JPH03152545A - Production of photosensitive body - Google Patents

Production of photosensitive body

Info

Publication number
JPH03152545A
JPH03152545A JP29185989A JP29185989A JPH03152545A JP H03152545 A JPH03152545 A JP H03152545A JP 29185989 A JP29185989 A JP 29185989A JP 29185989 A JP29185989 A JP 29185989A JP H03152545 A JPH03152545 A JP H03152545A
Authority
JP
Japan
Prior art keywords
cleaning
layer
photosensitive layer
solvent
photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29185989A
Other languages
Japanese (ja)
Inventor
Isao Doi
勲 土井
Kenji Masaki
賢治 正木
Shuji Iino
修司 飯野
Mochikiyo Osawa
大澤 以清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP29185989A priority Critical patent/JPH03152545A/en
Priority to AU65926/90A priority patent/AU626045B2/en
Publication of JPH03152545A publication Critical patent/JPH03152545A/en
Priority to US08/004,675 priority patent/US5330873A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To prevent the degradation and fluctuation in surface potential by using an org. solvent of a non-halogen system for cleaning of a surface. CONSTITUTION:The non-halogen solvent is the solvent constituted of the molecules which do not contain halogen atoms as its constituting atoms and includes satd. hydrocarbons, hydrocarbon alcohols, arom. hydrocarbons, ketones or ethers, etc. A dipping method, shower method, steam cleaning method, etc., may be applied to the method of cleaning the photosensitive body. A surface protective layer (vacuum thin film) can be formed with good adhesiveness by various methods, such as plasma CVD method, photo CVD method, thermal CVD method, sputtering method, vapor deposition method, and ion plating method, on the surface of the photosensitive body cleaned in such a manner. The good photosensitive body which is free from the degradation in the surface potential, the fluctuation in the surface potential, etc., is obtd. in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、表面に保護層を有する有機系感光体の製造法
に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing an organic photoreceptor having a protective layer on its surface.

従来の技術および課題 有機系感光体は導電性基板上に、有機系感光体を形成し
た後、表面保護層を形成する手順で製造されることが一
般的である。
BACKGROUND OF THE INVENTION Organic photoreceptors are generally manufactured by forming an organic photoreceptor on a conductive substrate and then forming a surface protective layer.

表面保護層は、理想的には、有機系感光層を形成後、直
ちにその表面に形成することが望ましいが、実際には、
製造工程の簡略化、装置上の問題より、有機系感光層の
みを形成したものを一度に多量に製造し、次に非晶質炭
素膜等の表面保護層形成工程に供せられるのが一般的で
あり、その間、有機系感光層は数日〜1ケ月程度保管さ
れる(該保管期間を「しかかり時間」という)ことが多
い。
Ideally, it is desirable to form the surface protective layer on the surface of the organic photosensitive layer immediately after forming it, but in reality,
To simplify the manufacturing process and due to equipment problems, it is common to manufacture large quantities of organic photosensitive layers at one time, and then use them to form a surface protective layer such as an amorphous carbon film. During this period, the organic photosensitive layer is often stored for several days to one month (this storage period is referred to as "starting time").

有機系感光層表面は、形成後、時間経過と共に大気中の
酸素により表面が酸化されていく。このような酸化被膜
が形成された有機系感光層表面に保護層、たとえば非晶
質炭素膜を設けようとすると、酸化被膜面と保護層との
間の接着性が悪いために表面保護層の剥離が発生してし
まう。本発明者らの経験では、塗布後−日経過した有機
系感光層では、既にこの現象が発生しやすい。
After formation, the surface of the organic photosensitive layer is oxidized by oxygen in the atmosphere over time. When attempting to provide a protective layer, such as an amorphous carbon film, on the surface of an organic photosensitive layer on which such an oxide film has been formed, the surface protective layer may be damaged due to poor adhesion between the oxide film surface and the protective layer. Peeling will occur. According to the experience of the present inventors, this phenomenon is already likely to occur in organic photosensitive layers that have been coated for several days.

このような酸化被膜を除去するために、従来は、フロン
に代表される一般的なハロゲン系洗浄溶剤で、有機系感
光層表面を洗っていた。このようにすると確かに酸化被
膜が除去され、感光層と表面保護層の接着性は確保され
るものの、有機系感光層が劣化し、表面電位の低下やバ
ラツキが発生するという問題がある。
In order to remove such an oxide film, conventionally, the surface of the organic photosensitive layer has been washed with a general halogen-based cleaning solvent typified by Freon. Although this method certainly removes the oxide film and ensures the adhesion between the photosensitive layer and the surface protective layer, there is a problem in that the organic photosensitive layer deteriorates and the surface potential decreases and varies.

なお、表面保護層が真空薄膜で形成された電子写真感光
体が、例えば特開昭62−100766、(32−29
4258,51−139340,49350361,1
18−128732,49−122337,58−59
454,61−117562,58−152255、(
33−97’1)62号公報等に開示されているが、長
期保管された感光層表面に真空薄膜を形成する前に、接
着性確保のため、被膜される感光層を洗浄する必要があ
ることについては、なんら言及もしていないし示唆もし
ていない。
Incidentally, an electrophotographic photoreceptor having a surface protective layer formed of a vacuum thin film is disclosed in, for example, JP-A No. 62-100766 and (32-29).
4258,51-139340,49350361,1
18-128732, 49-122337, 58-59
454, 61-117562, 58-152255, (
33-97'1) 62, etc., but before forming a vacuum thin film on the surface of a photosensitive layer that has been stored for a long time, it is necessary to clean the photosensitive layer to be coated to ensure adhesion. Nothing was said or implied about it.

発明か解決しようとする課題 本発明は上記事情に鑑みなされたものであって、有機系
感光層の酸化層を有効に除去し、該感光層を表面保護層
の接着性を確保し、さらに表面電位の低下、バラツキの
ない感光体の製造法を提供することを目的とする。
Problems to be Solved by the Invention The present invention has been made in view of the above circumstances, and it effectively removes the oxidized layer of the organic photosensitive layer, secures the adhesion of the surface protective layer to the photosensitive layer, and further improves the surface It is an object of the present invention to provide a method for manufacturing a photoreceptor without potential drop or variation.

この目的は、有機系感光体の表面の洗浄を、従来のハロ
ゲン系洗浄溶剤に代え、非ハロゲン系の有機系溶剤を使
用することにより達成される。
This object is achieved by using a non-halogen organic solvent in place of the conventional halogen cleaning solvent for cleaning the surface of the organic photoreceptor.

課題を解決するための手段 すなわち、本発明は有機系感光層上に真空薄膜を表面保
護層として設ける感光体の製造法において、該感光層は
真空薄膜により被覆される前に非ハロゲン系溶剤で洗浄
される事を特徴とする感光体の製造法に関する。
Means for Solving the Problems Specifically, the present invention provides a method for manufacturing a photoreceptor in which a vacuum thin film is provided as a surface protective layer on an organic photosensitive layer, in which the photosensitive layer is coated with a non-halogen solvent before being coated with the vacuum thin film. The present invention relates to a method for manufacturing a photoreceptor, which is characterized in that it is washed.

本発明に使用される非ハロゲン系溶剤は、ハロゲン原子
を構成原子として含んでいない分子で構成される溶剤で
あり、たとえばn−ヘキサン、シクロヘキサン、ペンタ
ン、シクロペンタン、ヘゲタン、オクタン、リグロイン
、石油エーテル、ベンジン、イソヘキサン、ネオヘキサ
ン、■−ヘキセン等の飽和炭化水素類、メタノール、エ
タノール、プロパツール、ブチルアルコール、アリルア
ルコール、ベンジルアルコール等の炭化水素系アルコー
ル類、トルエン、キシレン、ヘミメリテン、プソイドク
メン、テトラリン等の芳香族炭化水素類、アセトン、エ
チルメチルケトン、シクロヘキサノン、メチルビニルケ
トン等のケトン類、あるいは、エチルエーテル、メチル
エーテル等のエーテル類等を上げることができる。好ま
しいものはn−ヘキサン、インヘキサンである。
The non-halogenated solvent used in the present invention is a solvent composed of molecules that do not contain halogen atoms as constituent atoms, such as n-hexane, cyclohexane, pentane, cyclopentane, hegetane, octane, ligroin, petroleum ether, etc. , saturated hydrocarbons such as benzine, isohexane, neohexane, ■-hexene, hydrocarbon alcohols such as methanol, ethanol, propatool, butyl alcohol, allyl alcohol, benzyl alcohol, toluene, xylene, hemimelithene, pseudocumene, tetralin Examples include aromatic hydrocarbons such as, ketones such as acetone, ethyl methyl ketone, cyclohexanone, methyl vinyl ketone, and ethers such as ethyl ether and methyl ether. Preferred are n-hexane and inhexane.

非ハロゲン系有機溶剤による洗浄が有効な有機系感光層
としては、特に制限されないが、表面保護層を形成する
前の最表面層が樹脂の分散型の層で構成されていること
が必要である。すなわち電荷発生物質、例えばフタロシ
アニン系顔料、アゾ系顔料、ペリレン系顔料等および電
荷輸送物質、例えばトリフェニルメタン化合物、トリフ
ェニルアミン化合物、ヒドラゾン化合物、スチリル化合
物、ピラゾリン化合物、オキサゾール化合物、オキサジ
アゾール化合物等を、結着材料、例えばポリエステル、
ポリビニルブチラール、ポリカーボネート、ボリアリレ
ート、スチレンアクリル等に分散塗布せしめた単層構成
のもの、または、電荷発生物質と電荷輸送物質を別々の
層に分散塗布せしめ、電荷発生と電荷輸送の機能を分離
した機能分離型構成のもの(その積層順序はいずれでも
よい)いずれにも適用可能である。もっとも、電荷発生
層としてはフタロシアニンの蒸着膜のように、結着樹脂
を用いず電荷発生物質自体のみからなるものも存在する
が、このような電荷発生層で構成されていても、その上
に樹脂分離型の電荷輸送層が設けられていれば本発明の
洗浄は有効である。
The organic photosensitive layer for which cleaning with a non-halogenated organic solvent is effective is not particularly limited, but it is necessary that the outermost layer before forming the surface protective layer is composed of a dispersed layer of resin. . That is, charge generating substances such as phthalocyanine pigments, azo pigments, perylene pigments, etc. and charge transport substances such as triphenylmethane compounds, triphenylamine compounds, hydrazone compounds, styryl compounds, pyrazoline compounds, oxazole compounds, and oxadiazole compounds. etc., a binding material such as polyester, etc.
A single-layer structure made by dispersing and coating polyvinyl butyral, polycarbonate, polyarylate, styrene acrylic, etc., or one in which a charge generation substance and a charge transport substance are dispersed and coated in separate layers to separate charge generation and charge transport functions. It is applicable to any function-separated structure (the stacking order may be arbitrary). However, there are charge generation layers that are made of only the charge generation substance itself without using a binder resin, such as a vapor-deposited film of phthalocyanine, but even if it is composed of such a charge generation layer, The cleaning of the present invention is effective if a resin-separated charge transport layer is provided.

感光体を洗浄する方法としては、ディッピング法、シャ
ワー法、蒸気洗浄法等を適用すればよく、洗浄条件は、
感光体の型(単分散、機能分離型)、構成樹脂の種類、
使用する溶剤の種類等により、適宜選択設定すればよい
As a method for cleaning the photoreceptor, a dipping method, a shower method, a steam cleaning method, etc. may be applied, and the cleaning conditions are as follows.
Type of photoreceptor (monodisperse, functionally separated type), type of constituent resin,
It may be selected and set as appropriate depending on the type of solvent used.

ディッピング法が好ましく、この洗浄法では感光体を2
0℃のヘキサン溶媒に60秒程度浸漬すれば十分である
。洗浄効果を上げるために、超音波振動を付与したり、
溶媒を(精製)循環させたりしてもよい。
A dipping method is preferred; in this cleaning method, the photoreceptor is
It is sufficient to immerse it in hexane solvent at 0° C. for about 60 seconds. To increase the cleaning effect, apply ultrasonic vibration,
The solvent may be (purified) circulated.

このように洗浄された感光体の表面には、例えば、プラ
ズマCVD法、光CVD法、黙CVD法、スパンタリン
グ法、蒸着法、イオンブレーティング法等種々の方法で
表面保護層(真空薄膜)を接着性よく形成することがで
き、得られる感光体は表面電位の低下、表面電位のバラ
ツキ等のない良好なものとすることができる。
A surface protective layer (vacuum thin film) is applied to the surface of the photoreceptor thus cleaned by various methods such as plasma CVD, photoCVD, silent CVD, sputtering, vapor deposition, and ion blating. can be formed with good adhesion, and the resulting photoreceptor can be of good quality without a decrease in surface potential or variation in surface potential.

以下、実施例を上げ本発明をさらに詳しく説明する。Hereinafter, the present invention will be explained in more detail with reference to examples.

実施例 有機系感光層(a)〜(「)の作製 下記のようにして有機系感光層(a)〜(f)を作製し
Iこ。
EXAMPLES Preparation of organic photosensitive layers (a) to (') Organic photosensitive layers (a) to (f) were prepared as follows.

これらの感光層のうち、感光層(b)は正帯電用、他の
感光層は負帯電用である。
Among these photosensitive layers, the photosensitive layer (b) is for positive charging, and the other photosensitive layers are for negative charging.

また、感光層(f)は長波長露光用、他の感光層は通常
の白色光露光用である。
Further, the photosensitive layer (f) is used for long wavelength exposure, and the other photosensitive layers are used for normal white light exposure.

有機系感光層(3)の作製 ヒスアゾ顔料クロロジアンブルー(CDB)1重量部、
ポリエステル樹脂(東洋紡績社製;V−200) I 
1iIk部、及びシクロヘキサノン100重量部の混合
液をサンドグラインダーにて13時間分散した。この分
散液を直径80mmX長さ330mmの円筒状アルミニ
ウム基板上にディッピングにて塗布し、乾燥して膜厚0
.3μmの電荷発生層を形成した。
Preparation of organic photosensitive layer (3) Hisazo pigment chlorodiane blue (CDB) 1 part by weight,
Polyester resin (manufactured by Toyobo Co., Ltd.; V-200) I
A mixed solution of 1iIk parts and 100 parts by weight of cyclohexanone was dispersed in a sand grinder for 13 hours. This dispersion was applied by dipping onto a cylindrical aluminum substrate with a diameter of 80 mm and a length of 330 mm, and dried to a film thickness of 0.
.. A charge generation layer of 3 μm was formed.

別に、4−ジエチルアミノベンズアルデヒド−ジフェニ
ルヒドラゾン(DEH)1重量部、及びポリカーボネー
ト(帝人化成社製;に−1300)1重量部をテトラヒ
ドロフラン(Tt+p)6ffiig+=溶解し、この
溶液を前記電荷発生層上に塗布、乾燥し、朝燥後の膜厚
が15μn1の電荷輸送層を形成し、有機系感光層(a
)を得た。
Separately, 1 part by weight of 4-diethylaminobenzaldehyde-diphenylhydrazone (DEH) and 1 part by weight of polycarbonate (manufactured by Teijin Kasei Co., Ltd.; Ni-1300) were dissolved in 6ffiig+ of tetrahydrofuran (Tt+p), and this solution was applied onto the charge generation layer. It is coated and dried to form a charge transport layer with a film thickness of 15 μn1 after morning drying, and an organic photosensitive layer (a
) was obtained.

有機系感光層(b)の作製 特殊α型銅フタロンアニン(東洋インキ社製)25重量
部、アクリルメラミン熱硬化型樹脂(大日本インキ社製
;A−405とスーパーベッカミンJ820の混合物)
50重量部、4−ジエチルアミノベンズアルデヒド−ジ
フェニルヒドラゾン25重量部および有機溶剤(キシレ
ン7重量部とブタノール3重量部の混合物)500重量
部の混合液をボールミルで10時間粉砕分散した。この
分散液を直径80mmX長さ330mmの円筒状アルミ
ニウム基板上にディッピングにて塗布し、乾燥焼き付け
(150°C′ts1時間)を行い、膜厚15μmの有
機系感光層(b)を得た。
Preparation of organic photosensitive layer (b) 25 parts by weight of special α-type copper phthalonanine (manufactured by Toyo Ink Co., Ltd.), acrylic melamine thermosetting resin (manufactured by Dainippon Ink Co., Ltd.; mixture of A-405 and Super Beckamine J820)
A mixture of 50 parts by weight, 25 parts by weight of 4-diethylaminobenzaldehyde-diphenylhydrazone, and 500 parts by weight of an organic solvent (a mixture of 7 parts by weight of xylene and 3 parts by weight of butanol) was pulverized and dispersed in a ball mill for 10 hours. This dispersion was applied by dipping onto a cylindrical aluminum substrate with a diameter of 80 mm and a length of 330 mm, and dried and baked (150° C. for 1 hour) to obtain an organic photosensitive layer (b) with a thickness of 15 μm.

有機系感光層(c)の作製 後記式[Ialに示されるビスアゾ化合物2重量部、ポ
リエステル樹脂(東洋紡社製、V−500)1重量部、
およびメチルエチルケトン100重量部をボールミルに
て、24時間混合分散した。この分散液を直径80mm
x長さ330mmの円筒状アルミニウム基板上にディッ
ピングにて塗布し、乾燥して膜厚3000人の電荷発生
層を得た。
Preparation of organic photosensitive layer (c) 2 parts by weight of a bisazo compound represented by the following formula [Ial, 1 part by weight of polyester resin (manufactured by Toyobo Co., Ltd., V-500),
and 100 parts by weight of methyl ethyl ketone were mixed and dispersed in a ball mill for 24 hours. The diameter of this dispersion is 80mm.
It was coated on a cylindrical aluminum substrate with a length of 330 mm by dipping and dried to obtain a charge generation layer with a thickness of 3000 mm.

次いで、この電荷発生層の上に、後記式[lb]に示さ
れるヒドラゾン化合物10重量部、およびポリカーボネ
ート樹脂(帝人化成社製、に−1300)10重量部を
テトラヒドロフラン80f[11部中に溶解した液を塗
布し、乾燥して膜厚20pmの電荷輸送層を形成し、有
機系感光層(C)を得た。
Next, 10 parts by weight of a hydrazone compound represented by the formula [lb] below and 10 parts by weight of polycarbonate resin (manufactured by Teijin Kasei Co., Ltd., Ni-1300) were dissolved in 80f [11 parts of tetrahydrofuran] on this charge generation layer. The liquid was applied and dried to form a charge transport layer with a thickness of 20 pm, thereby obtaining an organic photosensitive layer (C).

有機系感光層(d)の作製 後記式[11a]に示されるビスアゾ化合物2重量部、
ポリエステル樹脂(東洋紡社製、V−500)1重量部
、およびメチルエチルケトン1ooffi量部をボール
ミルにて24時間混合分散した。この分散液を直径80
mm長さ330mmの円筒状アルミニウム基板上にディ
ッピングにて塗布し乾燥して膜厚2500人の電荷発生
層を形成した。
Preparation of organic photosensitive layer (d) 2 parts by weight of a bisazo compound represented by the following formula [11a],
1 part by weight of polyester resin (manufactured by Toyobo Co., Ltd., V-500) and 1 ooffi part of methyl ethyl ketone were mixed and dispersed in a ball mill for 24 hours. The diameter of this dispersion is 80 mm.
It was coated on a cylindrical aluminum substrate with a length of 330 mm by dipping and dried to form a charge generation layer with a thickness of 2500 mm.

次いで、後記式[I[b]に示されるスチリル化合物1
0重量部、およびボリアリレート樹脂(ユニチカ社製;
U−4000)I 0重量部をテトラヒドロフラン85
重量部に溶解した。得られた塗布液を前記電荷発生層の
上に塗布し、乾燥して膜厚が20μmの電荷輸送層を形
成し、有機系感光層(d)を得た。
Then, a styryl compound 1 represented by the following formula [I[b]
0 parts by weight, and polyarylate resin (manufactured by Unitika;
U-4000) I 0 parts by weight to 85% of tetrahydrofuran
Parts by weight were dissolved. The resulting coating solution was applied onto the charge generation layer and dried to form a charge transport layer having a thickness of 20 μm, thereby obtaining an organic photosensitive layer (d).

有機系感光層(e)の作製 後記式[n1alに示すビスアゾ化合物2重量部、ポリ
エステル樹脂(東洋紡績社製;V−500)1重量部、
およびメチルエチルケトン100!ii部をボールミル
にて、24時間混合分散した。この分散液を直径80m
mx長さ330n+mの円筒状アルミニラム基板上にデ
ィッピングにて塗布し乾燥して、膜厚3000人の電荷
発生層を形成した。
Preparation of organic photosensitive layer (e) 2 parts by weight of a bisazo compound shown in the following formula [n1al, 1 part by weight of polyester resin (manufactured by Toyobo Co., Ltd.; V-500),
and methyl ethyl ketone 100! Part ii was mixed and dispersed in a ball mill for 24 hours. The diameter of this dispersion is 80m.
It was applied by dipping onto a cylindrical aluminum substrate having a length of 330 nm and a length of 330 nm, and was dried to form a charge generation layer having a thickness of 3000 nm.

次いで、後記式[I[1b]に示すスチリル化合物10
重量部、およびメチルメタクリレート樹脂(三菱レーヨ
ン社製;BR−85)10重量部をテトラヒドロフラン
80重量部に溶解した。得られた液を前記電荷発生層の
上に塗布後乾燥して膜厚が20μmの電荷輸送層を形成
し、有機系感光層(e)をt与l二。
Then, styryl compound 10 shown in the formula [I[1b] below
parts by weight, and 10 parts by weight of methyl methacrylate resin (manufactured by Mitsubishi Rayon Co., Ltd.; BR-85) were dissolved in 80 parts by weight of tetrahydrofuran. The obtained liquid was applied onto the charge generation layer and dried to form a charge transport layer having a thickness of 20 μm, and an organic photosensitive layer (e) was applied thereto.

有機系感光層(f)の作製 ナタニルフタロシアニン(TiOPc)を抵抗加熱法を
用いてポート温度400〜500°C1真空度10−’
−10−’Torrのもとて真空蒸着し、厚さ2500
人のTiOPc蒸着膜を電荷発生層として形成した。
Preparation of organic photosensitive layer (f) Natanyl phthalocyanine (TiOPc) was heated to a port temperature of 400 to 500° C. and a vacuum degree of 10-' using a resistance heating method.
-10-'Torr vacuum evaporation, thickness 2500
A TiOPc vapor-deposited film was formed as a charge generation layer.

次いで、後記式[rV]に示すp、p−ビスジエチルア
ミノテトラフェニルブタジェンIn量部、及びポリカー
ボネート(帝人化成社製、に−1300)1重量部をT
 HF 6重量部に溶解し、この溶液を前記電荷発生層
上に塗布し乾燥して膜厚15μmの電荷輸送層を形成し
、有機系感光層Cf)を得た。
Next, parts by weight of p,p-bisdiethylaminotetraphenylbutadiene In shown in the formula [rV] below and 1 part by weight of polycarbonate (manufactured by Teijin Kasei Co., Ltd., Ni-1300) were added to T.
It was dissolved in 6 parts by weight of HF, and this solution was applied onto the charge generation layer and dried to form a charge transport layer having a thickness of 15 μm, thereby obtaining an organic photosensitive layer Cf).

[式111a] [式1[1b] [式■] 以上のようにして得られた感光層(a)は、20’(!
、65%の環境下に30日間保存した後、第1図に示す
洗浄装置を用い洗浄した。
[Formula 111a] [Formula 1 [1b] [Formula ■] The photosensitive layer (a) obtained as described above has 20'(!
, 65% for 30 days, and then washed using the washing apparatus shown in FIG.

第1図中、(1)は、基体上に感光層(a)を設けた感
光ドラム(1)で、油圧式上下機構を有する手段(3)
で上下可動のシャフト(2)に取り付けられている。(
4)は洗浄槽で、30(縦)x30(横)×50(液面
までの高さ)am3の内容積をもち、内部には洗浄用の
溶剤(5)が満たされている。溶剤(5)は蒸留循環器
(6)で循環使用される。
In FIG. 1, (1) is a photosensitive drum (1) having a photosensitive layer (a) provided on a base, and a means (3) having a hydraulic vertical mechanism.
It is attached to a vertically movable shaft (2). (
4) is a cleaning tank, which has an internal volume of 30 (vertical) x 30 (horizontal) x 50 (height to liquid level) am3, and is filled with a cleaning solvent (5). The solvent (5) is recycled in the distillation circuit (6).

洗浄はまず、感光ドラム(1)を、油圧式上下手段(3
)で徐々に下げ、洗浄槽(4)内の溶剤に感光ドラム(
1)を全部浸漬させることにより行なう。
For cleaning, first, the photosensitive drum (1) is
) to gradually lower the photosensitive drum (
1) by immersing the entire sample.

この時、洗浄をより効果的に行なうため、超音波発振子
(7)により、適宜超音波洗浄を行なう。
At this time, in order to perform cleaning more effectively, ultrasonic cleaning is appropriately performed using an ultrasonic oscillator (7).

実際の洗浄に用いた溶剤量は、蒸留循環器(6)や配管
分も含めて約5Hとした。液温は、図示しない温調器に
て20°Cとした。適宜使用した超音波発振子の出力は
500Wとした。
The amount of solvent used for actual cleaning was approximately 5H, including the distillation circulator (6) and piping. The liquid temperature was set at 20°C using a temperature controller (not shown). The output of the ultrasonic oscillator used appropriately was 500W.

以上の洗浄工程においては、表1に示した溶剤を用い、
以下に示される浸漬動作時間、浸漬時間、内US時間、
および引上動作を測定した。結果は表1中に示した。
In the above cleaning process, using the solvents shown in Table 1,
Immersion operation time, immersion time, US time shown below,
and the pulling motion was measured. The results are shown in Table 1.

■浸漬動作:シャフトを定速で下げながら、感光ドラム
の下端が液面に触れてから、 上端が液面に浸るまでの時間。
■Immersion operation: The time from when the bottom end of the photosensitive drum touches the liquid surface until the top end is immersed in the liquid surface while lowering the shaft at a constant speed.

つまり、長さ330mmのドラムの 場合、実施例1で示した浸漬動作3 0[秒1というのは、330/30− 11 mm/secでシャフトを下げた事を意味する。In other words, a drum with a length of 330 mm In this case, dipping operation 3 shown in Example 1 0 [1 second is 330/30- This means that the shaft was lowered at 11 mm/sec.

■浸漬時間:感光ドラム全体が液面下に浸っている時間
■Immersion time: The time the entire photosensitive drum is immersed under the liquid surface.

■内US時間:超音波(US)発振子を使用した場合に
は、浸漬時間内で超音波を発 振した時間を示した。
(2) US time: When an ultrasonic (US) oscillator was used, the time during which ultrasonic waves were oscillated within the immersion time was shown.

■引上動作:浸漬動作の反対で、引上げ時、感光ドラム
上端か液面上に出た時から、 下端が出きるまでの時間。
■Lifting operation: The opposite of dipping operation, the time from when the top of the photosensitive drum comes out above the liquid surface until the bottom of the photosensitive drum comes out.

また、ドラム下端とドラム上端の液中の浸漬時間差を、
以下のように最短時間と最長時間を測定しドラム面洗浄
時間差として表1中に示した。
In addition, the difference in immersion time in the liquid between the bottom end of the drum and the top end of the drum,
The shortest and longest times were measured as shown below and are shown in Table 1 as the drum surface cleaning time difference.

■最短時間: ドラム上端が液面下に浸っている時間。■Minimum time: The time the top of the drum is submerged below the liquid level.

即ち、浸漬時間と等しい。That is, it is equal to the immersion time.

■最長時間二 ドラム下端が液面下に浸っている時間。■Maximum time 2: The time the bottom end of the drum is submerged under the liquid level.

即ち、浸漬動作子浸漬時間+引 上動作に等しい。In other words, the dipping operation element dipping time + pull Equivalent to upward motion.

感光層(b)〜(f)の洗浄 感光層(b)〜(r)ニツイテも、20°C165%の
環境下に30日間保存後、感光層(a)と同様に、表1
に示した条件下で洗浄した。
After cleaning the photosensitive layers (b) to (f), the photosensitive layers (b) to (r) were also stored in an environment of 20°C and 165% for 30 days.
Washed under the conditions shown in .

表面保護層の形成 感光層洗浄後、感光層(a)の表面に以下のように表面
保護層を設けた。
Formation of surface protective layer After cleaning the photosensitive layer, a surface protective layer was provided on the surface of the photosensitive layer (a) as follows.

第2図に示すグロー放電分解装置において、まず、反応
装置(733)の内部をI O−”Torr程度の高真
空にした後、第1および第2調節弁(707および70
8)を解放し、第1タンク(7ol)より水素ガス、第
2タンク(702)よりブタジェンガスを各々出力圧1
 、0 Kg/cm2の下で、第1および第2流量制御
器(713および714)内へ流入させた。そして各流
量制御器の目盛を調整して、水素ガスの流量を300 
secm、ブタジェンガスの流量を3 Q sccmと
なるように設定して、途中混合器(731)を介して、
主管(732)より反応室(733)内へ流入した。各
々の流量が安定した後に、反応室(733)内の圧力が
0.5Torrとなるように圧力調節弁(745)を調
整した。一方、基板(752)としては、有機系感光層
(a)を用いて、予め50℃に加熱しておき、ガス流量
及び圧力が安定した状態で、予め接続選択スイッチ(7
44)により接続しておいた低周波電源(741)を投
入し、電力印加電極(736)に180 Wattの電
力を周波数100KHzの下で印加して約180秒間プ
ラズマ重合反応を行ない、基板(752)上に厚さ12
00人の非晶質炭素膜(a−C膜)を表面保護層として
形成した。成膜完了後は、電力印加を停止し、調節弁を
閉じ、反応室(733)内を充分に排気した後、真空を
破り本発明感光体を取り出した。
In the glow discharge decomposition apparatus shown in FIG. 2, first, the inside of the reactor (733) is made into a high vacuum of about IO-'' Torr, and then the first and second control valves (707 and 70
8) and hydrogen gas from the first tank (7 ol) and butadiene gas from the second tank (702) at an output pressure of 1
, 0 Kg/cm2 into the first and second flow controllers (713 and 714). Then, adjust the scale of each flow rate controller to increase the hydrogen gas flow rate to 300.
secm, the flow rate of butadiene gas is set to 3 Q sccm, and the flow rate is set to 3 Q sccm,
It flowed into the reaction chamber (733) from the main pipe (732). After each flow rate became stable, the pressure control valve (745) was adjusted so that the pressure in the reaction chamber (733) was 0.5 Torr. On the other hand, as the substrate (752), use the organic photosensitive layer (a), heat it to 50°C in advance, and with the gas flow rate and pressure stable, connect the connection selection switch (752) in advance.
The low frequency power source (741) connected to the substrate (752 ) top thickness 12
An amorphous carbon film (a-C film) of 0.00% was formed as a surface protective layer. After the film formation was completed, the application of electric power was stopped, the control valve was closed, and the inside of the reaction chamber (733) was sufficiently evacuated, and then the vacuum was broken and the photoreceptor of the present invention was taken out.

感光層(b)〜(f)についても、表1に示した条件で
上記と同様に形成した。
Photosensitive layers (b) to (f) were also formed in the same manner as above under the conditions shown in Table 1.

(以下、余白) 感光体表面電位の測定 (表面保護層形成前) 第3図に示したごとく表面保護層を形成する前の感光ド
ラム(lO)を取りつけ、周速130mm/SeCで回
転させた。高圧電源(12XMODEL610A、TR
EK社製)から電力をコロトロンチャージャー(13)
に供給し、感光層表面を500Vに帯電させた。帯電電
位は、表面電位計(+4XMODEL362A;TRE
K社製)で測定し、その時の電流aμAを電流計(II
)により読み取った。
(Hereafter, blank space) Measurement of photoreceptor surface potential (before surface protective layer formation) As shown in Figure 3, a photosensitive drum (lO) before forming a surface protective layer was attached and rotated at a circumferential speed of 130 mm/SeC. . High voltage power supply (12XMODEL610A, TR
Corotron charger (13) receives power from EK Corporation)
The surface of the photosensitive layer was charged to 500V. The charging potential was measured using a surface electrometer (+4XMODEL362A; TRE
(manufactured by K Company), and the current aμA at that time was measured with an ammeter (II
) was read.

表面電位計は、第4図に示したごとくドラム長手方向に
3ケ所設け、洗浄時のドラム上中下に対応する部位の電
位を同時に測定した。なお、前述の電流計の読みa[μ
A1は3つの表面電位計の平均が500Vとなったとき
の読みを示しているか、全ての実験において、各ドラム
の上中下における表面電位のバラツキは±5V以内であ
った。最後に帯電電荷はイレーサーランプ(15Xタン
グステンランプ、色温度2800°に、 40 [1u
x−see])を照射し消去した。
Three surface electrometers were installed in the longitudinal direction of the drum as shown in FIG. 4, and the potentials at the top, middle, and bottom of the drum were simultaneously measured during cleaning. In addition, the above-mentioned ammeter reading a[μ
A1 indicates the reading when the average of the three surface electrometers was 500 V. In all experiments, the variation in surface potential at the top, middle, and bottom of each drum was within ±5 V. Finally, the charged charge was charged using an eraser lamp (15X tungsten lamp, color temperature 2800°, 40 [1u
x-see]) was irradiated and erased.

(表面保護層形成後) 次に、表面保護層を形成した感光ドラムを取りつけ、電
流計(l l)の読み値が再びa[μA]となるように
チャージャー(13)の出力を調整し、3つの表面電位
計(14)でドラム上中下の各位置での表面電位を読み
、初期の表面電位500Vからの低下の範囲に従い、下
記の如き記号で評価結果を示した。
(After forming the surface protective layer) Next, attach the photosensitive drum on which the surface protective layer has been formed, and adjust the output of the charger (13) so that the reading value of the ammeter (l l) becomes a [μA] again. Three surface potential meters (14) were used to read the surface potential at each position on the top, middle, and bottom of the drum, and the evaluation results were expressed using the following symbols according to the range of decrease from the initial surface potential of 500V.

(バラツキ評価) 周内での表面電位バラツキの最大値と最小値との差に従
い、評価結果を示した。
(Variation evaluation) Evaluation results are shown according to the difference between the maximum value and the minimum value of the surface potential fluctuation within the circumference.

接着性評価 表面保護層の接着性評価を、感光ドラム上中下の3部位
(第4図)ニラき、J Is−に−5400規格の基盤
目試験により行なった。
Evaluation of adhesion The adhesion of the surface protective layer was evaluated using a JIS-5400 base plate test, in which three parts (top, middle and bottom) of the photosensitive drum (FIG. 4) were exposed.

長手方向のV0バラツキについては、上中下3ケ所合わ
せての最大1i11七最小値について同様に評価した。
Regarding the V0 variation in the longitudinal direction, the maximum value 1i117 and the minimum value for the top, middle, and bottom three locations were evaluated in the same manner.

画像評価 得られた感光体(保護層あり)を実際の複写機に搭載し
、得られるコピー画像について目視により判断した。
Image Evaluation The obtained photoreceptor (with a protective layer) was mounted on an actual copying machine, and the obtained copy image was visually judged.

複写機としては、EP49oz(ミノルタ社製)・を使
用した。ただし、感光層(b)を用いた感光体について
は帯電及び現像極性が反転するように改造したものを用
い、感光層(f)を用いに感光体については光学系を半
導体レーザー系に改造したものを用いた。
As a copying machine, EP49oz (manufactured by Minolta) was used. However, the photoreceptor using the photosensitive layer (b) was modified so that the charging and developing polarity was reversed, and the optical system of the photoreceptor using the photosensitive layer (f) was modified to a semiconductor laser system. I used something.

Oは良好な画像を、△は実用的には問題のなし)画像を
、×は不適な画像を示す。
O indicates a good image, Δ indicates an image with no practical problems), and × indicates an unsuitable image.

表2に各感光層についての以上の評価結果をまとめt二
Table 2 summarizes the above evaluation results for each photosensitive layer.

(以下、余白) 実施例1〜8は、有機系感光層(a)に対し、非ハロゲ
ン系溶剤であるノルマルヘキサンを用いた洗i方法を適
用したものであり、洗浄時間を色々かえて評価を行った
ものである。
(Hereinafter, blank space) In Examples 1 to 8, the cleaning method using n-hexane, which is a non-halogen solvent, was applied to the organic photosensitive layer (a), and the cleaning times were varied and evaluated. This is what was done.

洗浄時間が短い場合には、(実施例1〜3)若干接着性
に乏しい例があるものの、実用上問題はなく、全般的に
比較例1−11に比べ、極めて良好な結果が得られてい
る。
When the cleaning time was short (Examples 1 to 3), although there were some cases where the adhesiveness was slightly poor, there was no practical problem, and overall, extremely good results were obtained compared to Comparative Examples 1 to 11. There is.

実施例9〜11では、超音波を併用すれば、若干接着性
の乏しかった実施例1〜3についても良好な接着性が得
られることが分かる。また、フロンの場合(比較例1−
11)のようなV0低下も起きない事が分かる。
In Examples 9 to 11, it can be seen that if ultrasonic waves are used in combination, good adhesive properties can be obtained even in Examples 1 to 3, where the adhesive properties were slightly poor. In addition, in the case of Freon (Comparative Example 1-
It can be seen that the V0 drop as in 11) does not occur.

実施例12〜15では、実用的な範囲で浸漬動作と引上
動作の時間を変えても、感光体の上下での特性の差が現
れない事が分かる。
In Examples 12 to 15, it can be seen that even if the times of the dipping operation and the pulling operation are changed within a practical range, no difference in characteristics appears between the upper and lower sides of the photoreceptor.

実施例16〜29では、有機系感光層を(a)以外のも
のに変えても、同等の結果が得られる事が分かる。
In Examples 16 to 29, it can be seen that equivalent results can be obtained even if the organic photosensitive layer is changed to a layer other than (a).

実施例30〜38では、非ハロゲン系溶剤としてノルマ
ルヘキサン以外のものを用いても、同等の結果が得られ
る事が分かる。
In Examples 30 to 38, it can be seen that equivalent results can be obtained even when a non-halogen solvent other than n-hexane is used.

実施例39〜44では、a−C膜の作製条件を色々変え
ても、同等の結果が得られる事が分かる。
In Examples 39 to 44, it can be seen that equivalent results can be obtained even if the conditions for producing the a-C film are varied.

以上の実施例、比較例から、本発明の目的に対し、非ハ
ロゲン系溶剤が極めて効果的であることか理解される。
From the above Examples and Comparative Examples, it is understood that non-halogenated solvents are extremely effective for the purpose of the present invention.

比較例I2〜17は、本発明の実施例で用いようとする
感光層(a)〜(f)(感光層作製後30日保管したも
の)に対して、洗浄を行うことなくa−C表面保護層を
設けたものである。
Comparative Examples I2 to 17 were prepared using a-C surfaces without washing for photosensitive layers (a) to (f) (stored for 30 days after photosensitive layer preparation) to be used in the examples of the present invention. A protective layer is provided.

接着性評価に示される如く、接着性ランクは全てXで、
長期保管による酸化被膜がa−C膜の接着性に対して悪
影響を及はしている事が理解される。勿論、a−C膜か
接着していなければ、感光体としての寿命を伸ばすとい
うオーバーコート本来の目的が達せられない事は言うま
でもない。
As shown in the adhesive evaluation, all adhesive ranks are X,
It is understood that the oxide film caused by long-term storage has a negative effect on the adhesion of the a-C film. Needless to say, if the a-C film is not adhered, the original purpose of the overcoat, which is to extend the life of the photoreceptor, cannot be achieved.

また、基盤目試験を行うまでもなく自然剥離も発生して
いたため、オーバーコート層を有るところと無いところ
で表面電位に差が生じ、v。バラツキ評価も実用上問題
はないもののランク△となっている。
In addition, since natural peeling occurred without conducting a substrate surface test, there was a difference in surface potential between the areas with and without the overcoat layer. Although there is no practical problem in the dispersion evaluation, it is ranked △.

画像評価では、a−Cの剥離片がコピー画像上に付着し
たり、剥離片が現像器に混入し穂高規制板と現像スリー
ブとの間や感光体と現像スリーブとの間に挟まる結果、
現像剤の流れを阻害し、所謂現像不良を発生するなと、
極めて好ましくない結果となった。画像評価ランク×は
それを示したものである。
In image evaluation, as a result of peeling pieces a-C adhering to the copy image, peeling pieces getting into the developing device and getting caught between the height regulating plate and the developing sleeve, or between the photoreceptor and the developing sleeve,
To prevent the flow of developer from being obstructed and so-called development defects to occur.
This was an extremely unfavorable result. Image evaluation rank × indicates this.

比較例1−11は、本発明の実施例で用いようとする非
ハロゲン系溶剤に対し、−船釣に洗浄剤としてよく用い
られるハロゲン系溶剤を、感光層(a)について使用し
た後、a−C表面保護層を設け!二ものである。
In Comparative Example 1-11, a halogen-based solvent, which is often used as a cleaning agent for boat fishing, was used for the photosensitive layer (a), in contrast to the non-halogen-based solvent to be used in the examples of the present invention. -C Provides a surface protection layer! There are two things.

酸化被膜が除去されるため、接着性は改善されている事
が理解できる。
It can be seen that the adhesion is improved because the oxide film is removed.

しかし、ハロゲン系溶剤に浸漬している時間が長すぎる
とあるいは超音波を用いた過激な洗浄方法を用いると、
コート後の表面電位の低下を招き、そのため比較例3〜
11においてはランクが×となっている。画像上も、こ
の表面電位の低下による画像濃度の低下が観察されたた
め、画像評価ランクを×と表した。
However, if it is immersed in a halogenated solvent for too long or if a radical cleaning method using ultrasonic waves is used,
This leads to a decrease in surface potential after coating, and therefore Comparative Examples 3 to
In No. 11, the rank is ×. Since a decrease in image density due to this decrease in surface potential was also observed on the image, the image evaluation rank was expressed as ×.

一方、ハロゲン系溶剤に浸漬している時間が短かすぎる
と、洗浄時の液だれの影響が発生し、液がたれた部分、
即ち、溶剤が長いこと感光体表面に付着していた部分と
、そうでない部分との間に表面電位の乗りの差が発生し
、Voバラツキが大きくなる。比較例1〜5でのV。バ
ラツキ評価ランクが×なのはこの事によるものである。
On the other hand, if the time of immersion in the halogen-based solvent is too short, dripping may occur during cleaning, resulting in
That is, a difference in surface potential occurs between a portion where the solvent has been attached to the surface of the photoreceptor for a long time and a portion where the solvent has not been attached to the surface of the photoreceptor, and the Vo variation becomes large. V in Comparative Examples 1 to 5. This is the reason why the dispersion evaluation rank is ×.

画像上も、極めて顕著な液だれ状の濃淡を有する画像ノ
イズが発生したため、画像評価ランクを×と表しIこ。
Image noise with very noticeable drip-like shading also occurred on the image, so the image evaluation rank was expressed as ×.

Voバラツキはハロゲン系溶剤での洗浄時間を長くして
いくとランクは△となる。比較例5〜8がそれである。
As for the Vo variation, the rank becomes △ as the cleaning time with the halogen solvent increases. These are Comparative Examples 5 to 8.

これは、voが低くなるためバラツキの差は小さくしか
観測されないためである。
This is because the difference in variation is only observed to be small because vo becomes low.

本発明においてはさらに、表面保護層としてa−C膜の
代わりに、常用のスパッタリング装置を用いて、下記条
件; ターゲット: 基板温度=50°C 放電間隔:50mm(ターゲットと基板との距離)真空
度二2 X l O−’Torr 放電ガス:Ar 放i!電力+ 2.OKW 放電周波数:  13.56AIIz 放電時間: 12分間 00層膜厚:  1800A にてAQ20.の薄膜を設けた以外、実施例11比較例
1および比較例12と同様にして感光体を作製し、評価
した。
In the present invention, in place of the a-C film as the surface protective layer, a commonly used sputtering device is used under the following conditions: Target: Substrate temperature = 50°C Discharge interval: 50 mm (distance between target and substrate) Vacuum Degree 22 X l O-'Torr Discharge gas: Ar Release! Electricity + 2. OKW Discharge frequency: 13.56AIIz Discharge time: 12 minutes 00 layer film thickness: AQ20 at 1800A. Photoreceptors were produced and evaluated in the same manner as in Example 11, Comparative Example 1, and Comparative Example 12, except that the thin film was provided.

結果は、実施例1、比較例1および比較例12と同等で
あった。
The results were equivalent to Example 1, Comparative Example 1, and Comparative Example 12.

また、表面保護層としてa−C膜の代わりに、常用の真
空加熱法による蒸着装置を用いて、下記条件: 蒸着源:SiO 基板温度=50℃ ポート温度:  1200°C 真空度: 8 X 10−5Torr 蒸着時間:5分間 00層膜厚:  130OA にてSiOの薄膜を設けた以外、実施例1、比較例1お
よび比較例12と同様にして感光体を作製し、評価した
In addition, instead of the a-C film as the surface protective layer, a commonly used evaporation apparatus using a vacuum heating method was used, and the following conditions were used: Vapor deposition source: SiO Substrate temperature = 50°C Port temperature: 1200°C Vacuum degree: 8 x 10 -5 Torr Vapor deposition time: 5 minutes 00 layer thickness: 130 OA Photoreceptors were produced and evaluated in the same manner as in Example 1, Comparative Example 1, and Comparative Example 12, except that a thin film of SiO was provided.

結果は、実施例11比較例1および比較例12と同等で
あった。
The results were similar to those of Example 11, Comparative Example 1, and Comparative Example 12.

以上から、本製法はa−C膜に限ることなく、真空薄膜
全般に適用可能であることが理解される。
From the above, it is understood that the present manufacturing method is applicable not only to a-C films but also to vacuum thin films in general.

発明の効果 感光体の表面電位の低下、表面電位のバラツキを発生さ
せることなく接着性のよい真空薄膜を感光体表面保護層
として形成可能となった。
Effects of the Invention It has become possible to form a vacuum thin film with good adhesiveness as a photoreceptor surface protective layer without causing a decrease in the surface potential of the photoreceptor or variations in the surface potential.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、感光体洗浄装置の概略構成例を示す。 第2図は、表面保護層を形成するためのグロー放電分解
装置の概略構成例を示す。 第3図は、感光体表面電位測定装置の概略構成例を示す
。 第4図は、感光体の表面電位測定部位を示す図である。 第1図
FIG. 1 shows an example of a schematic configuration of a photoreceptor cleaning device. FIG. 2 shows a schematic configuration example of a glow discharge decomposition apparatus for forming a surface protective layer. FIG. 3 shows an example of a schematic configuration of a photoconductor surface potential measuring device. FIG. 4 is a diagram showing the surface potential measurement site of the photoreceptor. Figure 1

Claims (1)

【特許請求の範囲】 1、有機系感光層上に真空薄膜を表面保護層として設け
る感光体の製造法において、該感光層は真空薄膜により
被覆される前に非ハロゲン系溶剤で洗浄される事を特徴
とする感光体の製造法。 2、該感光層が、少なくとも電荷発生材料と電荷輸送材
料とを含んでなる有機系感光層である請求項1記載の感
光体の製造法。 3、該真空薄膜がプラズマCVD法により作製された非
晶質炭素膜である事を特徴とする請求項1記載の感光体
の製造法。
[Scope of Claims] 1. In a method for manufacturing a photoreceptor in which a vacuum thin film is provided as a surface protective layer on an organic photosensitive layer, the photosensitive layer is cleaned with a non-halogen solvent before being covered with the vacuum thin film. A method for manufacturing a photoreceptor characterized by: 2. The method for producing a photoreceptor according to claim 1, wherein the photosensitive layer is an organic photosensitive layer containing at least a charge-generating material and a charge-transporting material. 3. The method for manufacturing a photoreceptor according to claim 1, wherein the vacuum thin film is an amorphous carbon film produced by plasma CVD.
JP29185989A 1989-11-09 1989-11-09 Production of photosensitive body Pending JPH03152545A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29185989A JPH03152545A (en) 1989-11-09 1989-11-09 Production of photosensitive body
AU65926/90A AU626045B2 (en) 1989-11-09 1990-11-08 Heterocyclic oxy-phenoxyacetic acid derivatives and their use as herbicides
US08/004,675 US5330873A (en) 1989-11-09 1993-01-14 Production method of photosensitive member by eliminating outermost surface portion of photosensitive layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29185989A JPH03152545A (en) 1989-11-09 1989-11-09 Production of photosensitive body

Publications (1)

Publication Number Publication Date
JPH03152545A true JPH03152545A (en) 1991-06-28

Family

ID=17774348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29185989A Pending JPH03152545A (en) 1989-11-09 1989-11-09 Production of photosensitive body

Country Status (2)

Country Link
JP (1) JPH03152545A (en)
AU (1) AU626045B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123658A (en) * 1991-10-17 1993-05-21 Japan Field Kk Method for cleaning body to be cleaned and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05123658A (en) * 1991-10-17 1993-05-21 Japan Field Kk Method for cleaning body to be cleaned and apparatus therefor

Also Published As

Publication number Publication date
AU626045B2 (en) 1992-07-23
AU6592690A (en) 1991-05-16

Similar Documents

Publication Publication Date Title
US5525447A (en) Electrophotographic photoconductor
US5656406A (en) Electrophotographic photoconductor with amorphous carbon overlayer
US4687722A (en) Image holder member with overlayer of amorphous Si with H and C
JPH03152545A (en) Production of photosensitive body
JP2565400B2 (en) Electrophotographic photoreceptor using styrene-maleic anhydride copolymer as polymer binder
JPH03152547A (en) Production of photosensitive body
JPH10228121A (en) Electrophotographic photoreceptor
JP3266387B2 (en) Electrophotographic photoreceptor
US5330873A (en) Production method of photosensitive member by eliminating outermost surface portion of photosensitive layer
JPH01113758A (en) Organic photosensitive body
US5198317A (en) Organic photosensitive member comprising a charge transport layer with a binder resin and a solvent
JPH08320581A (en) Electrophotographic photoreceptor
JP3780316B2 (en) Photoconductor and image forming apparatus
JPH06148914A (en) Electrophotographic sensitive body
JP2897135B2 (en) Electrophotographic photoreceptor
JP3574779B2 (en) Photoconductor and image forming apparatus
JPS63313162A (en) Electrophotographic sensitive body
JP3907454B2 (en) Photoconductor and image forming apparatus, and method for producing the photoconductor
JPS60218658A (en) Electrophotographic sensitive body
JP3532148B2 (en) Photoconductor and image forming apparatus
JPH04352159A (en) Dip coating method for electrophotographic sensitive body
JPH07333867A (en) Electrophotographic photoreceptor
JPS60218660A (en) Electrophotographic sensitive body
JPH0155449B2 (en)
JPS6139050A (en) Photoconductive film and electrophotographic sensitive body