接駆動方法においても構或的に電磁的
に作用する部材以外に機械的に保持する手段が必要であ
り構成部品が多くなりサイズ,コストが増加すると共に
機械的に基軸を掴むため摩耗などが生し装置の信頼性あ
るいは高精度化において問題があった。
In addition, even in straight-travel drives such as linear pulse motors, the mover always runs through a certain small gap, so highly accurate protruding magnetic pole teeth are required over the entire travel path, and both the stator and the mover are high. In addition to requiring shape accuracy and increasing production costs, it was difficult to maintain the stability of the mover support mechanism relative to the running path due to external vibrations, shocks, and posture conditions. Furthermore, in the other direct drive methods mentioned above, a mechanical holding means is required in addition to the structurally electromagnetically acting members, which increases the number of components, increases size and cost, and requires mechanical gripping of the pivot. This causes wear and other problems, which poses problems in improving the reliability and precision of the device.

本発明は、上記問題点に鑑み直進運動する上において小
型で簡易に構戊され、しかもコストを低くでき生産性に
冨むリニアアクチュエータを提供するものである。
In view of the above-mentioned problems, the present invention provides a linear actuator that is compact and easily constructed in terms of linear motion, can be manufactured at low cost, and is highly productive.

課題を解決するための手段 上記目的を達戒するために、本発明は磁性材料よりなり
走行路を有する固定部材と、その固定部材に対し磁気的
にそれぞれ当接力を発生する磁気結合部材でもって当接
支持され互いに所定ストローク内で相対変位自在なよう
対向面を有する第1及び第2の移動体と、その第1及び
第2の移動体と協働する手段であって上記第1及び第2
の移動体の対向面に電磁力を発生する磁気駆動手段とを
備えたものである。
Means for Solving the Problems In order to achieve the above object, the present invention comprises a fixing member made of a magnetic material and having a running path, and a magnetic coupling member that magnetically generates a contact force with respect to the fixing member. first and second movable bodies having opposing surfaces that are supported in abutment and are movable relative to each other within a predetermined stroke; and means for cooperating with the first and second movable bodies, the first and second movable bodies 2
and magnetic drive means for generating electromagnetic force on the opposing surface of the moving body.

作用 本発明は上記した構成により第1及び第2の移動体は常
に磁気結合部材により作られる磁束により固定部材と磁
気的に結合されており、上記磁気駆動手段を通電するこ
とにより前記対向面に電6R力が発生し第1及び第2の
移動体が所定ストローク内で吸引する方向に相対変位す
ると共に、その電磁力を発生する磁束を各移動体それぞ
れと固定部材間に流れるよう磁束通路を構成し、各移動
体の固定部材との当接部にて上記磁気結合部材の磁束と
重畳することにより固定部材との磁気的な結合力が増減
する。従って、上記電磁コイルの通電する方向,大きさ
を変えることにより第1及び第2の移動体の固定部材と
の各当接力は一方がより強める方向に他方がより弱める
方向に選択的に制御され、前記対向面に働く電磁力によ
り各移動体は一方が固定部材に保持された状態で他方が
ステ,2ブ状に変位する. 上記構成に加えて第1および第2の移動体の対向面をそ
の移動体の進行方向に対し当接部を中心に双方向に設け
、その対向面に対応して磁気駆動手段をそれぞれ設け交
互に通電することにより、各移動体の当接力およびそれ
ぞれの対向面の電磁力が選択的に制御され常に各移動体
の相対位置が初期位置に戻されながら各移動体は連続的
にステップ状の歩道運動を行ない、電磁コイルの通電方
向およびその大きさを変えることにより各移動体は双方
向に直進運動をすることができる.実施例 以下本発明の一実施例について図面を参照しながら説明
する。
Effects According to the present invention, the first and second movable bodies are always magnetically coupled to the stationary member by the magnetic flux generated by the magnetic coupling member, and by energizing the magnetic drive means, the opposing surfaces are An electric 6R force is generated and the first and second movable bodies are relatively displaced in the attracting direction within a predetermined stroke, and a magnetic flux path is created so that the magnetic flux that generates the electromagnetic force flows between each of the movable bodies and the fixed member. By superimposing the magnetic flux of the magnetic coupling member at the contact portion of each movable body with the fixed member, the magnetic coupling force with the fixed member increases or decreases. Therefore, by changing the energizing direction and magnitude of the electromagnetic coil, the respective contact forces of the first and second movable bodies with the fixed member can be selectively controlled such that one is made stronger and the other is made weaker. Due to the electromagnetic force acting on the opposing surfaces, each movable body is displaced in a two-pronged manner, with one side being held by the fixed member and the other being held by the fixed member. In addition to the above configuration, opposing surfaces of the first and second moving bodies are provided bidirectionally with respect to the traveling direction of the moving bodies centering on the abutment part, and magnetic drive means are provided respectively corresponding to the opposing surfaces and alternately. By energizing, the contact force of each moving body and the electromagnetic force of each opposing surface are selectively controlled, and while the relative position of each moving body is always returned to its initial position, each moving body is continuously moved in a step-like manner. By performing sidewalk motion and changing the energization direction and magnitude of the electromagnetic coil, each moving object can move in a straight line in both directions. EXAMPLE An example of the present invention will be described below with reference to the drawings.

第1図、第2図(a), (b)、第3図(a). (
b)は、本発明の第1の実施例における歩進型リニアア
クチュエータを示したものであり、歩進型リニアアクチ
ェエータは磁性材料からなる固定基仮10とその基板上
に当接支持され進行方向に互いに所定ストローク相対変
位自在である一対の移動体20,40からなり、移動体
20は固定基板10に対し進行方向に直交する位置関係
で当接支持され一対の当接部21a,2lbを有するコ
の字形状のヨーク2lと、その当接部21a,2lbの
中央付近にて端面が固定基板10に対し一定の空隙を介
して対向するヨーク24と、そのヨーク24によりョー
ク21中央下部付近において異なる磁極を有する両端面
を扶持された永久磁石25とを有し、その永久磁石25
を起磁力としてヨーク21.当接部21a.2lb,固
定基+Ii1 0 .固定基板10とヨーク端面24a
間の空隙およびヨーク24を経て一定の磁束が流れるよ
う磁束通路が形成される。
Figure 1, Figure 2 (a), (b), Figure 3 (a). (
b) shows a stepping type linear actuator in the first embodiment of the present invention, and the stepping type linear actuator is supported in contact with a fixed base 10 made of a magnetic material and its substrate. Consisting of a pair of movable bodies 20 and 40 that can be relatively displaced by a predetermined stroke in the direction of travel, the movable body 20 is supported in contact with the fixed base plate 10 in a positional relationship perpendicular to the direction of travel, and has a pair of abutting portions 21a and 2lb. a U-shaped yoke 2l having a U-shaped yoke 2l, a yoke 24 whose end face faces the fixed substrate 10 with a certain gap in between near the center of its abutting portions 21a and 2lb, and a yoke 24 whose end face faces the fixed substrate 10 with a certain gap therebetween; It has a permanent magnet 25 whose both end faces having different magnetic poles are supported in the vicinity, and the permanent magnet 25
As the magnetomotive force, the yoke 21. Contact portion 21a. 2lb, anchoring group + Ii1 0 . Fixed substrate 10 and yoke end surface 24a
A magnetic flux path is formed such that a constant magnetic flux flows through the air gap between the two and the yoke 24.

一方、移動体40は固定基板10に対し進行方向に当接
支持された当接部41a,4lbを有するコの字形状の
ヨーク41と、その当接部41a,4lbに対し直交す
る方向に対称に配されコの字形状を有しその両端面43
a,43bが固定基板10と一定の空隙を介して対向す
るヨーク43と、ヨーク41の中央下部付近にてヨーク
43より異なる磁極を有する両端面を挟持された永久磁
石42とを有し、その永久磁石42を起磁力としてヨー
ク41,  当接部41a,4lbおよび固定基板10
とヨーク端面43a,43b間の空隙を経てヨーク43
に一定の磁束が流れるよう磁束通路が形成される. 従って、移動体20.40のそれぞれの磁束通路である
ヨークおよび固定部材10は低炭素鋼からなる磁性材料
から主に構或され、また永久磁石25.42は移動体2
0のヨーク端面24aおよび移動体40のヨーク端面4
3a,43bにて同一の磁極が生じるよう@磁されてお
りヨークおよび固定基板10と共に磁気結合部材を構成
する。
On the other hand, the movable body 40 is symmetrical in a direction orthogonal to the U-shaped yoke 41 having contact parts 41a and 4lb that are supported in contact with the fixed board 10 in the traveling direction and the contact parts 41a and 4lb. It has a U-shape and has both end surfaces 43.
a, 43b have a yoke 43 facing the fixed substrate 10 with a certain gap therebetween, and a permanent magnet 42 sandwiched at both end faces having magnetic poles different from those of the yoke 43 near the center lower part of the yoke 41. Using the permanent magnet 42 as a magnetomotive force, the yoke 41, the contact parts 41a and 4lb, and the fixed substrate 10
and the yoke 43 through the gap between the yoke end faces 43a and 43b.
A magnetic flux path is formed so that a constant magnetic flux flows through. Therefore, the yoke and fixed member 10, which are the magnetic flux paths of each moving body 20.40, are mainly constructed of a magnetic material made of low carbon steel, and the permanent magnets 25.42 are connected to the moving body 2.
0's yoke end surface 24a and the moving body 40's yoke end surface 4
3a and 43b are magnetized to form the same magnetic pole, and together with the yoke and fixed substrate 10, constitute a magnetic coupling member.

移動体20.40間には移動体20の当接部21a,2
lbを中心に進行方向に沿ってそれぞれ双方向に固定基
板10と平行に突出し矩形断面を有するヨーク22.2
3がヨーク21と連結して設けられ、ヨーク4lの固定
基板10に対し垂直に位置する内面41cに対してその
ヨーク端面22aとおよび内面41dに対してヨーク端
面23aとわずかな空隙を介して対向しており移動体2
0.40のそれぞれの対向面を構成する.一方、移動体
20の突出するヨーク22.23には樹脂威形で形成さ
れ矩形状の中央孔を有するコイルボビン31.33に巻
回された一対の電磁コイル30.32が装着されており
、電磁コイル30.32をそれぞれ起磁力として例えば
電磁コイル30を起磁力とするならばヨークi面22a
とヨーク41c間との空隙を経てヨーク41,当接部4
 1 a + 4 l b +固定基Fi.IO,当接
部2・182lbおよびヨーク21に一定の磁束が流れ
るよう磁束通路が形戒され、その磁束により移動体20
.40の対向するそれぞれの対向面22a.41c問お
よび対向面23a,41d間に電磁力が発生し移動体2
0。40は互いに吸引方向に相対変位をなす。
Between the movable bodies 20 and 40, there are contact parts 21a and 2 of the movable body 20.
A yoke 22.2 having a rectangular cross section protrudes parallel to the fixed substrate 10 in both directions along the traveling direction with lb as the center.
3 is connected to the yoke 21, and faces the yoke end surface 22a thereof with respect to the inner surface 41c located perpendicularly to the fixed substrate 10 of the yoke 4l, and the yoke end surface 23a with respect to the inner surface 41d with a slight gap therebetween. mobile object 2
Construct each opposing surface of 0.40. On the other hand, a pair of electromagnetic coils 30.32 are attached to the protruding yoke 22.23 of the movable body 20, and are wound around a coil bobbin 31.33 made of resin and having a rectangular central hole. If the coils 30 and 32 are used as magnetomotive force, for example, if the electromagnetic coil 30 is used as magnetomotive force, then the yoke i-plane 22a
The yoke 41 and the contact portion 4 are connected through the gap between the yoke 41c and the yoke 41c.
1 a + 4 l b + fixed group Fi. The magnetic flux path is shaped so that a constant magnetic flux flows through the IO, the contact portion 2/182lb, and the yoke 21, and the magnetic flux causes the moving body 20
.. 40 opposing respective opposing surfaces 22a. An electromagnetic force is generated between the surface 41c and the opposing surfaces 23a and 41d, and the moving body 2
0.40 are relative displacements from each other in the suction direction.

本実施例においては、磁束通路をなす各ヨークおよび電
磁コイル30.32が磁気駆動手段として構成される. 固定1M+1i10は本実施例のリニアアクチュエータ
を駆動装置として用いる装置本体に固定されてありその
平坦な基板上に移動体20.40を進行方向に沿って案
内するため一体に並列に形戊された案内部材15.16
を有しており、その案内部材l5は固定基板10に垂直
な案内面15aと平行な規制面15bとを有し、案内面
15aは移動体40のヨーク41下部側面44aを案内
し規制面15bはヨーク41下部上面44bと対向し、
移動体40が固定基板10から離脱することを規制して
おり、同様に一方の案内部材16も移動体40の下部側
面を案内する. 移動体40のヨーク41中央部上面には非磁性体からな
るケーシングl8が各移動体20.40を取り囲むよう
取り付けられ、ケーシング1日の一部には被駆動体が取
り付けられる。
In this embodiment, each yoke and electromagnetic coil 30, 32 forming a magnetic flux path are configured as magnetic drive means. The fixed 1M+1i10 is fixed to the main body of the device that uses the linear actuator of this embodiment as a drive device, and guides formed integrally in parallel on the flat substrate of the device to guide the movable body 20.40 along the traveling direction. Part 15.16
The guide member l5 has a guide surface 15a perpendicular to the fixed substrate 10 and a regulating surface 15b parallel to it, and the guide surface 15a guides the lower side surface 44a of the yoke 41 of the movable body 40, faces the lower upper surface 44b of the yoke 41,
The movable body 40 is prevented from detaching from the fixed substrate 10, and one guide member 16 similarly guides the lower side surface of the movable body 40. A casing l8 made of a non-magnetic material is attached to the upper surface of the central portion of the yoke 41 of the moving body 40 so as to surround each moving body 20, 40, and a driven body is attached to a part of the casing.

なお、案内部材としてはこの案内部材15,l6の構成
以外に第12図に示すよう固定基板110に進行方向に
対し直接溝部105を設け、その溝部105に嵌合する
よう移動体40のヨーク端面41a,4lbからそれぞ
れ案内用のガイドピン106を設け溝部105に沿って
摺動自在に案内するようにしてもよい. また、固定基板10の代わりに柑脂或形品から構成され
る固定基板に一定の幅を有し移動体4oのヨーク当接部
41a,4lbの幅に対応する板状の磁性材料を一体に
或形することによって簡易な走行路を構成することもで
き、その固定基板を装置本体の基板と兼用することによ
り装置全体の簡略化が可能である。
In addition to the structure of the guide members 15 and l6, as shown in FIG. 12, as a guide member, a groove 105 is provided directly in the moving direction in the fixed substrate 110, and the yoke end face of the movable body 40 is fitted in the groove 105. Guide pins 106 for guiding may be provided from 41a and 4lb, respectively, and the guide pins 106 may be slidably guided along the groove portions 105. Further, instead of the fixed substrate 10, a plate-shaped magnetic material having a constant width and corresponding to the width of the yoke contact portions 41a and 4lb of the movable body 4o is integrally attached to the fixed substrate made of citrus or a shaped article. By shaping it into a certain shape, a simple running path can be constructed, and by using the fixed substrate as the substrate of the main body of the device, the entire device can be simplified.

更に、案内部材15.16を直綿状でなく曲線形状にす
ることにより移動体を固定基板10上で任意の方向に自
在に駆動することができる。
Furthermore, by making the guide members 15, 16 curved rather than straight, the movable body can be freely driven in any direction on the fixed base plate 10.

以上のように構成された歩進型リニアアクチュ工一夕に
おいて、その動作を第2図(a). (b)、第3図(
al, (b)を用いて説明する。
The operation of the stepping type linear actuator constructed as described above is shown in Fig. 2(a). (b), Figure 3 (
This will be explained using al, (b).

第2図(a)1第3図(alにおいて電磁コイル30,
32が通電されない場合、永久磁石25.42により前
述した磁束通路に沿って点線の向きに磁束29.49が
流れ、その磁束29.49によりヨーク2lのそれぞれ
の当接部21a.2lbおよびヨーク41の当接部41
a,4lbにて磁気吸引力が生し、ヨーク21.41は
固定基板IOに対し常に磁気的に自己保持された状態と
なる.また、ヨーク24の端面24aおよびヨーク43
のヨーク端面43a,43bにも同様に一定の空隙を介
して磁気力が生しるが、ヨーク端面24aの対向する面
積を当接部21a,2lbに対し一方のヨーク端面43
a,43bの面積を当接部41a.4lbに対し大きく
設定することにより空隙部での磁気力の影響を最大限少
なくする。
Fig. 2(a) 1 Fig. 3 (in al, the electromagnetic coil 30,
32 are not energized, a magnetic flux 29.49 flows along the above-described magnetic flux path in the direction of the dotted line due to the permanent magnet 25.42, and the magnetic flux 29.49 causes each contact portion 21a. Contact portion 41 of 2lb and yoke 41
A magnetic attraction force is generated at 4lb, and the yoke 21.41 is always magnetically self-held with respect to the fixed substrate IO. In addition, the end surface 24a of the yoke 24 and the yoke 43
Similarly, a magnetic force is generated on the yoke end surfaces 43a and 43b through a certain gap, but the opposing area of the yoke end surface 24a is
a, 43b is the area of contact portion 41a. By setting it larger than 4lb, the influence of magnetic force in the gap can be minimized.

次に、電磁コイル30を前述の磁束通路に沿って第2図
(a).第3図(a)に示す実線の方向に磁束54が流
れるよう通電することにより、磁束54は移動体20の
当接部21a,2lbおよび移動体40の当接部41a
,4lbにおいて永久磁石25.42による磁束29.
49と重畳し、当接部41a,4lb付近はより磁束が
増加し無通電時に較べ移動体40の固定基板10に対す
る当接力はより増加し、反対に当接部21a,2lbで
の磁束は減少し移動体20の固定基FilOに対する当
接力は減少し、磁束54によりヨーク端面22aと対向
するヨーク41c間には同様に電磁力が生じる. 従って、電磁コイル30に流す電流量を当接部21a,
2lb付近にて磁束がほぼなくなる状態、即ち磁位が零
に近い状態に設定することによりヨーク41が固定基F
i10に保持された状態で移動体20が案内部材15.
16に沿いヨーク内面41cとヨーク端面22aとの空
隙を減少する方向に変位し、電磁コイル30の通電を止
めることにより固定基板10に第2図(b),第3図(
b)に示す位置関係でもって移動体20.40が自己保
持された状態となる. 次に、電磁コイル32を第2図中).第3図(b)に示
す実線の方向に磁束55が流れるように通電することに
より上記とは逆に移動体20が固定基仮10に保持され
移動体40が変位自在の状態になると共に、ヨーク23
.41の対向面23aと.41dに生しる電磁力でもっ
てその対向面23a,41d間の空隙が減少する方向に
移動体40が変位し、電磁コイル32の通電を止めるこ
とにより移動体40は固定基板10上に対向面23a,
416間の有効な空隙だけ進行方向に変位し第2図(a
),第3図(a)の初期の相対位置関係でもって自己保
持される。
Next, the electromagnetic coil 30 is moved along the aforementioned magnetic flux path as shown in FIG. 2(a). By energizing the magnetic flux 54 so that it flows in the direction of the solid line shown in FIG.
, 4lb, the magnetic flux due to the permanent magnet 25.42 is 29.
49, the magnetic flux increases more near the contact portions 41a and 4lb, and the contact force of the movable body 40 against the fixed substrate 10 increases more than when no electricity is applied, and conversely, the magnetic flux at the contact portions 21a and 2lb decreases. However, the contact force of the movable body 20 against the fixed base FILO decreases, and an electromagnetic force is similarly generated between the yoke end face 22a and the opposing yoke 41c due to the magnetic flux 54. Therefore, the amount of current flowing through the electromagnetic coil 30 is controlled by the contact portion 21a,
By setting the magnetic flux to almost zero near 2lb, that is, the magnetic potential is close to zero, the yoke 41 is fixed at the fixed base F.
The movable body 20 is held at the guide member 15.i10.
16 in a direction that reduces the gap between the yoke inner surface 41c and the yoke end surface 22a, and by stopping the energization of the electromagnetic coil 30, the fixed substrate 10 is moved as shown in FIGS. 2(b) and 3(b).
With the positional relationship shown in b), the moving body 20.40 becomes self-supported. Next, the electromagnetic coil 32 (in FIG. 2). By energizing so that the magnetic flux 55 flows in the direction of the solid line shown in FIG. 3(b), the movable body 20 is held on the fixed base 10, contrary to the above, and the movable body 40 is brought into a freely displaceable state. York 23
.. 41 facing surface 23a and . The movable body 40 is displaced in the direction in which the gap between the opposing surfaces 23a and 41d is reduced by the electromagnetic force generated on the fixed substrate 10, and by stopping the energization of the electromagnetic coil 32, the movable body 40 moves the opposing surface onto the fixed substrate 10. 23a,
416 is displaced in the traveling direction by the effective gap between
) and are self-maintained with the initial relative positional relationship shown in FIG. 3(a).

以上の動作がこの歩進型リニアアクチュエータの一サイ
クルの動作であり、同様にiii磁コイル30.32を
交互に通電することにより移動体20.40は連続的に
歩進運動を行ない、電磁コイル30.32に通電するパ
ルス状の人力信号を制御することにより任意のストロー
クを得ることができる。
The above operation is one cycle of the stepwise linear actuator. Similarly, by alternately energizing the magnetic coils 30 and 32, the movable body 20 and 40 continuously perform stepwise motion, and An arbitrary stroke can be obtained by controlling a pulsed human power signal applied to 30.32.

対向面22a,41c問および対向面23a41d間に
は薄い樹脂製のシートであるスペーサ13が設けられ、
対向面の空隙において移動体20.40が相対的に変位
する変位lの調整を行い、また対向面が当接した状態に
おいて一定の空隙を設けることにより電磁コイルの交互
の通電により生しるヨークの残留磁化を軽減し対向面で
の衝突音を緩和する働きをなす。
A spacer 13, which is a thin resin sheet, is provided between the opposing surfaces 22a and 41c and the opposing surface 23a and 41d.
By adjusting the relative displacement l of the movable body 20.40 in the gap between the opposing surfaces, and by providing a certain gap when the opposing surfaces are in contact, a yoke is created by alternately energizing the electromagnetic coils. It works to reduce the residual magnetization of the magnet and the sound of collision on the opposing surface.

リニアアクチェエー夕の要望される特性としては装置の
大きさ、消費電力を最小にして性能を最大限に発揮でき
る構成が必要であり、本実施例においてはその性能の尺
度の一つである速度負荷特性を、一サイクルの駆動にお
ける歩進量と、対向面22a,41c問および対向面2
3a,41d間での磁束の自乗に比例し対向面面積に反
比例する磁気力と移動体20.40のそれぞれの質量に
より設定される単位時間当りの入力パルス数により決め
ることができ、そのパラメータの一つである対向面での
磁束は電磁コイル30.32の起磁力と前記磁束通路、
主に対向面での空隙部の磁気抵抗とにより決まり、更に
効率よく駆動されるため永久磁石25.42の作る磁束
とほぼ同一程度でしかも駆動時に当接部41a,4lb
および21a,2lbにて磁束が重畳される際に磁気飽
和を生じないよう設定し、当接部の保持力のうち進行方
向の戒分は必ず対向面での磁気力より大きくなるよう考
慮する必要がある. 次に、前記進行方向とは反対方向に直進運動を行なう場
合について説明する。第2図(a).第3図(alにお
いて、′r!lViコイル30を前述の進行方向とは反
対に磁束(図示せず)が流れるよう通電することにより
当接部21a,2lbでの保持力が強まり反対に当接部
41a,4lbでの保持力が弱まると共に、同時に発生
する対向面22a41c間の磁気力により移動体20は
固定基板10に保持されて移動体40が反対方向に所定
ストローク変位し、次に電磁コイル32を第2図(b)
,第3図(b)の方向とは反対方向に磁束(図示せず)
が流れるよう通電することにより移動体40は固定基板
10に保持され移動体20が反対方向に所定ストローク
変位してーサイクルの動作を完了し、同様に電磁コイル
30.32を交互に通電することにより反対方向に移動
体20.40は連続的にしかも歩進的に変位する。
The desired characteristics of a linear actuator include a configuration that maximizes performance by minimizing device size and power consumption, and in this example, this is one of the measures of performance. The speed load characteristics are determined by the step amount in one cycle of driving, the opposing surfaces 22a and 41c, and the opposing surface 2.
It can be determined by the number of input pulses per unit time set by the magnetic force that is proportional to the square of the magnetic flux between 3a and 41d and inversely proportional to the area of the opposing surfaces and the mass of each of the moving bodies 20.40, and the parameter is The magnetic flux on one opposing surface is the magnetomotive force of the electromagnetic coil 30, 32 and the magnetic flux path,
It is mainly determined by the magnetic resistance of the gap between the opposing surfaces, and because it is driven more efficiently, the magnetic flux generated by the permanent magnets 25 and 42 is almost the same as that of the contact parts 41a and 4lb during driving
21a and 2lb should be set so that magnetic saturation does not occur when magnetic flux is superimposed, and it is necessary to consider that the holding force of the contact part in the traveling direction is always greater than the magnetic force on the opposing surface. There is. Next, a case will be described in which a straight movement is performed in a direction opposite to the traveling direction. Figure 2(a). In FIG. 3 (al), by energizing the 'r!lVi coil 30 so that a magnetic flux (not shown) flows in the opposite direction to the direction of movement described above, the holding force at the abutting portions 21a and 2lb is strengthened and the opposite abutting force is applied. The holding force at the contact portions 41a and 4lb weakens, and the movable body 20 is held on the fixed substrate 10 by the magnetic force between the opposing surfaces 22a41c generated at the same time, and the movable body 40 is displaced by a predetermined stroke in the opposite direction. The coil 32 is shown in Fig. 2(b).
, magnetic flux (not shown) in the opposite direction to that in Figure 3(b).
The movable body 40 is held by the fixed base plate 10 by energizing the electromagnetic coils 30 and 32 so that the movable body 20 is displaced by a predetermined stroke in the opposite direction to complete a cycle of operation. In the opposite direction the mobile body 20.40 is displaced continuously and stepwise.

第15図(a)は上記電磁コイル30.32を通電する
駆動回路のブロック図であり、第15図(b)はその時
の入力パルスと移動体40の挙動の関係を示したもので
ある。
FIG. 15(a) is a block diagram of a drive circuit that energizes the electromagnetic coils 30 and 32, and FIG. 15(b) shows the relationship between the input pulse and the behavior of the moving body 40 at that time.

入力パルスと進行方向の方向信号が通常のマルチバイプ
レークの機能とゲートによる信号切り換えを有するコン
トローラ150に入力されるとそれに応じて電磁コイル
30.32を双方向に通電する機能を有する駆動回路1
52,153から選択的にパルス幅Tの電流パルスが電
磁コイル30,32に出力され、その出力に応し移動体
2040それぞれが電流パルスに対して慣性による遅れ
時間をともない交互に保持位置を変えながらステップ状
に距Nsずつ入力パルスに比例して歩進運動を行い、反
対方向も同様に方向信号の切替えにより距離Sずつ歩進
運動を行なう。
A drive circuit 1 has a function of bidirectionally energizing the electromagnetic coils 30 and 32 in response to input pulses and direction signals of the traveling direction being input to a controller 150 having a normal multi-by-break function and signal switching by a gate.
52, 153 selectively output current pulses with a pulse width T to the electromagnetic coils 30, 32, and in response to the output, each moving body 2040 alternately changes its holding position with a delay time due to inertia with respect to the current pulse. In the same manner, a stepwise movement is performed stepwise by a distance Ns in proportion to the input pulse, and in the opposite direction, the stepwise movement is similarly performed by a distance S by switching the direction signal.

以上のように、本実施例は磁気駆動手段である一対の電
磁コイルを交互に通電しその電流の方向、大きさを変え
ることにより各移動体の保持力を選択的に制御し双方向
に歩進運動を行なうリニアアクチュエータを提供する。
As described above, this embodiment selectively controls the holding force of each moving body by alternately energizing a pair of electromagnetic coils, which are magnetic drive means, and changing the direction and magnitude of the current. A linear actuator that performs forward motion is provided.

従って、走行路に特別な軌道を必要とせず歩道運動に必
要な駆動系をすべてアクチュエー夕内に収納される構成
であるため全体的に部品点数の少ない簡易な構成を実現
できる。しかも走行路全体に高精度が要望されず支持機
構が簡略化されるため生産性に冨む。
Therefore, since the drive system required for sidewalk movement is all housed within the actuator without requiring a special track on the running path, a simple configuration with a small number of parts can be realized overall. Furthermore, productivity is increased because high precision is not required for the entire running path and the support mechanism is simplified.

第4図は、本発明の第2の実施例を示したものであり、
本実施例の歩進型リニアアクチュエータも同様に固定基
板10とその基板上に当接支持され進行方向に互いに所
定ストローク相対変位自在である一対の移動体20.4
0からなり、移動体20は固定基板10に対し進行方向
と直交する位置関係で並列に配され当接部21a,24
aを有するヨーク21.24と、固定基板10に当接す
るヨーク21.24間に異なる磁極の両端面を挟持され
磁気結合部材を構成する永久磁石25とを有し、固定基
板10、各ヨーク21.24間で磁束通路を形成し固定
基板10に磁気的に結合される。
FIG. 4 shows a second embodiment of the present invention,
The stepping type linear actuator of this embodiment similarly includes a fixed substrate 10 and a pair of movable bodies 20.4 which are supported in contact with the substrate and are movable relative to each other by a predetermined stroke in the direction of movement.
0, the movable body 20 is arranged in parallel with the fixed substrate 10 in a positional relationship perpendicular to the direction of movement, and has contact portions 21a, 24.
a, and a permanent magnet 25 that constitutes a magnetic coupling member by sandwiching both end surfaces of different magnetic poles between the yoke 21.24 that abuts the fixed substrate 10, and the fixed substrate 10, each yoke 21. .24 to form a magnetic flux path and are magnetically coupled to the fixed substrate 10.

一方、移動体40は固定基板10に対し進行方向に当接
支持された当接部41a  4lbおよび当接部43a
,43bを有しそれぞれ並列に配されたコの字形状のヨ
ーク41.43と、そのヨーク41.43間に異なる磁
極を有する両端面を扶持され磁気結合部材を構成する永
久磁石42とを有し、同様に固定基板10、各ヨーク4
1.43間で磁束通路を形成し固定基板1oに磁気的に
結合されており、永久磁石25.42の磁化の向きは移
動体20.40中の磁束通路の磁束の流れが同一方向と
なるよう同一方向に着磁される。
On the other hand, the movable body 40 is supported in contact with the fixed substrate 10 in the traveling direction by contact portions 41a to 4lb and contact portions 43a.
, 43b, each having a U-shaped yoke 41, 43 arranged in parallel, and a permanent magnet 42 having both end faces having different magnetic poles supported between the yokes 41, 43 and forming a magnetic coupling member. Similarly, the fixed substrate 10 and each yoke 4
1.43 forms a magnetic flux path and is magnetically coupled to the fixed substrate 1o, and the direction of magnetization of the permanent magnet 25.42 is such that the magnetic flux flows in the magnetic flux path in the moving body 20.40 in the same direction. They are magnetized in the same direction.

移動体20.40には、それぞれのヨーク2124に対
し進行方向に沿ってそれぞれ双方向に固定基板10と平
行に突出し円形断面を有する一対のヨーク22.23お
よび一方の一対のヨーク26.27が設けられ、ヨーク
41の固定基板IOに対し垂直に位置する一対の内面4
1c41dは移動体20のヨーク端面22a,23aと
ヨーク43の内面43c,43dはヨーク端面26a,
27aとわずかな空隙を介して対向しそれぞれ対向面を
構成しており、一方一対のヨーク22.23および他の
一対のヨーク26.27にはコイルボビン31.33お
よび35.37に巻回された一対の電磁コイル30.3
2および他の一対の電磁コイル34.36がそれぞれ装
着され、その電磁コイル3・0,32をそれぞれ起磁力
として例えば!磁コイル30を起磁力とするならばヨー
ク端面22aを経てヨーク41,当接部41a,4lb
,固定基Fi10,当接部21aおよびヨーク2lにお
いて一定の磁束が流れるよう磁束通路が形戊されその磁
束でもってそれぞれの対向面22a,41cおよび23
a,41dにおいて電磁力が発生し移動体20.40は
進行方向に対し互いに吸引する方向に相対変位をなす.
また電磁コイル34.36によっても同様な磁束通路が
形戒される. 固定基板10での案内部材は第1の実施例と同様である
. 以上のように構成された歩進型リニアアクチュエータの
動作は基本的には第1の実施例と同様であり、進行方向
に駆動する場合まず移動体40が固定基板10に保持さ
れ他の移動体20が所定ストローク変位するよう並列に
配された一対の電磁コイル30.34をヨーク端面22
aにN極がまたヨーク端面26aにはS極が生しるよう
それぞれ異なる方向に同時に通電し、次に、他の一対の
電磁コイル32.36を同様にヨーク端面23aにS極
がヨーク端面27aにN極が生しるように通電すること
により反対に移動体20が保持され移動体40が所定ス
トローク変位しーサイクルの動作を完了し、2&tlの
一対の電磁コイルを交互に通電することにより第1の実
施例と同様に移動体20.40が固定基板10上を連続
的に歩進運動を行なうことができる. 本実施例は、固定基板lOと移動体20.40の磁気結
合部材による磁束に対し一対の電磁コイル30.34お
よび32.36の磁束を重畳しやすい構或であるため固
定基板10に対する移動体20.40の当接力を選択的
にしかも確実に制御することができる. また、本実施例は、電磁コイル30.32および34.
36め組合せ方法により直進運動以外に第5図(a).
第5図(b)に示すように永久磁石2542を中心とす
る回転運動を行なうことができ、第5図(a)に示すよ
うに、移動体20の永久磁石25を中心として交差する
よう対称に配した111コイル30.36を当接部21
a,24aにて当接力が滅少し当接部41a,4lbに
て当接力が増加するよう図中の実線の方向に磁束56.
57が流れるよう通電することにより、移動体40が固
定基板10上に保持され移動体20が対向面41c.2
2aおよび対向面43d,27a間に作用する電磁力に
よる時計方向の回転モーメントにより回転変位され第5
図(a)の位置関係となり、次に、一方の一対のiti
ffコイル32.34を矢印の点線の向きに磁束58.
59が流れるよう通電することにより同様に移動体20
が固定基板l0に保持され、移動体40が対向面41d
,23aおよび26a,43cに作用する’tm力のモ
ーメントにより対向面の有効な空隙と永久磁石25.4
2からの各対向面までの距離により決まるステップ角だ
け回転変位されーサイクルの動作を完了する。
The movable body 20.40 includes a pair of yokes 22.23 and one pair of yokes 26.27 that protrude parallel to the fixed substrate 10 in both directions along the traveling direction of each yoke 2124 and have a circular cross section. A pair of inner surfaces 4 are provided and are located perpendicularly to the fixed substrate IO of the yoke 41.
1c41d is the yoke end surface 22a, 23a of the moving body 20, and the inner surface 43c, 43d of the yoke 43 is the yoke end surface 26a,
27a with a slight gap therebetween, forming opposing surfaces, and one pair of yokes 22.23 and the other pair of yokes 26.27 are wound around coil bobbins 31.33 and 35.37. A pair of electromagnetic coils 30.3
2 and another pair of electromagnetic coils 34 and 36 are respectively attached, and the electromagnetic coils 3, 0 and 32 are used as magnetomotive force, for example! If the magnetic coil 30 is used as a magnetomotive force, the yoke 41, contact portions 41a, 4lb are generated via the yoke end face 22a.
, the fixed base Fi10, the contact portion 21a, and the yoke 2l, magnetic flux paths are formed so that a constant magnetic flux flows, and the magnetic flux is used to direct the opposing surfaces 22a, 41c, and 23, respectively.
An electromagnetic force is generated at points a and 41d, and the movable bodies 20 and 40 are displaced relative to the direction of movement in a direction in which they attract each other.
A similar magnetic flux path is also created by the electromagnetic coils 34 and 36. The guide members on the fixed board 10 are the same as those in the first embodiment. The operation of the stepwise linear actuator configured as described above is basically the same as that in the first embodiment, and when driving in the advancing direction, the moving body 40 is first held on the fixed substrate 10, and then the other moving bodies A pair of electromagnetic coils 30, 34 arranged in parallel so that the coils 20 are displaced by a predetermined stroke
At the same time, electricity is applied in different directions so that the N pole is generated at the yoke end surface 23a and the S pole is generated at the yoke end surface 26a. By energizing 27a so that the N pole is generated, the movable body 20 is held, and the movable body 40 completes a predetermined stroke displacement cycle, and by alternately energizing the pair of electromagnetic coils 2 & tl. As in the first embodiment, the movable body 20.40 can perform continuous step motion on the fixed substrate 10. In this embodiment, since the magnetic flux of the pair of electromagnetic coils 30.34 and 32.36 is easily superimposed on the magnetic flux caused by the magnetic coupling member of the fixed substrate 10 and the moving body 20.40, the moving body relative to the fixed substrate 10 The contact force of 20.40 mm can be selectively and reliably controlled. Further, in this embodiment, the electromagnetic coils 30, 32 and 34.
Figure 5(a).
As shown in FIG. 5(b), it is possible to perform a rotational movement centering on the permanent magnet 2542, and as shown in FIG. The 111 coils 30 and 36 arranged in the contact part 21
The magnetic flux 56.a is directed in the direction of the solid line in the figure so that the contact force decreases at the contact portions 41a, 24a and increases at the contact portions 41a, 4lb.
57 is energized to flow, the movable body 40 is held on the fixed substrate 10, and the movable body 20 is held on the opposing surface 41c. 2
The fifth
The positional relationship is as shown in figure (a), and then one pair of iti
ff coils 32, 34 in the direction of the dotted line of the arrow.
Similarly, by energizing 59 so that it flows, the moving body 20
is held on the fixed substrate l0, and the movable body 40 is held on the opposing surface 41d.
, 23a and 26a, 43c due to the moment of 'tm force, the effective air gap between the opposing surfaces and the permanent magnet 25.4
2 to complete the cycle of rotation by a step angle determined by the distance from each opposing surface.

従って、本発明の構成では簡易な構成でもって2組のi
!磁コイルの組合せにより固定基板10上を各移動体2
0.40が任意の方向に自己保持されながら変位する. 第6図は第3の実施例を示したものであり、本実施例も
同様に固定基板IOに対し当接支持され進行方向に所定
のストロークだけ相対変位自在である一対の移動体20
.40からなり、その移動体の一サイクルの動作のうち
相対位置を常に初期の位置関係に戻す手段をこれまでの
電磁コイルを用いる代わりに弾性部材で行なう。
Therefore, in the configuration of the present invention, two sets of i
! Each movable body 2 moves on the fixed substrate 10 by a combination of magnetic coils.
0.40 is displaced while being self-maintained in any direction. FIG. 6 shows a third embodiment, and this embodiment also includes a pair of movable bodies 20 which are supported in contact with a fixed substrate IO and can be relatively displaced by a predetermined stroke in the direction of movement.
.. 40, the means for always returning the relative position to the initial positional relationship during one cycle of operation of the movable body is performed by an elastic member instead of using the conventional electromagnetic coil.

移動体20および40は固定基板10上に前述のように
永久磁石25.42を側部に配しそれぞれ当接部21a
および41aを伴うヨーク2lおよび41を有し固定基
板10上に磁気的に結合されている。
The movable bodies 20 and 40 have permanent magnets 25 and 42 disposed on the sides of the fixed substrate 10 as described above, and have contact portions 21a, respectively.
and 41a, and are magnetically coupled onto the fixed substrate 10.

移動体20.40間にはヨーク4lの内面41cに対向
し互いに対向面22a,41cを構戊するよう突出した
ヨーク22がヨーク21に連結しており、そのヨーク2
2にはコイルボビン31を伴うt磁コイル30が装着さ
れヨーク22,ヨーク41,固定基板10およびヨーク
2lを一定の磁束が流れるよう磁束通路が形成され、そ
の磁束でもって互いに吸引する方向に相対変位する.移
動体20.40のコイルボビン31と対向面41 c間
には電磁コイル30と同軸上に圧縮コイルバネl2が対
向面22a,41cが互いに離れる方向に付勢して設け
られ、その圧縮コイルバネl2の付勢力によりヨーク2
1の外側部に一体に樹脂戊形され移動体40の進行方向
の変位の規制とともにヨーク41の幅方向も規制する規
制部材l4がヨーク4lを取り囲み当接保持している.
以上のように構成された歩進型アクチュエー夕において
、電磁コイル30を通電することにより移動体40は固
定基板10に保持され移動体20が所定ストローク相対
変位自在の状態になると共に対向面22a,41c間に
生じる電磁力により移動体20は圧縮コイルバネl2に
逆らい有効な空隙量のみステップ状に変位し、次に電磁
コイル30の通電を止めることにより当接部21a,4
1aでの磁気結合部材による保持力と通電時に移動体2
0が変位することにより蓄積されたコイルバネ12の押
し付け力とでもって移動体20および40は互いに離れ
る方向でヨーク41が規制部材l4に当接する位置まで
変位し、移動体20.40は互いに電磁コイル30によ
る変位に対しコイルバネl9により戻されながら相対的
に変位する. この戻される変位量は電磁コイル30の立ち下がり時間
、各移動体の各質量および磁気力により生じる各当接部
21a,41aでの保持力により変化する。
Between the movable bodies 20.40, a yoke 22 is connected to the yoke 21 and protrudes from the inner surface 41c of the yoke 4l so as to form opposing surfaces 22a and 41c.
2 is equipped with a magnetic coil 30 with a coil bobbin 31, and a magnetic flux path is formed so that a constant magnetic flux flows through the yoke 22, yoke 41, fixed substrate 10, and yoke 2l, and the magnetic flux causes relative displacement in the direction of attraction to each other. do. A compression coil spring l2 is provided coaxially with the electromagnetic coil 30 between the coil bobbin 31 of the moving body 20.40 and the opposing surface 41c, and biases the opposing surfaces 22a and 41c away from each other. Yoke 2 depending on power
A regulating member l4 integrally molded with resin on the outer side of the yoke 1 and regulating the displacement of the movable body 40 in the traveling direction and also regulating the width direction of the yoke 41 surrounds and holds the yoke 4l in contact with it.
In the stepwise actuator configured as described above, by energizing the electromagnetic coil 30, the movable body 40 is held on the fixed substrate 10, and the movable body 20 is brought into a state where it can be relatively displaced by a predetermined stroke, and the opposing surfaces 22a, Due to the electromagnetic force generated between 41c, the movable body 20 is displaced stepwise by an effective gap amount against the compression coil spring l2, and then by stopping the energization of the electromagnetic coil 30, the contact portions 21a and 4
The holding force due to the magnetic coupling member 1a and the moving body 2 when energized
With the pressing force of the coil spring 12 accumulated by the displacement of the coil spring 12, the moving bodies 20 and 40 are displaced in a direction away from each other to a position where the yoke 41 comes into contact with the regulating member l4, and the moving bodies 20 and 40 are moved away from each other by the electromagnetic coil. 30 and is relatively displaced while being returned by the coil spring 19. The returned displacement amount varies depending on the falling time of the electromagnetic coil 30, the mass of each moving body, and the holding force at each contact portion 21a, 41a caused by the magnetic force.

一方、反対方向に駆動される場合は上記!磁コイル30
の通電を前述と反対方向にオンオフ制御することにより
コイルバネl9でもって初期状態に戻されながら移動体
20.4’Oは互いに相対的に変位する。この時、駆動
回路は第15図(a)に示す回路を用いることにより同
様に達成される。
On the other hand, if it is driven in the opposite direction, the above! magnetic coil 30
By controlling the energization on and off in the opposite direction to that described above, the movable bodies 20.4'O are displaced relative to each other while being returned to the initial state by the coil spring 19. At this time, the driving circuit is similarly achieved by using the circuit shown in FIG. 15(a).

以上の構成により本実施例は一つの電磁コイル30と弾
性部材l2のような非常に簡易な構成でもって双方向に
直進運動を行なうことができる。
With the above configuration, this embodiment can perform linear movement in both directions with a very simple configuration such as one electromagnetic coil 30 and the elastic member l2.

また、第7図は第4の実施例を示したもので、第3の実
施例と基本的な構戊は同一で双方向に駆動する際に駆動
回路構成が簡易となる構成であり、移動体20は固定基
板10との当接部21aを中心に進行方向に沿って双方
向に一対のヨーク2223とそのヨーク22.23に装
着された一対の電磁コイル30a,30bが配され、そ
のヨーク22.23の対向面22a,23aとそれぞれ
対向して移動体40aおよび40bが配されている。
In addition, FIG. 7 shows a fourth embodiment, which has the same basic structure as the third embodiment and has a structure that simplifies the drive circuit configuration when driving in both directions. The body 20 includes a pair of yokes 2223 and a pair of electromagnetic coils 30a, 30b attached to the yokes 22.23, which are disposed in both directions along the traveling direction with the contact portion 21a with the fixed substrate 10 as the center. Moving bodies 40a and 40b are arranged to face opposing surfaces 22a and 23a of 22 and 23, respectively.

各移動体20.40aおよび40bには磁気結合部材で
ある永久磁石25.42aおよび42bが固定基板10
との各当接部21a,41aおよび4lbにて磁束の方
向が一定となるよう磁化されその両端面をそれぞれ他の
ヨーク24.43aおよび43bにて扶持されており、
各移動体20と40a問および移動体20と40b間に
は、上記ヨーク22.23と同軸状に弾性部材である圧
縮コイルバネ12a、12bが各移動体の互いに離れる
方向に付勢して設けられ、その付勢力に対して移動体4
0aおよび40bの進行方向の変位を規制する規制部材
14が移動体40a.40bを取り囲むよう移動体20
に一体に戒形して取り付けられている。
Permanent magnets 25.42a and 42b, which are magnetic coupling members, are attached to the fixed substrate 10 and 25.
The contact portions 21a, 41a and 4lb are magnetized so that the direction of magnetic flux is constant, and both end faces are supported by other yokes 24, 43a and 43b, respectively.
Between each moving body 20 and 40a and between moving bodies 20 and 40b, compression coil springs 12a and 12b, which are elastic members, are provided coaxially with the yokes 22 and 23 to urge the moving bodies away from each other. , the moving body 4
A regulating member 14 that regulates the displacement of moving bodies 40a. The moving body 20 surrounds 40b.
It is attached as an integral part of the temple.

以上のように横戒された歩進型アクチュエータにおいて
その動作は基本的に第3の実施例と同様で、矢印八方向
に駆動される時は@磁コイル30aの通電のオンオフ制
御と弾性部材12aとによりまた矢印八方向と反対方向
には電るRコイル30bの通電と弾性部材12bとでも
って常に初期状態に戻されながら移動体20と40aあ
るいは移動体20と40bはそれぞれ歩進的に相対変位
する。
The operation of the stepwise actuator that has been sideways controlled as described above is basically the same as that of the third embodiment, and when driven in the eight directions of the arrow, @ the on/off control of the energization of the magnetic coil 30a and the elastic member 12a. As a result, the moving bodies 20 and 40a or the moving bodies 20 and 40b are gradually moved relative to each other while being constantly returned to the initial state by energizing the R coil 30b and the elastic member 12b in the direction opposite to the eight arrow directions. Displace.

本実施例の構成においては各電磁コイル30aおよび3
0bは一方向のみしか通電されず駆動回路の構成が簡素
となる。
In the configuration of this embodiment, each electromagnetic coil 30a and 3
0b is energized only in one direction, which simplifies the configuration of the drive circuit.

第8図は第5の実施例を示したものであり、本実施例も
同様に固定基板10に対し当接支持され進行方向に所定
のストロークだけ相対変位自在である一対の移動体20
.40からなり、各移動体20.40の磁気結合部材を
永久磁石から磁気結合用の電磁コイルを用いて構成した
もので他の構成は第3の実施例と同様である。
FIG. 8 shows a fifth embodiment, and this embodiment also includes a pair of movable bodies 20 which are supported in contact with a fixed base plate 10 and are relatively displaceable by a predetermined stroke in the direction of movement.
.. 40, and the magnetic coupling member of each moving body 20.40 is constructed by using a permanent magnet and an electromagnetic coil for magnetic coupling, and the other construction is the same as that of the third embodiment.

移動体20および40は固定基板10上に前述のように
各当接部21a,41aを伴うヨーク21.41を有し
、そのヨーク21.41のそれぞれの側面には固定基i
ioに対し一定の空隙を有する他のヨーク24.43が
一体に連結してありそのヨーク24.43に磁気結合部
材を構成する電磁コイル46.47が装着され固定基板
lOに対し移動体20.40はそれぞれ磁気的に結合さ
れている。
The movable bodies 20 and 40 have yokes 21.41 with respective abutting parts 21a and 41a on the fixed substrate 10 as described above, and the fixed base i is provided on each side of the yoke 21.41.
Another yoke 24.43 having a certain gap is integrally connected to the yoke 24.43, and an electromagnetic coil 46.47 constituting a magnetic coupling member is attached to the yoke 24.43, and the movable body 20.43 is connected to the fixed substrate IO. 40 are each magnetically coupled.

移動体20および40間には、互いに対向面22a,4
1cを構或するよう突出したヨーク22が移動体20の
ヨーク2lに連結しそのヨーク22に磁気駆動手段を構
或する電磁コイル3oが装着され、ヨーク21.41の
それぞれの側面間には進行方向に対し弾性部材であるく
の字形状をなす一対の板バネ19が、上記対向面22a
,41cが互いに離れる方向に付勢して設けられており
、仮バネ19の形状精度、剛性により対向面22a,4
1c間の空隙を任意に設定することができる. 対向面22aおよび41c間のうち少なくとも一方には
薄いシート状のスペーサl3が配設されており、移動体
20.40は固定基板lo上の案内部材15.16に沿
って案内される.以上の様に構成された歩進型リニアア
クチュエータにおいて第9図(a). (b). (C
)を用いてその動作を説明する. 第9図(a)において、矢印X方向に進行する場合、常
時移動体20の電磁コイル46は通電された状態となり
固定基板10に対し移動体2oは電磁コイル46を起磁
力とする矢印A方向の磁束にょり磁気的に結合されてい
る。
Between the movable bodies 20 and 40, mutually opposing surfaces 22a and 4 are provided.
A protruding yoke 22 constituting a yoke 1c is connected to a yoke 2l of the movable body 20, and an electromagnetic coil 3o constituting a magnetic drive means is attached to the yoke 22. A pair of leaf springs 19, which are elastic members and have a dogleg shape, are attached to the opposing surface 22a.
, 41c are biased away from each other, and due to the shape accuracy and rigidity of the temporary spring 19, the opposing surfaces 22a, 4
The gap between 1c can be set arbitrarily. A thin sheet-like spacer l3 is disposed between at least one of the opposing surfaces 22a and 41c, and the movable body 20.40 is guided along the guide member 15.16 on the fixed substrate lo. In the step-type linear actuator configured as above, as shown in FIG. 9(a). (b). (C
) to explain its operation. In FIG. 9(a), when moving in the direction of arrow X, the electromagnetic coil 46 of the movable body 20 is always energized, and the movable body 2o moves in the direction of arrow A with the electromagnetic coil 46 as a magnetomotive force with respect to the fixed board 10. are magnetically coupled by the magnetic flux.

次に第9図中)に示すように磁気駆動手段を構成する電
磁コイル30を当接部21aにて矢印八方向の磁束を滅
しる方向に通電することにより当接部21aの保持力は
減少し反対に当接部41aには矢印B方向の磁束が流れ
るため移動体40は固定基板10上に保持され移動体2
0は摺動可能な状態となると共に移動体20.40の各
対向面22a,41c間には磁気力が発生するため、対
の板バネl9の押付力に逆らって対向面22a,41c
間の空隙を減しる方向に移動体20は相対的に変位する
Next, as shown in Fig. 9), by energizing the electromagnetic coil 30 constituting the magnetic drive means in the direction of eliminating the magnetic flux in the eight directions of arrows at the contact part 21a, the holding force of the contact part 21a is reduced. On the other hand, since the magnetic flux in the direction of arrow B flows through the contact portion 41a, the movable body 40 is held on the fixed substrate 10 and the movable body 2
0 is in a slidable state and a magnetic force is generated between each opposing surface 22a, 41c of the movable body 20.40, so that the opposing surfaces 22a, 41c are moved against the pressing force of the pair of leaf springs 19.
The moving body 20 is relatively displaced in a direction that reduces the gap between them.

この時、移動体40が固定基板10上で、上記対向面2
2a,41c間の磁気力に対して確実に保持された状態
とするために上記電磁コイル30の通電と同時に移動体
40の磁気結合部材である電磁コイル47を当接部41
aにて矢印B方向と同一方向に磁束が流れるよう通電し
当接部41aでの保持力を更に高めている. 次に第9図(C)に示すように上記imコイル30およ
び47の通電を止めることにより当接部41aでの磁束
は急激に減し一方当接部21aでの磁束は電磁コイル4
6の通電が保持されるため移動体20は当接部21aに
て保持された状態で移動体40は蓄積された板バネ19
の押付け力により所定のストロークのみ進行方向に変位
する。
At this time, the movable body 40 is placed on the fixed substrate 10 on the opposing surface 2.
At the same time as the electromagnetic coil 30 is energized, the electromagnetic coil 47, which is a magnetic coupling member of the movable body 40, is connected to the contact portion 41 in order to ensure that the electromagnetic coil 47 is held securely against the magnetic force between the moving body 40 and the electromagnetic coil 30.
At point a, electricity is applied so that the magnetic flux flows in the same direction as arrow B, further increasing the holding force at the contact portion 41a. Next, as shown in FIG. 9(C), by stopping the energization of the im coils 30 and 47, the magnetic flux at the contact portion 41a decreases rapidly, while the magnetic flux at the contact portion 21a decreases from the electromagnetic coil 4.
6 is maintained, the movable body 20 is held at the contact portion 21a, and the movable body 40 is moved by the accumulated leaf spring 19.
The pressing force causes displacement in the advancing direction only by a predetermined stroke.

以上の動作が歩道運動の一サイクルであり、対向面22
a,41c間の有効な空隙ΔSのみ歩進変位する。
The above movement is one cycle of sidewalk movement, and the facing surface 22
Only the effective gap ΔS between a and 41c is progressively displaced.

一方、矢印X方向と反対に変位する場合は、移動体40
の磁気結合部材である電磁コイル47を常時通電状態と
し、磁気駆動手段である電磁コイル30と移動体20中
の電磁コイル46の通電を同時にオンオフ制御すること
により同様に歩進運動を行なうことができる。
On the other hand, when the moving body 40 is displaced in the opposite direction to the arrow X direction, the moving body 40
By keeping the electromagnetic coil 47, which is a magnetic coupling member, energized at all times, and simultaneously controlling the energization of the electromagnetic coil 30, which is a magnetic drive means, and the electromagnetic coil 46 in the moving body 20, it is possible to perform step motion in the same way. can.

以上の構成により、本実施例は一つの電磁コイル30と
弾性部材19のような非常に簡易な構成でもって確実な
歩進量を伴い双方向に直進運動を行なうことができる. 第10図は、第6の実施例を示したものであり基本的な
構成要素は第5の実施例と同様であり双方向に駆動する
際駆動回路を簡易にし確実に歩進変位を行なう構成であ
り、移動体20および40は同様に固定基板10上に当
接支持され移動体20は当接部21aを中心に進行方向
に沿い双方向に配されて一対の対向面22a,41cお
よび23a.41dを伴うヨーク22.23を有し、そ
のヨーク22.23には磁気駆動手段である電磁コイル
30.32が装着されており、各移動体20および40
間には同様にくの字形状の板バネ19a,19bが進行
方向に対し互いに離れる方向に付勢して設けてある. 移動体20および40のそれぞれの磁気結合部材として
移動体20は、固定基板10に対し永久磁石25a.2
5bを起磁力として移動体40はヨーク4lの中央部側
面に設けた電磁コイル48を起磁力として固定基板10
間と磁束通路を構成しており各当t妾部21aおよび4
1a,4lbにて磁束の方向が同一となるよう着磁ある
いは通電される。
With the above configuration, this embodiment can perform bidirectional linear motion with a reliable step amount with a very simple configuration such as one electromagnetic coil 30 and elastic member 19. FIG. 10 shows a sixth embodiment, the basic components of which are the same as those of the fifth embodiment, and are configured to simplify the drive circuit and reliably perform stepwise displacement when driving in both directions. Similarly, the movable bodies 20 and 40 are supported in contact with the fixed substrate 10, and the movable body 20 is disposed in both directions along the traveling direction with the abutting portion 21a as the center, and has a pair of opposing surfaces 22a, 41c, and 23a. .. 41d, and an electromagnetic coil 30.32 serving as a magnetic drive means is attached to the yoke 22.23, and each moving body 20 and 40
Similarly, doglegged leaf springs 19a and 19b are provided between the two and biased in the direction of movement away from each other. The movable body 20 has permanent magnets 25a. 2
5b as a magnetomotive force, the movable body 40 uses the electromagnetic coil 48 provided on the side surface of the central portion of the yoke 4l as a magnetomotive force to move the fixed substrate 10.
A magnetic flux path is formed between each of the concubine parts 21a and 4.
1a and 4lb are magnetized or energized so that the direction of magnetic flux is the same.

以上の様に構成された歩進型リニアアクチュエータにお
いて、その動作は基本的には第5の実施例と同様であり
移動体20の磁気結合部材により常時固定基板lOに磁
気的に結合されており、矢印X方向に進行する際は電磁
コイル30と48の通電を同時にON/OFFすること
によりまた反対方向に進行する際は電磁コイル33と4
8の通電を同時に制御することにより弾性部材である板
バネ19a,19bの復元力を用いて、移動体20およ
び40は双方向に歩進的に変位する。
In the stepwise linear actuator configured as described above, its operation is basically the same as that in the fifth embodiment, and it is always magnetically coupled to the fixed substrate lO by the magnetic coupling member of the moving body 20. When traveling in the direction of arrow
By simultaneously controlling the energization of the movable bodies 20 and 40, the movable bodies 20 and 40 are displaced stepwise in both directions using the restoring force of the leaf springs 19a and 19b, which are elastic members.

本実施例の構成は、各電磁コイル30.32の通電方向
が一方向のみであり駆動回路構成を簡易にできると共に
確実な歩進量を伴って双方向に直進運動を行なうことが
できる。
In the configuration of this embodiment, each electromagnetic coil 30, 32 is energized in only one direction, which simplifies the configuration of the drive circuit and allows bidirectional linear movement with a reliable step amount.

第11図は第7の実施例を示したものであり、本実施例
は固定部材を進行方向に中心軸を有し磁性材料よりなる
軸状部材111より構成しその軸状部材111に当接支
持され進行方向に互いに所定のストロークだけ相対変位
自在である一対の移動体120,140からなり、移動
体120は軸状部材111に同軸状に配され中央の穴部
にて軸状部材111に当接支持され当接部121aを有
する円板状のヨーク121と、そのヨーク121に隣接
して同様に軸状部材111に一定の空隙を介して同軸状
に配された中央穴端面124aを有するヨーク124と
、そのヨーク121,124により異なる磁極を有する
両端面を扶持され同様に軸状部材l1lと同軸状に配さ
れるリング状の永久磁石125とを有し、その永久磁石
125を起磁力としてヨークl21,当接部1 2 1
 a,軸状部材111,輪状部材21とヨーク端面12
4a間の空隙およびヨーク124を経て一定の磁束が流
れるよう磁束通路が形成される.一方、移動体140は
軸状部材111に同軸状にヨーク121と離間して配せ
られ移動体120と同様な構成を有するヨーク141,
ヨーク当接部141a,  ヨーク143および永久磁
石142とを有し、その永久磁石142を起磁ノjとし
て軸状部材111と移動体140間で磁束通路が形戊さ
れ、当接部121a.141aにて磁束の方向が一定と
なるよう永久磁石125.142の磁化の向きは同一方
向に着磁されており、各移動体120,140は軸状部
材111に磁気結合部材でもって磁気的に結合されてい
る。
FIG. 11 shows a seventh embodiment, in which the fixing member is composed of a shaft-like member 111 made of a magnetic material and having a central axis in the direction of travel, and is brought into contact with the shaft-like member 111. It consists of a pair of movable bodies 120 and 140 that are supported and can be displaced relative to each other by a predetermined stroke in the traveling direction. It has a disk-shaped yoke 121 that is supported in abutment and has an abutment part 121a, and a central hole end surface 124a that is adjacent to the yoke 121 and is similarly arranged coaxially with the shaft-like member 111 with a certain gap therebetween. It has a yoke 124 and a ring-shaped permanent magnet 125 whose end faces with different magnetic poles are supported by the yokes 121 and 124 and which is also arranged coaxially with the shaft-shaped member l1l. As yoke l21, contact part 1 2 1
a, shaft-shaped member 111, ring-shaped member 21 and yoke end surface 12
A magnetic flux path is formed such that a constant magnetic flux flows through the air gap between the 4a and the yoke 124. On the other hand, the movable body 140 has a yoke 141 which is disposed coaxially on the shaft member 111 and spaced apart from the yoke 121 and has a similar configuration to the movable body 120.
It has a yoke contact portion 141a, a yoke 143, and a permanent magnet 142, and a magnetic flux path is formed between the shaft-like member 111 and the movable body 140 using the permanent magnet 142 as a magnetization nozzle, and the contact portion 121a. The magnetization directions of the permanent magnets 125 and 142 are magnetized in the same direction so that the direction of magnetic flux is constant at 141a, and each moving body 120, 140 is magnetically connected to the shaft member 111 by a magnetic coupling member. combined.

移動体120,140間には移動体120のヨーク12
1と連結し軸状部材111と同軸状に円筒状のヨーク1
22が配せられその端面122aがヨーク141の内側
面14lbとわずかな空隙を介して対向し移動体120
.140の一対の対向面を構成しており、そのヨーク1
22内側には中央孔を有し軸状部材111とわずかな隙
間を介して配設されコイルボビン131を伴う電磁コイ
ル130が装着され、その電磁コイル130を起磁力と
してヨーク122aと側面14lb間の空隙を経てヨー
ク141,軸状部材1l1,当接部121aおよびヨー
ク121間に磁束通路が形成され、その磁束により対向
面122a,14lb間にて11磁力が発生し移動体1
20.140は軸状部材111上を互いに吸引方向に相
対変位する.また、コイルホビン131とヨーク側面1
4lb間にはヨーク121.141を互いに離反する方
向に付勢するよう圧縮コイルバネ112が軸状部材11
1と同軸状に設けられ、移動体120,140の外周部
には移動体120軸状部材111上の軸方向の変位を規
制するカップ上のケーシング113とそのケーシング1
13に係合され移動体120のヨーク124の軸方向の
変位を規制する円板部材114が取り付けられている.
本実施例においては、ヨーク121,141の当接部1
21a,141aが案内部材を兼用している。
The yoke 12 of the moving body 120 is located between the moving bodies 120 and 140.
A cylindrical yoke 1 connected to 1 and coaxial with the shaft member 111.
22 is disposed, and its end surface 122a faces the inner surface 14lb of the yoke 141 with a slight gap therebetween, and the movable body 120
.. The yoke 1 constitutes a pair of opposing surfaces of the yoke 140.
An electromagnetic coil 130 with a coil bobbin 131 is installed inside the yoke 122a and the yoke 122a and the side surface 14lb using the electromagnetic coil 130 as a magnetomotive force. A magnetic flux path is formed between the yoke 141, the shaft-shaped member 1l1, the contact portion 121a, and the yoke 121, and the magnetic flux generates 11 magnetic force between the opposing surfaces 122a and 14lb, and the moving body 1
20 and 140 are displaced relative to each other on the shaft-like member 111 in the suction direction. In addition, the coil hobbin 131 and the yoke side surface 1
A compression coil spring 112 is connected to the shaft-like member 11 between the 4 lbs. so as to bias the yokes 121 and 141 in the direction away from each other.
A cup-like casing 113 and its casing 1 are provided coaxially with the movable bodies 120 and 140 on the outer periphery of the movable bodies 120 and 140.
A disk member 114 that is engaged with the yoke 13 and restricts the axial displacement of the yoke 124 of the movable body 120 is attached.
In this embodiment, the contact portion 1 of the yokes 121 and 141 is
21a and 141a also serve as guide members.

以上のように構成された歩進型アクチュエー夕において
、if磁コイル130を通電することにより、前述した
実施例と同様に移動体140は固定基板111に保持さ
れ移動体120が所定ストローク相対変位自在の状態に
なると共に対向面122a.14lb間に生じる電磁力
により移動体120は圧縮コイルバネ112に逆らい有
効な空隙量のみステップ状に変位し、次に′R磁コイル
130の通電を止めることにより当接部121a,14
1aでの磁気結合部材による保持力と通電時に移動体1
20が変位することにより蓄積されたコイルバネ112
の押し付け力とでもって移動体120および140は互
いに離れる方向でヨーク124が円板部材】14に当接
する位置まで変位し、移動体120,140は互いに相
対的に変位する。
In the stepping actuator configured as described above, by energizing the IF magnetic coil 130, the movable body 140 is held on the fixed substrate 111 similarly to the above-described embodiment, and the movable body 120 can be relatively displaced by a predetermined stroke. When the state is reached, the opposing surface 122a. Due to the electromagnetic force generated between 14lb and 14lb, the movable body 120 is displaced stepwise by the effective gap amount against the compression coil spring 112, and then by stopping the current supply to the 'R magnetic coil 130, the contact portions 121a, 14
The holding force by the magnetic coupling member at 1a and the moving body 1 when energized
The coil spring 112 accumulated by the displacement of 20
Due to the pressing force, the movable bodies 120 and 140 are displaced in a direction away from each other to a position where the yoke 124 comes into contact with the disk member 14, and the movable bodies 120 and 140 are displaced relative to each other.

以上の構或により本実施例は固定部材として軸状部材を
案内部材と兼用して一つの電磁コイル30と弾性部材1
2でもって双方向に直進運動を行なうことができ装置本
体がアルミ等のダイカスト基板においても非常に簡易な
リニアアクチュエータを構成できる。
With the above structure, this embodiment uses the shaft member as a fixed member and also as a guide member, and has one electromagnetic coil 30 and one elastic member 1.
2, it is possible to perform linear movement in both directions, and a very simple linear actuator can be constructed even when the main body of the device is a die-cast substrate made of aluminum or the like.

第12図,第13図は第8の実施例を示したものであり
、基本的には第1の実施例と同様な構成をなすが第1の
実施例にて固定基板に摺動自在に支持された一対の移動
体20.40のうちどちらか一方をこのリニアアクチュ
エータを装着する装置本体に固定し他の移動体と上記固
定基FilOを所定ストローク内で相対変位可能にした
ものであ第12図において、装置本体の基板110には
第1図の移動体40と同様な構成を有する固定部材70
がそのヨーク71中央部下面で固定され、その進行方向
に配した一対の当接部71a,7lbにて磁性材料から
なる可動基板60を相対的に変位自在に支持し、その固
定部材70の当接部 71a.7lb間には第1図の移
動体20と同様な構成でヨーク91を有する移動体90
がそのヨーク91の当接部91a,9lbにて可動板6
0と当接しており、固定部材70および移動体90のそ
れぞれには磁気結合部材である永久磁石72.95が可
動仮60と当接部71a,7lbおよび可動板60と当
接部91a,9lbにて磁気的に結合しそのときの磁束
の流れが同一方向になるよう磁化されて保持されている
12 and 13 show the eighth embodiment, which basically has the same configuration as the first embodiment, but in the first embodiment, it can be slid freely on the fixed substrate. Either one of the pair of supported moving bodies 20.40 is fixed to the main body of the device to which this linear actuator is mounted, and the other moving body and the fixed base FilO can be relatively displaced within a predetermined stroke. In FIG. 12, a fixing member 70 having a configuration similar to that of the movable body 40 in FIG.
is fixed at the lower surface of the center of the yoke 71, and a pair of abutting portions 71a and 7lb arranged in the direction of movement supports a movable substrate 60 made of a magnetic material so as to be relatively displaceable. Joint part 71a. A moving body 90 having a structure similar to the moving body 20 in FIG. 1 and having a yoke 91 is installed between 7lb.
The movable plate 6 is moved at the contact portions 91a and 9lb of the yoke 91.
Permanent magnets 72.95, which are magnetic coupling members, are in contact with the fixed member 70 and the movable body 90, respectively. They are magnetized and held so that the magnetic flux flows in the same direction.

固定部材70と移動体90間にはヨーク7lの内面71
c,71dと対向面を構成してヨーク9lからそれぞれ
双方向に基板1lOに平行に突出したヨーク92.93
が配せられ、そのヨーク92.93には電磁コイル80
.82がコイルボビン81.83に巻回されて装着され
ており、電磁コイル80を起磁力とする場合ヨーク92
,対向面92aとヨーク内面71C1 当接部71a,
7lb,可動板61.当接部91a,9lbおよびヨー
ク91を経て一定の磁束が流れるよう磁束通路が形戒さ
れ電磁コイル80.82と共に磁気駆動手段を構成する
Between the fixed member 70 and the movable body 90, there is an inner surface 71 of the yoke 7l.
Yokes 92 and 93 forming opposing surfaces with c and 71d and protruding from the yoke 9l in both directions parallel to the substrate 1lO.
is arranged, and the electromagnetic coil 80 is placed on the yoke 92,93.
.. 82 is wound around and attached to coil bobbins 81 and 83, and when the electromagnetic coil 80 is used as a magnetomotive force, the yoke 92
, opposing surface 92a and yoke inner surface 71C1 contact portion 71a,
7lb, movable plate 61. A magnetic flux path is formed so that a constant magnetic flux flows through the contact portions 91a, 9lb and the yoke 91, and together with the electromagnetic coils 80 and 82, they constitute a magnetic drive means.

固定部材70の当接部71a,71面上両端部には可動
板60の両側部60a.60bを案内する案内部材74
.75が一体に設けられ可動板60が進行方向に沿って
所定ストーロク可動自在に変位される。
The movable plate 60 has both side portions 60a. Guide member 74 that guides 60b
.. 75 is integrally provided, and the movable plate 60 is movably displaced by a predetermined stroke along the traveling direction.

以上の構成の本発明において基本的な動作は第1の実施
例と同様であり、無通電時に磁気結合部材により固定部
材70に可動仮60が自己保持されその可動Fi60に
移動体90が自己保持されており、Nmコイル80を第
10図に示す実線の向きに磁束88が流れるよう通電す
ることによりその磁束88は磁気結合部材による磁束7
8.98と重畳して固定部材70の当接部71a,7l
bにてはその当接力が減少し移動体90の当接部91a
にては当接力がより増加し、対向面71C,92a間に
生じる電磁力により可動板60は移動体90に保持され
ながら固定部材70の対向面71c,92a間の空隙を
減少する方向に移動体90と共に変位する。
The basic operation of the present invention having the above configuration is the same as that of the first embodiment, and when no electricity is applied, the movable temporary 60 is self-retained by the fixed member 70 by the magnetic coupling member, and the movable body 90 is self-retained by the movable Fi 60. By energizing the Nm coil 80 so that the magnetic flux 88 flows in the direction of the solid line shown in FIG.
8.98 and the contact portions 71a and 7l of the fixing member 70
At b, the contact force decreases and the contact portion 91a of the moving body 90
At , the contact force increases, and the electromagnetic force generated between the opposing surfaces 71C and 92a causes the movable plate 60 to move in the direction of reducing the gap between the opposing surfaces 71c and 92a of the fixed member 70 while being held by the movable body 90. It is displaced together with the body 90.

次に、電磁コイル80の通電を止め電磁コイル82を通
電することにより、前述とは反対に固定部材70の当接
部71a,7lbにては当接力が増加し当接部91a,
9lbにては当接力は減少し対向面71d,93a間に
生じる電磁力でもって可動体60は固定部材70に保持
された状態で移動体90のみ第1O図に示す初期の相対
位置関係に戻リーサイクルの動作を完了し、同様に電磁
コイル80.82を交互に通電することにより可動板6
0は連続的に歩進運動を行なうことができ、更に電磁コ
イル80.82の通電する方向を変えることにより可動
板60は反対方向に駆動することができる。
Next, by stopping the energization of the electromagnetic coil 80 and energizing the electromagnetic coil 82, the contact force increases at the contact portions 71a, 7lb of the fixing member 70, contrary to the above, and the contact portions 91a, 7lb increase.
At 9lb, the contact force decreases, and the electromagnetic force generated between the opposing surfaces 71d and 93a returns only the movable body 90 to the initial relative positional relationship shown in FIG. 1O, with the movable body 60 being held by the fixed member 70. After completing the recycle operation, the movable plate 6 is similarly energized alternately to the electromagnetic coils 80 and 82.
The movable plate 60 can be moved in the opposite direction by changing the direction in which the electromagnetic coils 80 and 82 are energized.

なお、上記電磁コイル80.82は固定部材70側に配
しても同様の機能を有する。
Note that the electromagnetic coils 80 and 82 have the same function even if they are placed on the fixing member 70 side.

以上のように、本実施例は可動板60が磁性材料あるい
は磁性材料を一体形成した基板であれば歩進運動を行な
うことができ部品点数の少ない簡易な構或のリニアアク
チュエータを実現できる。
As described above, in this embodiment, if the movable plate 60 is made of a magnetic material or a substrate integrally formed with a magnetic material, it is possible to perform stepwise motion and realize a linear actuator having a simple structure with a small number of parts.

また、上記可動板をこのリニアアクチュエータを取り付
ける装置本体の部材と兼用することが容易であり装置全
体での簡素化も達成できる。
Furthermore, it is easy to use the movable plate as a member of the device main body to which the linear actuator is attached, and the entire device can be simplified.

また、磁気駆動手段が固定部材70あるいは移動体90
側に固定されるため配線を伴った移動がなく装置の信頼
性を高めることができ、必要とされるストロークに対し
精度の要望される箇所が少なくコス},&[l立て性に
おいて優位である.なお、以上の実施例において固定部
材として固定基板IOをまた可動部材として可動板60
を実施例として挙げたが磁性材料からなり直線性のある
部材であれば例えば進行方向に中心軸を有する軸状のも
のであれば同様の機能を果たし、磁気結合部材の永久磁
石を電磁コイルの励磁に置き換えても同様な機能を果た
す。
Further, the magnetic driving means may be the fixed member 70 or the movable body 90.
Since it is fixed to the side, there is no movement associated with the wiring, which increases the reliability of the device, and there are fewer places where precision is required for the required stroke, making it superior in terms of cost}, &[l. .. In addition, in the above embodiment, the fixed substrate IO is used as a fixed member, and the movable plate 60 is used as a movable member.
was given as an example, but if it is made of a magnetic material and is linear, for example, if it is shaft-shaped with its central axis in the direction of travel, it will have the same function, and if the permanent magnet of the magnetic coupling member is connected to the electromagnetic coil. Even if it is replaced with excitation, it will perform the same function.

また、本実施例において示した例えば固定部材移動体お
よび案内部材の形状は限定されるものではない。
Moreover, the shapes of the fixed member moving body and the guide member shown in this example are not limited.

第14図は本発明の応用の一例を示したものであり、螺
旋状または同心円状に記録された情報トラノクを有する
ディスク状記録媒体1(11から記録情報を半導体レー
ザ光を用いた光ビノクアンプ102にて読みとり再生す
る光ディスク装置の光ピックアンプ移送装置に用いたも
のであり、歩進型リニアアクチュエータ100はディス
ク装置の基盤である固定基板110に当接支持されアク
チュエータ100上に光ピックアンプ102が保持され
ている。
FIG. 14 shows an example of the application of the present invention, in which recorded information is transferred from a disk-shaped recording medium 1 (11) having information tracks recorded in a spiral or concentric form to an optical binocular amplifier 102 using semiconductor laser light. The stepping linear actuator 100 is supported in contact with a fixed substrate 110, which is the base of the disk device, and the optical pick amplifier 102 is mounted on the actuator 100. Retained.

記録媒体1(11はスピンドルモータ1(13により回
転駆動され、固定基板110上には記録媒体1(11の
半径方向に沿って溝部105が設けられ、その溝部10
5にリニアアクチュエータlOOの下部より突出した案
内用ガイドピン106が嵌合自在に配せられている。
The recording medium 1 (11) is rotationally driven by a spindle motor 1 (13), and a groove 105 is provided on the fixed substrate 110 along the radial direction of the recording medium 1 (11).
A guiding guide pin 106 protruding from the lower part of the linear actuator lOO is disposed at 5 so as to be freely fitable therein.

リニアアクチュエータ100は溝部105に案内され記
録媒体1(11の半径方向に光ピックアノプ102の記
録媒体1(11に対するトランク誤差に対し補正しなが
ら駆動される。
The linear actuator 100 is guided by the groove 105 and driven in the radial direction of the recording medium 1 (11) while correcting the trunk error of the optical pick anop 102 with respect to the recording medium 1 (11).

以上のように固定部材である固定基板110に一体に案
内溝を設けアクチュエータ100をその溝部105に沿
って当接摺動させることにより光ディスク装置全体の部
品点数を大幅に減らすことができ小型,薄型化がはかれ
る。
As described above, by providing a guide groove integrally with the fixed substrate 110, which is a fixed member, and allowing the actuator 100 to slide in contact with the groove 105, the number of parts of the entire optical disk device can be significantly reduced, making it compact and thin. The transformation is measured.

また、上記案内溝部105を磁性材#4であれば任意の
位置に設定することができドライブ#i置全体の設計の
自由度を大きくとることができる。
Further, the guide groove portion 105 can be set at any position if the magnetic material #4 is used, and the degree of freedom in designing the entire drive #i position can be increased.

発明の効果 以上のように本発明は、磁性材料よりなり走行路を有す
る固定部材と、その固定部材に対し磁気的にそれぞれ当
接力を発生する6ヰ気結合部材でもって当接支持され互
いに所定ストローク内で相対変位自在なよう対向面を有
する第1及び第2の移動体と、その第1及び第2の移動
体と圃働する手段であって上記第1及び第2の移動体の
対向面にTiI力を発生する磁気駆動手段とを設けるこ
とにより、固定部材に対し常に永久磁石のような簡単な
構成の磁気結合部材でもって安定に当接保持され、しか
も第1および第2の移動体内に相対的に所定のストロー
クを得ることができる駆動部すべてが収納され走行路と
なる固定部材上に突起状の磁極歯など特別な軌道を必要
としない構成となるため全体的に部品点数の少ない簡易
でコンパクトな駆動装置を実現できるという優れた効果
を持つ。
Effects of the Invention As described above, the present invention provides a fixing member made of a magnetic material and having a running path, and a six-way coupling member that magnetically generates an abutting force on the fixing member. first and second movable bodies having opposing surfaces so as to be relatively displaceable within a stroke; and means for working with the first and second movable bodies, the first and second movable bodies facing each other; By providing a magnetic driving means that generates a TiI force on the surface, the fixed member is always held in stable contact with the fixed member by a magnetic coupling member of a simple structure such as a permanent magnet, and the first and second movements are All of the drive parts that can obtain a specified stroke relative to the inside of the body are housed, and the structure does not require special tracks such as protruding magnetic pole teeth on the fixed member that serves as the travel path, so the overall number of parts is reduced. This has the excellent effect of realizing a simple and compact drive device with a small number of units.

また、固定部材に対する移動体の支持機構を簡略化でき
しかもアクチュエータ内の主要な精度を管理するだけで
パルス状の入力信号でもって高精度な位置決め制御と任
意のストロークを設定することができ装置全体のコスト
を低く生産性に冨んだリニアアクチュエータを提供する
ことができる。
In addition, the support mechanism of the movable body relative to the fixed member can be simplified, and by simply managing the main accuracy within the actuator, high-precision positioning control and arbitrary stroke settings can be performed using pulse-shaped input signals, making it possible to set the entire device. It is possible to provide a linear actuator with low cost and high productivity.

更に、本発明のリニアアクチュエータを用いることによ
りドライブ装置全体においては装置の一部と兼用して案
内部材を設けることができドライブ装置全体の低コスト
化およびコンパクト化をはかることができる。
Furthermore, by using the linear actuator of the present invention, a guide member can be provided that also serves as a part of the entire drive device, making it possible to reduce the cost and size of the entire drive device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例における歩進型リニアア
クチュエータの分解斜視図、第2図(a)(b)は第3
図(a)の1−1′における側断面図、第3図(a),
 (b)は第2図(a)の2−2′における側断面図、
第4図は本発明の第2の実施例における歩進型リニアア
クチュエータの分解斜視図、第5図(a), (b)は
第4図の横断面図、第6図は本発明の第3の実施例にお
ける歩進型リニアアクチュエータの側断面図、第7図は
本発明の第4の実施例における歩進型リニアアクチュエ
ータの分解斜視図、第8図は本発明の第5の実施例にお
ける歩進型リニアアクチュエータの分解斜視図、第9図
(a). (b), (C)は第8図の側断面図、第I
O図は本発明の第6の実施例における歩進型リニアアク
チェエータの分解斜視図、第1l図は本発明の第7の実
施例における歩進型リニアアクチュエータの側断面図、
第12図は本発明の第8の実施例における歩進型リニア
アクチュエータの分解斜視図、第13図は第12図の側
断面図、第14図は本発明の第1の実施例における歩進
型リニアアクチュエータを適用した光ピソクアップ移送
装置の斜視図、第15図(alは本発明の歩進型リニア
アクチュエータの回路ブロンク、第15図中)は本発明
の歩進型リニアアクチュエータの動作説明図、第16図
は従来のリニアバルスモークの概念図である。 lO・・・・・・固定部材、l2・・・・・・弾性部材
、13・・・・・・スペーサ、14・・・・・・規制部
材、15.16・・・・・・案内部材、20・・・・・
・第1の移動体、21,22.23・・・・・・第1の
移動体のヨーク、25・・・・・・磁気結合部材を構成
する永久磁石、30.32・・・・・・磁気駆動手段を
構成する電磁コイル、40・・・・・・第2の移動体、
41.43・・・・・・第2の移動体のヨーク、42・
・・・・・磁気結合部材を構成する永久磁石。
FIG. 1 is an exploded perspective view of a stepping linear actuator according to a first embodiment of the present invention, and FIGS.
Side sectional view at 1-1' in Figure (a), Figure 3 (a),
(b) is a side sectional view taken along line 2-2' in FIG. 2(a);
FIG. 4 is an exploded perspective view of a stepping linear actuator according to a second embodiment of the present invention, FIGS. 5(a) and (b) are cross-sectional views of FIG. 4, and FIG. FIG. 7 is an exploded perspective view of the stepping linear actuator in the fourth embodiment of the present invention, and FIG. 8 is a fifth embodiment of the present invention. An exploded perspective view of the stepping linear actuator in FIG. 9(a). (b), (C) are side sectional views of Fig. 8,
Figure O is an exploded perspective view of a stepping linear actuator according to a sixth embodiment of the present invention, and Figure 1l is a side sectional view of a stepping linear actuator according to a seventh embodiment of the present invention.
FIG. 12 is an exploded perspective view of a stepping type linear actuator in the eighth embodiment of the present invention, FIG. 13 is a side sectional view of FIG. 12, and FIG. 14 is a stepped linear actuator in the first embodiment of the present invention. FIG. 15 is a perspective view of an optical pisok-up transfer device to which a linear actuator is applied (al is a circuit diagram of the stepwise linear actuator of the present invention, and in FIG. 15) is an explanatory diagram of the operation of the stepwise linear actuator of the present invention. , FIG. 16 is a conceptual diagram of a conventional linear valve smoke. lO...Fixing member, l2...Elastic member, 13...Spacer, 14...Regulating member, 15.16...Guiding member , 20...
- First moving body, 21, 22.23... Yoke of first moving body, 25... Permanent magnet forming magnetic coupling member, 30.32... - Electromagnetic coil constituting the magnetic drive means, 40... second moving body,
41.43...Yoke of second moving body, 42.
...Permanent magnet that constitutes the magnetic coupling member.

Claims (19)

【特許請求の範囲】[Claims] (1)磁性材料よりなる走行路を有する固定部材と、そ
の固定部材に当接支持され互いに所定ストローク内で相
対変位自在であるよう空隙を介して配せられた対向面と
上記固定部材に対し磁気的にそれぞれ当接力を発生する
磁気結合部材とからなる第1および第2の移動体と、そ
の第1及び第2の移動体と協働する手段であって、上記
各移動体の対向面に磁気力を発生し上記磁気結合部材に
よる第1および第2の移動体のそれぞれの当接力を磁気
的に制御すると共に上記磁気力により各移動体を相対的
に変位させ以って固定部材に対し第1および第2の移動
体を歩進的に変位せしめる磁気駆動手段とを具備したこ
とを特徴とする歩進型リニアアクチュエータ。
(1) A fixed member having a running path made of a magnetic material, an opposing surface that is in contact with and supported by the fixed member and is disposed with a gap therebetween so as to be able to move relative to each other within a predetermined stroke, and the fixed member. A means for cooperating with first and second moving bodies comprising magnetic coupling members each magnetically generating a contact force, and a means for cooperating with the first and second moving bodies, the opposing surface of each of the moving bodies generates a magnetic force to magnetically control the respective contact forces of the first and second movable bodies by the magnetic coupling member, and also relatively displaces each movable body by the magnetic force to the fixed member. A step-type linear actuator characterized in that it comprises magnetic drive means for step-by-step displacement of the first and second movable bodies.
(2)第1および第2の移動体の磁気結合部材を各移動
体が固定部材間とそれぞれ磁束通路を形成するよう上記
固定部材に対しそれぞれ当接部を有するヨーク部材とそ
の当接部にて磁束の方向が同一となるよう磁化され上記
ヨーク部材にて保持された永久磁石とより構成したこと
を特徴とする請求項(1)記載の歩進型リニアアクチュ
エータ。
(2) The magnetic coupling members of the first and second movable bodies are connected to the yoke member and its abutment portion, each having a contact portion with respect to the fixed member, so that each movable body forms a magnetic flux path between the fixed members. 2. The stepwise linear actuator according to claim 1, further comprising a permanent magnet magnetized so that the directions of magnetic flux are the same and held by the yoke member.
(3)第1および第2の移動体中の対向面を磁気結合部
材のヨーク部材と連結し上記固定部材と平行になるよう
に各移動体に配せられたヨーク部材の端面からなりその
対向する空隙が移動体の進行方向に沿って可変自在に配
されたことを特徴とする請求項(1)記載の歩進型リニ
アアクチュエータ。
(3) The opposing surfaces of the first and second movable bodies are connected to the yoke member of the magnetic coupling member, and the end face of the yoke member is disposed on each movable body so as to be parallel to the fixed member. 2. The step-type linear actuator according to claim 1, wherein the gaps are arranged variably along the traveling direction of the moving body.
(4)各移動体の対向面を磁気結合部材の当接部中心線
上に位置して構成したことを特徴とする請求項(3)記
載の歩進型リニアアクチュエータ。
(4) The stepping type linear actuator according to claim (3), wherein the opposing surfaces of each moving body are located on the center line of the contact portion of the magnetic coupling member.
(5)各移動体の対向面に非磁性材料のシート状のスペ
ーサを付加して構成したことを特徴とする請求項(3)
記載の歩進型リニアアクチュエータ。
(5) Claim (3) characterized in that a sheet-shaped spacer made of a non-magnetic material is added to the opposing surface of each moving body.
The stepping linear actuator described.
(6)磁気駆動手段を磁気結合部材の当接部を中心に進
行方向に沿って双方向に各移動体間の対向面を配しその
それぞれの対向面に交互に磁気力を発生しかつ磁気結合
部材それぞれの当接部を経て第1および第2の移動体と
固定部材間とに磁束通路が形成されるよう上記各対向面
を有するヨーク部材に装着された一対の電磁コイルとよ
り構成したことを特徴とする請求項(1)記載の歩進型
リニアアクチュエータ。
(6) The magnetic driving means is configured such that opposing surfaces between each moving body are arranged bidirectionally along the traveling direction centering on the contact portion of the magnetic coupling member, and magnetic force is alternately generated on each of the opposing surfaces. A pair of electromagnetic coils are attached to the yoke member having each of the opposing surfaces so that a magnetic flux path is formed between the first and second movable bodies and the fixed member through the contact portions of the coupling members. The stepping linear actuator according to claim 1, characterized in that:
(7)第1および第2の移動体の磁気結合部材を各移動
体が固定部材間とで作る磁束通路にて固定部材との空隙
を設けて構成したことを特徴とする請求項(1)記載の
歩進型リニアアクチュエータ。
(7) Claim (1) characterized in that the magnetic coupling members of the first and second movable bodies are configured such that a gap is provided between each movable body and the fixed member in a magnetic flux path created between the fixed members. The stepping linear actuator described.
(8)磁気駆動手段を各移動体間に一対の対向面を配し
その対向面を有するヨーク部材に装着された電磁コイル
と各移動体間に配され上記対向面を進行方向に互いに離
反する方向に付勢する弾性体とより構成したことを特徴
とする請求項(1)記載の歩進型リニアアクチュエータ
(8) A magnetic drive means is arranged between a pair of opposing surfaces between each moving body, and an electromagnetic coil attached to a yoke member having the opposing surfaces is arranged between each moving body to move the opposing surfaces away from each other in the traveling direction. 2. The stepping linear actuator according to claim 1, further comprising an elastic body that biases the linear actuator in a direction.
(9)磁気駆動手段の弾性体をヨーク部材と同軸状に配
した圧縮コイルバネとより構成したことを特徴とする請
求項(8)記載の歩進型リニアアクチュエータ。
(9) The stepping type linear actuator according to claim (8), wherein the elastic body of the magnetic drive means is constituted by a compression coil spring disposed coaxially with the yoke member.
(10)各移動体中どちらか一方に進行方向に対し他の
移動体が離反する相対変位を規制する規制部材を一体に
構成したことを特徴とする請求項(8)記載の歩進型リ
ニアアクチュエータ。
(10) A stepping type linear train according to claim (8), characterized in that one of each of the moving bodies is integrally formed with a regulating member that regulates the relative displacement of the other moving body in the direction of movement. actuator.
(11)磁気駆動手段を磁気結合部材の当接面を中心に
進行方向に沿って双方向に各移動体間の対向面を配しそ
のそれぞれの対向面に交互に磁気力を発生しかつ磁気結
合部材それぞれの当接部を経て第1および第2の移動体
と固定部材間とに磁束通路が形成されるよう上記各対向
面を有するヨーク部材に装着された一対の電磁コイルと
各移動体間に配され上記対向面を進行方向に互いに離反
する方向に付勢する弾性体とより構成したことを特徴と
する請求項(1)記載の歩進型リニアアクチュエータ。
(11) The magnetic driving means is arranged with facing surfaces between each moving body bidirectionally along the traveling direction centering on the contact surface of the magnetic coupling member, and alternately generates magnetic force on each of the facing surfaces. A pair of electromagnetic coils attached to the yoke member having the opposing surfaces so that a magnetic flux path is formed between the first and second moving bodies and the fixed member through the abutting portions of the coupling members, and each of the moving bodies. 2. The stepping type linear actuator according to claim 1, further comprising an elastic body disposed between the elastic bodies and urging the facing surfaces in a direction away from each other in the traveling direction.
(12)第1および第2の移動体の磁気結合部材を各移
動体が固定部材間とそれぞれ磁束通路を形成するよう上
記固定部材にそれぞれ当接部を有するヨーク部材とそれ
ぞれの当接部にて磁束の方向が同一となるようそのヨー
ク部材に装着された電磁コイルとから構成したことを特
徴とする請求項(1)記載の歩進型リニアアクチュエー
タ。
(12) The magnetic coupling members of the first and second movable bodies are connected to a yoke member having an abutting portion on the fixed member and the respective abutting portions so that each movable body forms a magnetic flux path between the fixed members. 2. The stepping type linear actuator according to claim 1, further comprising an electromagnetic coil attached to the yoke member so that the direction of the magnetic flux is the same.
(13)固定部材を平坦な走行路を有する板状の固定基
板から構成し第1および第2の移動体を進行方向に沿っ
て案内自在になるよう案内部材を配したことを特徴とす
る請求項(1)記載の歩進型リニアアクチュエータ。
(13) A claim characterized in that the fixed member is composed of a plate-shaped fixed substrate having a flat running path, and a guide member is arranged so as to freely guide the first and second movable bodies along the traveling direction. The stepping linear actuator according to item (1).
(14)固定部材の案内部材を固定部材に一体に設けた
溝部とその溝部に勘合自在に摺動され各移動体に設けら
れた案内用ピンとより構成したことを特徴とする請求項
(13)記載の歩進型リニアアクチュエータ。
(14) Claim (13) characterized in that the guide member of the fixed member is constituted by a groove provided integrally with the fixed member and a guide pin provided on each movable body and slidably fitted into the groove. The stepping linear actuator described.
(15)固定部材の案内部材を各移動体が固定部材から
離脱をすることを防ぐ規制面と各移動体を案内する案内
面とより構成したことを特徴とする請求項(13)記載
の歩進型リニアアクチュエータ。
(15) The step according to claim (13), wherein the guide member of the fixed member is constituted by a regulating surface that prevents each movable body from separating from the fixed member and a guide surface that guides each movable body. Progressive linear actuator.
(16)固定部材を進行方向に中心軸を有し直線性のあ
る軸状部材から構成したことを特徴とする請求項(1)
記載の歩進型リニアアクチュエータ。
(16) Claim (1) characterized in that the fixing member is constituted by a linear shaft-like member having a central axis in the direction of movement.
The stepping linear actuator described.
(17)磁気結合部材を有する第1および第2の移動体
と磁気駆動手段とを軸状の固定部材と同軸状に構成した
ことを特徴とする請求項(16)記載の歩進型リニアア
クチュエータ。
(17) The stepping linear actuator according to claim (16), wherein the first and second movable bodies having magnetic coupling members and the magnetic drive means are configured coaxially with the axial fixed member. .
(18)各移動体の磁気結合部材を固定部材に対してそ
れぞれ一対の当接部を有する一対のヨーク部材とその各
当接部において磁束方向が同一となるよう磁化されその
磁化方向両端面を上記一対のヨーク部材にて挟持された
永久磁石とより構成し、上記磁気駆動手段を磁気結合部
材の一対の当接部を中心に進行方向に沿ってそれぞれ双
方向に配した各移動体間の対向面を有し上記磁気結合部
材の一対のヨーク部材とそれぞれ連結する一対のヨーク
部材を配し、そのヨーク部材、固定部材および同一方向
の磁束を有する各磁気結合部材のヨーク部材の当接部を
経て磁束通路が形成されるよう上記一対のヨーク部材に
装着された一対の電磁コイルから構成したことを特徴と
する請求項(1)記載の歩進型リニアアクチュエータ。
(18) The magnetic coupling member of each moving body is magnetized with a pair of yoke members each having a pair of abutting portions against the fixed member, and each of the abutting portions is magnetized so that the magnetic flux direction is the same, and both end faces in the magnetization direction are magnetized. a permanent magnet sandwiched between the pair of yoke members, and the magnetic drive means is arranged bidirectionally along the traveling direction centering on the pair of abutting portions of the magnetic coupling member between each moving body. A pair of yoke members having opposing surfaces and respectively connected to the pair of yoke members of the magnetic coupling member are disposed, and the yoke member, the fixed member, and the contact portion of the yoke member of each magnetic coupling member having magnetic flux in the same direction are provided. 2. The stepping linear actuator according to claim 1, further comprising a pair of electromagnetic coils attached to the pair of yoke members such that a magnetic flux path is formed through the pair of yoke members.
(19)装置本体に固定された固定部材と、その固定部
材に当接支持され磁性材料からなる走行路を有する可動
部材と、上記固定部材に離間して配され上記可動部材を
当接支持し上記固定部材間と進行方向に対し空隙を介し
て対向面を有し所定ストローク内で相対変位自在である
移動体と、その移動体と上記固定部材内にあり上記可動
部材に対し磁気的にそれぞれ当接力を発生する磁気結合
部材と、上記固定部材と移動体間の協働する手段であっ
て上記対向面に磁気力を発生し上記磁気結合部材による
固定部材および移動体の当接力を磁気的に制御すると共
にその磁気力により上記移動体を相対的に変位させ以っ
て上記固定部材に対し可動部材を歩進的に変位せしめる
磁気駆動手段とを具備したことを特徴とする歩進型リニ
アアクチュエータ。
(19) A fixed member fixed to the device main body, a movable member that is supported in contact with the fixed member and has a running path made of a magnetic material, and a movable member that is spaced apart from the fixed member and supports the movable member in contact with it. A movable body that has opposing surfaces with a gap between the fixed members and in the direction of movement and is movable relative to each other within a predetermined stroke; A magnetic coupling member that generates a contact force, a means for cooperating between the fixed member and the movable body, which generates a magnetic force on the opposing surface and magnetically reduces the contact force between the fixed member and the movable body by the magnetic coupling member. and a magnetic drive means for controlling the movable member relative to the fixed member and displacing the movable member stepwise with respect to the fixed member by using the magnetic force of the moving member. actuator.
JP19590189A 1988-07-28 1989-07-27 Progressive linear actuator Expired - Lifetime JP2682156B2 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP18901188 1988-07-28
JP63-189011 1988-07-28
JP1-69601 1989-03-22
JP6960289 1989-03-22
JP1-69608 1989-03-22
JP6960189 1989-03-22
JP1069603A JPH02248055A (en) 1989-03-22 1989-03-22 Wire bonding device
JP1-69602 1989-03-22

Publications (2)

Publication Number Publication Date
JPH0315261A true JPH0315261A (en) 1991-01-23
JP2682156B2 JP2682156B2 (en) 1997-11-26

Family

ID=27465153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19590189A Expired - Lifetime JP2682156B2 (en) 1988-07-28 1989-07-27 Progressive linear actuator

Country Status (1)

Country Link
JP (1) JP2682156B2 (en)

Also Published As

Publication number Publication date
JP2682156B2 (en) 1997-11-26

Similar Documents

Publication Publication Date Title
EP1158547B1 (en) Electromagnetic actuator
JPH0528460B2 (en)
US5091710A (en) Step linear actuator
JPS6318431B2 (en)
WO2007116508A1 (en) Linear motor
JPH0315261A (en) Stepping type linear actuator
JPS648537B2 (en)
KR100407897B1 (en) A Fine Actuator Stage Using Moving Magnet Type Of VCM
JP4522674B2 (en) Small slide device
JPH09261942A (en) Linear pulse motor
JPH0415608A (en) Lens driving device
JP2807352B2 (en) Bias magnetic field applying device
JPH055831Y2 (en)
JP2978495B2 (en) Linear pulse motor
JPS61202340A (en) Focus control mechanism of optical disk device
JPS592562A (en) Movable coil type actuator
JPH0311856Y2 (en)
JPH0896377A (en) Electromagnetic driver and objective lens driver using it
JPH0684180A (en) Optical head rough movement actuator
JPS61273754A (en) Objective lens driving device
JPH01144241A (en) Actuator for optical head
JPS639309B2 (en)
JPH0448439A (en) Feeding mechanism for optical head
JPH0130385B2 (en)
JPS62129946A (en) Actuator for optical head